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Abstract

Formation of chlamydospores by Candida albicans was an established medical diagnostic
test to confirm candidiasis before the molecular era. However, the functional role and path-
ological relevance of this in vitro morphological transition to pathogenesis in vivo remain
unclear. We compared the physical properties of in vitro-induced chlamydospores with
those of large C. albicans cells purified by density gradient centrifugation from Candida-
infected mouse kidneys. The morphological and physical properties of these cells in kid-
neys of mice infected intravenously with wild type C. albicans confirmed that chlamydo-
spores can form in infected kidneys. A previously reported chlamydospore-null Aisw2/
Aisw2 mutant was used to investigate its role in virulence and chlamydospore induction.
Virulence of the Aisw2/Aisw2 mutant strain was reduced 3.4-fold compared to wild type C.
albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null
mutant further indicate that ISW2is a virulence factor in C. albicans. ISW2 deletion abol-
ished chlamydospore formation within infected mouse kidneys, whereas the reconstituted
strain restored chlamydospore formation in kidneys. Under chlamydospore inducing condi-
tions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those
late induced chlamydospores lacked associated suspensor cells while attaching laterally to
hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydo-
spores by C. albicans during mouse kidney colonization. Our results indicate that ISW2is
not strictly required for chlamydospores formation but is necessary for suspensor cell for-
mation. The importance of ISW2in chlamydospore morphogenesis and virulence may lead
to additional insights into morphological differentiation and pathogenesis of C. albicansin
the host microenvironment.
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Introduction

Candida albicans is a commensal yeast fungus that is part of the human gastrointestinal and
genitourinary tract microbiota. It has emerged as a significant opportunistic pathogen in the
growing population of immunocompromised patients, where it causes considerable morbidity,
mortality, and health care costs [1-4]. C. albicans is now the leading cause of nosocomial
bloodstream infection in the USA [5]. Disseminated candidiasis is highly prevalent among
immunocompromised cancer patients undergoing chemotherapy [6, 7]. Approximately $1 bil-
lion is spent annually to manage disseminated candidiasis, which has ~40% mortality rate irre-
spective of treatment with currently available antifungal drugs [8]. The unique morphological
plasticity of this pathogen allows C. albicans to switch between unicellular yeasts, pseudohy-
phae, and hyphal forms and contributes to virulence [9]. Under certain environmental condi-
tions, C. albicans also differentiates into mating competent opaque cells [10], specifically
regulated commensal state GUT (Gastrointestinally Induced Transition) cells [11], and thick-
walled chlamydospores [12].

Chlamydospores, first described in 1877 by Grawitz et al. [13], are the least studied of these
morphologic forms and are the only spore type made by C. albicans. Chlamydospores are
large, spherical, thick-walled, and refractile cells that are usually 8+1 um in diameter, although
values from 7 to 12 pm have been reported in the literature. Chlamydospores are thought to be
formed by rounding off the terminal filamentous hyphae where the basal hyphal compartment
has differentiated into a specialized ‘suspensor cell: Therefore, suspensor cells are considered
as a necessary precursor for chlamydospore formation in which nuclear division occurs accord-
ing to the chlamydospore developmental model described by Martin et al. [14]. Laboratory
conditions that induce chlamydospore formation include nutritionally poor media containing
complex sugars such as corn meal or rice extract, low temperatures (24-28°C), darkness, and
microaerophilic growth under glass cover slips. Chlamydospores are non-meiotic, asexual
spores. Except for the presence of a thick cell wall, they do not share most common characteris-
tics of classical fungal spores. Their physiological status and role in vivo are still uncertain, and
they have only been useful for diagnostic differentiation of C. albicans and C. dubliniensis from
other species of Candida and other clinically important yeasts [12, 14-22]. So far, little is
known about the genetic regulation of chlamydospore development in Candida species. C. albi-
cans EFGI is the major transcriptional regulator required for chlamydospore formation [20]
but it also regulates hyphal transitions. Filamentation is also a prerequisite for chlamydospore
formation [14]. NRGI and HOGI signaling are also associated with chlamydospore production
[15, 23]. A recent study established that the Candida cell wall proteins Csplp and Csp2p are
induced specifically in the process of chlamydospore production [24].

It is unlikely that chlamydospore formation would persist through evolution without a bio-
logical function. The presence of C. albicans chlamydospores in vivo during an infection has
been reported in a few older clinical case reports [25-27], although these reports were only
based on microscopy data. In tissue sections from our previously published animal model stud-
ies [28-38], we have consistently observed large spherical cells similar in size to chlamydo-
spores which are present in the outer perimeter of C. albicans colonies in the mouse kidney
cortex (unpublished observations). Our group has remained curious whether these structures
are in fact true chlamydospores.

Mutant library screening by Nobile et al (2003) found three mutants, Aisw2/Aisw2 (CJN16),
Asch9/Asch9 (CJN19), and Asuv3/Asuv3 (CJN223) that lacked the ability to induce chlamydo-
spores [19]. Based on our preliminary analysis of chlamydospore phenotypes in these mutants,
Aisw2/Aisw2 was chosen to study the role of ISW2 (orf19.7401) in chlamydospore development
and in pathogenesis of disseminated candidiasis. Its closest characterized ortholog, S. cerevisiae
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Isw2p, is an ATP-dependent chromatin remodeling factor that belongs to the highly conserved
ISWI (Imitation Switch) protein family [39-42]. Being an essential factor for protein-DNA inter-
actions on chromatin, ISW2 also affects the regulation of transcription, recombination, and
DNA repair, although the exact mechanisms remain to be elucidated [43]. Moreover, Tsukiyama
et al [43] showed that the ISWI gene complexes interact with each other to maintain the chroma-
tin structure, thus allowing survival of yeast cells under stress conditions. Due to the partial local-
ization of Isw2p with microtubules, this protein is also crucial for the expression of early meiotic
genes by enabling transcription factors for sporulation specific genes to access chromatin, which
in turn initiates sporulation in S. cerevisiae [42]. Isw2p also exhibits a repressor activity during
mitotic growth of yeast cells following recruitment by Ume6p, a transcription factor involved in
both positive and negative regulation of a diverse set of yeast genes [39, 40]. Therefore, ISW2
may regulate other functions in C. albicans in addition to chlamydospore development.

The previously reported ISW2 null mutant, CJN16, is derived from an avirulent BWP17
parent [19]. Therefore, we constructed an ISW2 deleted mutant in a prototrophic WT SC5314
C. albicans background to investigate the role of this gene in a mouse model of disseminated
candidiasis. We report here that deletion of ISW2 delays the onset of chlamydospore formation
without having any discernible defects on cell filamentation or its ability to cope with oxidative
stress. Notably, the chlamydospores formed in vitro by the Aisw2/Aisw2 mutant are unique in
that they form without characteristic suspensor cells and instead form laterally, being attached
directly to the hyphae. We report the role of ISW2 in in vivo chlamydospore induction and vir-
ulence using a mouse model of disseminated candidiasis. In addition, we confirm previous clin-
ical reports of in vivo chlamydospore formation using mouse models.

Materials and Methods
Ethics Statement

Handling and care of mice was conducted in an AAALAC International accredited facility in
compliance with the guidelines established by the Animal Care and Use Committee of the
National Cancer Institute under approved protocol LP-022. Mice that reached approved
humane endpoints were euthanized by CO2 inhalation.

Strains, media and growth conditions

C. albicans strains SC5314 [44] and A72 (ATCC MYA-2430) [45] were obtained from the
American Type Culture Collection, Rockville, MD. C. dubliniensis Wi284 strain was kindly
provided by Dr. Joachim Morschhiuser from the University of Wiirzburg, Germany. The
strains constructed for this study are listed in Table 1. For routine growth of C. albicans strains,
YPD medium (10 g/1 of yeast extract, 20 g/l of peptone and 20 g/1 of glucose with or without 20
g/l of agar) was used. To induce chlamydospore production, C. albicans cells grown overnight
were plated onto inducing corn meal agar (DIFCO, Detroit, MI or Fluka, Sigma-Aldrich) plates
supplemented with 1% Tween 80 according to the Dalmau technique described below. For
RNA isolation, corn meal broth medium was prepared by modifying commercially available
corn meal agar medium as described previously [46]. Briefly, powdered corn meal agar was
suspended in 10% excess of distilled water, continuously stirred overnight at 4°C, and filtered.
Staib agar was prepared as described previously [47] using 50 g of Guizotia abyssinica plant
seed extracted into 1 liter of distilled water and then supplemented with 1 g of glucose, 1 g of
KH,PO,, 1 g of creatinine, and 15 g of agar.

For mouse infections, C. albicans cells were grown overnight in 50 ml of yeast extract-pep-
tone-dextrose (YPD) medium at 30°C aerobically. The C. albicans yeast cells were harvested by
centrifugation at 4200 x g for 10 min, washed twice with 50 ml of sterile nonpyrogenic normal
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Table 1. C. albicans strains used or constructed in this study.

Strain Genotype Reference

SC5314 | Wild type (ISW2/ISW2) [44]

DRL5"® | Ajsw2:: SAT1-FLP/ISW2 This study

DRL5 Aisw2/ISW2 This study

DRL6 NP | Aisw2/Aisw2:SAT1-FLP This study

DRL6 Aisw2/Aisw2 This study

DRL7 NP | Aisw2/Aisw2::ISW2::SAT1-FLP This study

DRL7 Aisw2/Aisw2z::ISW2 This study

BWP17 | ura8A::A\imm434/ura3A::Nimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG [80]

CJN16 ura3A::Nimm434/ura3A::\imm434 arg4::hisG his1::hisG::pHIS1 isw2::Tn7-UAU1 [19]
arg4::hisG his1::hisG isw2::Tn7-URA3

CJN19 ura3A::Nimm434/ura3A::\imm434 arg4::hisG his1::hisG::pHIS1 sch9::Tn7-UAU1 [19]
arg4::hisG his1::hisG sch9::Tn7-URA3

CJN223 | ura3A::Nimm434/ura3A::Nimm434 arg4::hisG his1::hisG::pHIS1 suv3::Tn7-UAU1 [19]
arg4::hisG his1::hisG suv3::Tn7-URA3

DAY25 ura3A::Nimm434/ura3A::\imm434 arg4::hisG his1::hisG::pHIS1 rim101::ARG4 [19]
arg4::hisG his1::hisG rim101:: URA3

BH1P1 BMH1/bmh1A::HIS1 his1A/his1A arg4A::ARG4:: URAS/arg4/A [64]

UdR142C | bmh1A::HIS1/bmh1A::ARG4 ura3A/ura3A:: URA3::bmh1R142C [65]

doi:10.1371/journal.pone.0164449.t001

saline, and resuspended in 10 ml of sterile nonpyrogenic saline before cell quantification using
a Petroff—Hausser counting chamber. The cell suspensions were adjusted to a final concentra-
tion of 1 x 10” cells/ml for parenteral administration using nonpyrogenic sterile saline.

Harvesting and purification of chlamydospores in vitro

Radiating C. albicans colonies on agar plates were removed using a sterile blade and suspended
in 3M sodium thiocyanate in TE buffer. The C. albicans laden agar pieces were incubated for
10 min at 50°C with intermittent vortexing to solubilize the agar. After centrifugation at 4,000
rpm for 5 min, the C. albicans cell-hypha pellet was resuspended in PBS buffer, and chlamydo-
spores were separated from suspensor cells by sonication (30 s sonication and 30 s resting
cycles for 5 min on ice).

Chlamydospores were purified on linear sucrose density gradients [48] of 35-66% w/w
(1.15-1.32 g/cc), which were prepared by layering successive 2 ml fractions of decreasing den-
sity in 15 ml Beckman polyallomer tubes, whereupon 1-2 ml of sample in 35% sucrose was lay-
ered on top. Centrifugation was carried out at 39000 rpm in a SW41 swinging bucket rotor for
12 hours at 10°C in a L70 Beckman ultracentrifuge.

Staining and microscopy of purified chlamydospores

Images of purified chlamydospores, either unstained or stained with Calcofluor White were
obtained using light (Olympus, CH3-TR45) and fluorescence (Olympus, BX51TRF) respec-
tively. Images were processed with IPLab software (Scanalytics Inc., Fairfax, VA). For chitin
staining, 10% v/v formaldehyde fixed chlamydospores were treated with 0.2 pg/ml Calcofluor
White for 5 min in the dark and washed once with xylene. The low concentration of Calcofluor
White was chosen to stain chlamydospores predominantly, rather than yeast or hyphae. Size
measurements were made with an ocular micrometer and presented as the mean + standard
error of 150 cells.
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Construction of Aisw2/Aisw2 mutant and its complementation

To knock out the ISW2 gene, we followed the SAT1 flipping strategy reported by Reuss et al,
[49] and Sasse & Morschhduser, [50] using WT C. albicans strain SC5314 [44]. The pSFS2A
plasmid was kindly provided by Dr. Joachim Morschhauser from the University of Wiirzburg,
Germany. The unique restriction sites on the left (Apal, XhoI) and right (Sacl, SaclI) borders of
SAT1 flipper cassette with nourseothricin resistant marker was used for the construction of the
ISW2 gene disruption cassette. The primers used in this study are listed in the Table in S1 File.
In brief, the Apal-XhoI fragment of the C. albicans ISW2 (0.46 kb) upstream flanking sequence
was amplified using primer pair, ISW2upleft and ISW2upright. A SacII-Sacl ISW2 downstream
fragment (0.42 kb) was amplified with primer pair ISW2downleft and ISW2downright. The
ISW2 downstream and upstream fragment was cloned to generate pSFS2AISW2down and then
the plasmid with complete gene disruption cassette, pSFS2AISW2, respectively. Transforma-
tion for gene knock out was done as we described previously [34, 37] with the Apal-Sacl frag-
ment from pSFS2AISW2. The transformants were selected on YPD plates containing 200 pg/
ml nourseothricin (JenaBioscience, Germany). The nouseothricin resistance marker in single
allele knocked out strain (DRL5™") was excised by growing in yeast extract-peptone-maltose
(YPM) liquid medium as described by Reuss et al. (2004) [49]. This strain, named DRL5, was
then transformed again with the same Apal-SacI fragment to make DRL6" " and, following
another FLP-mediated excision, generating the ISW2 homozygous gene knock out mutant,
designated as DRL6. The clones were analyzed by sequential Southern hybridization at each
step for desired allelic displacement and replacement, using EcoR1 digested genomic DNA of
the transformants with the ISW2 up and downstream fragments as probes.

The ISW2 gene complementation cassette was constructed with the Apal-Xhol fragment of
the complete C. albicans ISW2 sequence as well as 0.34 kb of upstream and 0.174 kb of down-
stream flanking sequences for ISW2 (3746 bp), amplified using primer pair ISW2compleft and
ISW2compright. This fragment was sub-cloned to the Apal-Xhol site in pSFS2AISW2down to
generate ISW2 complementation cassette pISW2COMP. We inserted one copy of the gene
back to ISW2locus to make the strain Aisw2:ISW2/Aisw2which was designated as DRL7.
Southern hybridization and qRT-PCR analyses confirmed the reintegration of the gene at the
correct locus and expression of the reintegrated gene, respectively.

Kinetics of chlamydospore formation in vitro

To induce chlamydospore production, log phase cells and cells grown overnight on fresh YPD
liquid medium were used as the inoculum because the growth phase was reported to have
effects on chlamydospore formation rate [18]. To obtain log phase cells, an overnight YPD lig-
uid culture of C. albicans was inoculated into fresh YPD liquid medium at a cell density of ca.
0.01 ODgpo and incubated for 4-5 hours at 30°C in a 225 rpm rotatory shaker. For each cell
type, volumes of 3 pl were used to inoculate either corn meal agar plates supplemented with 1%
Tween 80 or Staib agar plates, following the Dalmau technique where cover slips were placed
on top of the inoculum to create microaerophilic conditions. The plates were incubated at
room temperature in the dark. The plates were examined over the next 6 weeks for in situ chla-
mydospores using an AMG EVOSf] Digital Inverted Microscope.

Filamentous growth and cell cycle growth analysis

The ability to form filaments at 30 or 37°C was determined by incubating C. albicans cells in
YPD liquid medium as well as under embedded growth conditions. The embedded assay was
performed by the pour plate technique with an inoculum of 10* cells/ml in Glucose-Proline-
Phosphate (GPP) agar and grown at 37°C for 15 to 17 hours. The ability to form pseudohyphae
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was also observed by growing the cells for 4 hours at 37°C in liquid GPP media supplemented
with 300 or 600 mM phosphate (1:1 KH,PO,:K,HPO,), as described in [51]. All growth pat-
terns were observed in situ using AMG EVOSA] Digital Inverted Microscope.

Cell cycle progression was analyzed by nuclear staining with propidium iodide at each time
point using a protocol modified from Zhang & Siede [52]. To initiate the cell cycle, G, synchro-
nized cells were obtained by a slight modification of a previous protocol [53]. In brief, YPD
grown cells were inoculated at 2 x 10® cells/ml into synthetic complete medium without glu-
cose. This carbon deficient liquid medium contained 6.7 g/1 of yeast nitrogen base without
amino acids (Sigma Y0626), 1.92 g/l of yeast synthetic dropout media without uracil (Sigma
Y1501), and 20 mg/I of uracil. Overnight grown cells were inoculated at a final cell density of
2 x 107 cells/ml into fresh YPD liquid medium, grown at 30°C aerobically and then harvested
after 0, 1, 2 and 3 hours. The harvested cells were washed once with deionized water, fixed in
absolute ethanol for 1 hour, mixed with an aliquot of fresh absolute ethanol, and stored at 4°C
until all the samples had been collected. To prepare for flow cytometry, the samples were vor-
texed extensively, centrifuged for 1 min at 14,000 x g, washed with 1 ml of water, and centri-
fuged again. The cell pellets were resuspended in 1 ml of 50 mM sodium citrate (pH 7.0) and
transferred to FACS analysis tubes (BD Falcon 2054) and treated with 8 ul volumes of 10 mg/
ml DNase-free RNase A for 1 hour at 50°C. Samples were then incubated with 25 pl of 10 mg/
ml proteinase K for another hour. Finally, 1 ml of 20 pg/ml propidium iodide in 50 mM
sodium citrate (pH 7.0) was added in the dark. All samples were briefly sonicated just before
analysis on a BD FACSCanto™ II with FACSDiva version 6.1.1 software. Actual cell numbers
were statistically analyzed using ANOVA on GraphPad Prism software.

Mouse infection with C. albicans

Outbred 6-8 week old (18-20 g) BALB/c female mice obtained from the NCI Frederick mouse
breeding facility were randomly allocated to groups of five animals and housed and cared with
ad libitum access to filtered water and standard mouse chow. For the survival study, WT
(SC5314), DRL6 (Aisw2/Aisw2),and DRL7 (Aisw2:ISW2/Aisw2) strains were inoculated into
three groups of 15 mice with a control group getting only sterile non pyrogenic saline. Each
group was inoculated intravenously in the lateral caudal tail vein using a 27 gauge needle with
a volume of 0.1 ml containing 10° C. albicans cells of each respective strain [28, 30, 31]. Clinical
signs of illness in each mouse were evaluated three times daily, and mice that displayed humane
endpoints including arched back posture, sunken eyes, ruffled hair, or dehydration were eutha-
nized immediately by CO, inhalation and processed for complete necropsy and collection of
tissues for histopathological examination. To examine basic host immune responses, two
groups of mice were infected with the WT SC5314 and DRL6 strains, and euthanized at 2 days
post-inoculation (PI) for organs and sera collection. Five mice were inoculated with the WT
SC5314, five were inoculated with DRL6 strain, and five control mice received 0.1 ml saline i.v
with no fungal challenge. Sera separated from the blood collected from individual mice were
stored at -80°C until analysis. Kidneys of infected mice consisting of 5 mice per group infected
with WT SC5314, DRL6, or DRL7 strains were stored at -80°C for subsequent use to extract
total RNA for analysis of chlamydospore-specific gene expression at day 3 post-infection.

Necropsy and histopathology

Immediately after euthanasia, macroscopic changes were recorded, and the brain, heart, lungs,
liver, spleen, and right kidneys were immersed in buffered 10% formalin, processed for paraffin
embedding, sectioned at 5 pm, and stained with haematoxylin and eosin (H&E). Grocott's
modification of Gomori's methenamine-silver (GMS) stain was used for detection of fungi in
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situ [35, 37]. Histopathology images from sections of formalin-fixed and paraffin-embedded
tissues stained with GMS or H&E were obtained using a light microscope (Olympus BX51) fit-
ted with a digital camera (Nikon DXM1200F) and ScanScope XT digital scanner (Aperio).
Images were processed with Adobe Photoshop and Aperio ImageScope v11.1.2.760 (Aperio).

Determination of serum cytokines and chemokines

Murine serum was collected from sacrificed mice at 2 days PI following infection with C. albi-
cans WT and mutant strains. A Luminex-bead array (Mouse cytokine/Chemokine Milliplex
MAP Kit, catalog no MPXMCYTO-70K, Millipore, Billerica, MA) was used to detect the cyto-
kines IL-6, IL-10 IL-17, TNF-q, IL-1B, GM-CSF and chemokines MCP1, MIP1-o. and RANTES
according to the manufacturer's specifications.

Statistical analysis

The probability of survival as a function of time was determined by the Kaplan-Meier method,
and significance was determined by the log-rank (Mantel-Cox) test and Jehan-Breslow-Wil-
coxon test using GraphPad Prism software. Serum cytokine expression patterns among all
treatment groups at 2 days PI were analyzed by two-way ANOVA with the post Bonferroni
comparison test. Three to four randomly selected mice from each group were euthanized at
each time point for longitudinal comparisons. Data were analyzed for significant differences by
comparing means of each triplicate reading at various time points assuming that the cytokine
expression levels within each group of mice were normally distributed.

Expression of chlamydospore specific markers in vitro and in vivo

For in vivo gene expression analysis, total RNA was extracted from kidneys infected with C.
albicans WT, DLR6, and DLRY strains. In vitro gene expression analysis was performed in the
same strains grown in corn meal broth and YPD broth at different time points up to 5 days
using a phenol extraction method as described [54], and the absence of genomic DNA was con-
firmed by a forward PCR primer within the ACT1I intron (P26) and a reverse primer within the
distal exon (PN90) as described previously [55] and/or DNAse treatment using TURBO DNA-
free ™ Kit (Invitrogen). One hundred ng of total RNA were used to prepare first strand cDNA
using SuperScript™ III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen™) according
to the manufacturer’s recommendation using oligo(dT) primers. Quantitative PCR was con-
ducted using iQ™ SYBR™ Green Supermix in a Biorad CFX Connect™ real-time PCR detection
system. Each cDNA preparation was normalized using CaCDC36 as an internal control. The
primers used in this study are listed in the Table in S1 File. Quantitative RT-PCR data were
normalized in two steps as described previously [34] and analyzed using two-way ANOVA
with the post Bonferroni comparison test.

Results

Chlamydospore-like structures in mouse kidneys infected with C.
albicans

Kidneys are the primary colonization organ in the mouse model of disseminated candidiasis
[30, 31, 56, 57]. The mouse immune system can clear the initial C. albicans infection from
other organs, so the outcome of the infection depends on how fungal colonization progresses
in the kidneys [58]. Yeast cells escape from nephrons and settle in peri-glomerular regions of
the kidney as early as 2 to 6 hours PI [34]. Initially, the yeast cells grow as micro-colonies com-
posed of mixtures of yeasts and filaments, which subsequently overwhelm the kidney cortex as
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early as 2 days PI [30, 34]. The host response consists of strong monocyte/macrophage and
neutrophil infiltration together with high levels of TNF-o and IL-6 and other pro-inflamma-
tory cytokines, which creates a local inflammatory response, leading to tissue injury and necro-
sis, kidney malfunction, and the formation of granulation tissues around the C. albicans
colonies starting at 3 to 7 days PI [34, 37]. At this stage we observed large spherical cells ca.
6-8 pm in size in histopathological sections stained with GMS (Fig 1). These spherical cells
were limited in number and were mainly visualized in the periphery of the resolving lesions
caused by extensive fungal colonization (Fig 1, middle panel). We frequently observed these
large spherical cells in the kidney cortexes of mice from day 3 PI onwards (Fig 1), and we have
observed them in most of our previous studies [28-38] with both WT C. albicans A72 and
SC5314 in the mouse model for disseminated candidiasis (unpublished observations).

In vitro and in vivo characterization of chlamydospores

We isolated these large cells using isopycnic sucrose density gradient centrifugation. Chla-
mydospore morphology was confirmed by Calcofluor White staining after purification. On 35
to 66% (w/w) linear gradients yeasts, hyphae, and pseudohyphae banded at ca. 1.28-1.29 g/cc,
whereas the chlamydospores banded at ca. 1.17 g/cc (Fig 2, top panel). This lower density for
chlamydospores is consistent with the presence of refractile lipid granules as observed by phase
contrast microscopy as well as the high lipid content (> 20%) reported by Jansons and Nicker-
son [59] and the sucrose flotation purification described for chlamydospores by Fabry et al
[17]. Without sonication the chlamydospores remained attached to hyphae and banded at an
intermediate density of ca. 1.22-1.24 g/cc. Chlamydospores produced in vitro on cornmeal
agar were identical with those formed in vivo three days PI in mouse kidneys with regard to
their banding position on sucrose density gradients (Fig 2). Purified in vitro chlamydospores
and thin histological sections of Candida infected kidneys were stained with Calcofluor White
and observed by fluorescence microcopy (Fig 2A and 2B), while in vitro and in vivo purified
unstained chlamydospores were examined by phase contrast microscopy at 1000X (Fig 2C and
2D). When compared with the in vitro cells, Candida infected kidney sections stained using
Calcofluor White showed cells with the expected size of chlamydospores (Fig 2B). Critically,
the in vitro and in vivo chlamydospores banded at the same density (1.17 g/cc, Fig 2, top panel)
and had the same diameter (8.0 £1 um, Fig 2C and 2D). These properties indicate that the chla-
mydospore-like structures observed in kidney sections in the mouse model of disseminated
candidiasis are indeed chlamydospores.

Chlamydospore mutant phenotypes in a BWP17 background

We reexamined the chlamydospore null mutants Aisw2/Aisw2 (CJN16), Asch9/Asch9 (CJN19)
and Asuv3/Asuv3 (CJN223) originally identified by Nobile et al [19]. The mutants were grown
under microaerophilic conditions on corn meal agar for four weeks, and WT SC5314 and
BWP17 strains were included for comparison. During the first three weeks, in agreement with
previous findings [19], none of the mutants produced chlamydospores. However, prolonged
incubation up to four weeks showed some chlamydospores in both Asch9/Asch9 and Asuv3/
Asuv3 mutants, which structurally resembled the chlamydospores formed by WT SC5314 (Fig
3A versus 3B & 3C). More interestingly, the Aisw2/Aisw2 (CIN16) mutant also showed late
induction of chlamydospores during the fifth week with the unusual feature that the Aisw2/
Aisw2 mutant chlamydospores were located laterally, attached directly to the hyphae, and
apparently without the usual suspensor cells (Fig 3D). For this reason, we chose to study fur-
ther the function of ISW2 in a virulent background.
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50um

Fig 1. Chlamydospore-like structures are observed in C. albicans-infected mouse kidneys at day 3
post-inoculation. Top panel: A representative section from infected kidney cortex stained using GMS three
days Pl with C. albicans. Chlamydospore-like structures are indicated by the arrows. Middle panel: Periphery
of a resolving Candida-infected lesion shows isolated chlamydospore-like structures (arrows). Bottom panel:
Higher magnification of the same histopathology sections shows spherical fungal spores with a diameter of

8 um.

doi:10.1371/journal.pone.0164449.9001
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Fig 2. Purification of chlamydospores by sucrose density gradient. Top panel: Schematic diagram showing
sedimentation pattern for chlamydospores, yeast, and filamentous C. albicans after ultracentrifugation on a
sucrose density gradient. Bottom panel: A. Gradient purified chlamydospores from in vitro cultures imaged under
fluorescence microscopy after staining with Calcofluor White. B. Thin section of infected mouse kidney 3 days Pl
with C. albicans and stained with Calcofluor White (in vivo). C &D Unstained chlamydospores examined under
phase contrast microscopy at 1000X (C, in vitro; D, in vivo). A and C, purified chlamydospores from C. albicans A72
grown in cornmeal agar; B and D, harvested from C. albicans A72 infected kidneys 102 h PI.

doi:10.1371/journal.pone.0164449.9002
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C.albicans SC5314 Asch9/Asch9 (CJN19)

Asuv3/Asuv3 (CIJN223) Aisw2/Aisw2 (CIJN16)

Fig 3. Morphology and timing of chlamydospore formation in WT C. albicans and CJN19, CJN223 and CJN16 strains grown on corn meal
agar. (A) C. albicans SC5314 (10 days); (B) C. albicans CIN19 (Asch9/Asch9, 25 days) (C) C. albicans CIN223 (Asuv3/Asuv3, 25 days) and (D) C.
albicans CJN16 (Aisw2/Aisw2, 35 days). Imaging was performed in situin corn meal agar plates under bright field using an AMG EVOSfl Digital Inverted
Microscope.

doi:10.1371/journal.pone.0164449.9003

ISW2 deletion altered in vitro chlamydospore formation

The chlamydospore-null mutants described by Nobile et al are insertion mutants derived from
auxotrophic strain BWP17 (ura3::imm434/ura3::imm434 irol/irol::imm434 his1::hisG/his1::
hisG arg4/arg4) [19]. Some URA3 blasted gene deletion strains are avirulent in mouse models
due to positional effects on expression of reintroduced URA3 or the unintended deletion of
IRO1, a virulence factor tightly linked to URA3 gene [60-63]. To avoid such potential artifacts
in subsequent mouse virulence studies, we constructed a Aisw2/Aisw2 mutant in a prototropic
background using the method of Reuss et al. [49, 50] as we previously reported [30, 34].
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Consistent with the report by Nobile et al [19], our ISW2 deleted (DRL6) strain constructed in
the fully virulent SC5314 WT background did not exhibit chlamydospore production up to 21
days following induction (Fig 4A), while the reconstituted strain formed mature chlamydo-
spores within 14 days (Fig 4A). However, during the fourth week of incubation, the DRL6
strain formed laterally located, chlamydospore-like thick walled cells, connected to the hyphae
without any intervening suspensor cells (Fig 4A and 4B). These putative chlamydospores were
harvested and purified by sucrose density gradients, where they banded at the same low density
as WT chlamydospores, a feature characteristic of their high lipid content [59]. Microscopy of
these putative chlamydospores revealed thick-walled spheres with diameters of 7.9+1 um as
expected for chlamydospores. Furthermore, the cells were readily stained with low concentra-
tions of Calcofluor White (Fig 4B), which revealed that the lateral chlamydospores made by
DRL6 were directly connected to the hyphae by spore-hypha septa (Fig 4B). These septa are
important because they indicate a regulated sporulation process rather than merely a cyto-
plasmic burst through a weakened cell wall.

Notably, we have also observed the rare appearance of chlamydospores lacking suspensor
cells in aged WT SC5314 cultures (Fig 4A). We also compared several previously described
mutants with abnormal chlamydospore phenotypes [19, 64, 65] for longer incubation periods
to verify that suspensor cells are specifically regulated by ISW2 gene. Among those chlamydo-
spore-defective mutants, DAY25 (rim1014/rim1014)[19], hyphal growth defective BH1P1
(BMH1/bmh1A), and UdR142C (bmhlA/bmhlA) [64, 65] showed a similar abundance of chla-
mydospore formation as the WT strains with sporadic occurrence of chlamydospores without
suspensor cells by the end of five weeks of incubation. Due to the presence of chlamydospores,
with and without suspensor cells and their small numbers with the latter phenotype, these
observations are not comparable to that of ISW2 deletion strains of DRL6 or CJN19. Therefore,
ISW2 may play a regulatory role in formation of suspensor cells for the chlamydospores and
the onset of chlamydospore formation.

Effect of ISW2 deletion on filamentation, cell cycle progression, and
stress responses

Based on previous observations that filamentation is a prerequisite for chlamydospore forma-
tion [14], we examined the filamentous growth capabilities of the DRL6 strain under two stan-
dard filament inducing conditions (YPD liquid and GPP embedded agar, both at 37°C) and
found no differences compared with WT C. albicans (Fig 5A-5C). Furthermore, the DRL6
strain readily formed hyphae on corn meal agar that were indistinguishable from WT hyphae.

We examined cell cycle progression profiles of the DRL6 strain compared to its WT parent.
Propidium iodide-stained cells were examined via flow cytometry and by quantification of the
cell numbers (Fig 5D). No differences in cell cycle phase distribution (G1 vs. G2) were observed
between DRL6 and SC5314 strains under the standard growth conditions.

C. albicans confronts diverse stresses during host adaptation and pathogenicity. Because
many genes identified in chlamydospore formation are also involved in stress responses [15,
19], we carried out spot dilution assays to examine the stress tolerance of the DRL6 strain
towards H,O, (up to 4.0 mM), sodium chloride (up to 1.5 M), sorbitol (up to 2.0 M), and far-
nesol (up to 200 uM). None of these stress inducers differentially affected the growth rate of
DRL6 versus WT SC5314 strains at the concentrations tested (data not shown). This absence
of hypersensitivity to oxidative stress is consistent with previous observations for the CJN16
strain [19]. Taken together, the absence of defects in filamentation, cell cycle progression, and
stress responses in DRL6 mutant makes it more likely that ISW2 has a specific function in the
timing of chlamydospore formation via the presence or absence of suspensor cells.
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Fig 4. Late induction of chlamydospores lacking suspensor cells in Aisw2/Aisw2 mutant strain compared to its parent strain.
(A) Time course of chlamydospore development over six weeks to verify a developmental pattern of chlamydospores lacking suspensor
cells in DRL6 (Aisw2/Aisw2) strain. Images captured at 2 and 4 weeks are shown. The WT SC5314 and /ISW2 complemented DRL7
strains initiated chlamydospore formation within 5 to 10 days on corn meal agar supplemented with 1% Tween 80. In contrast, the DRL6
(Aisw2/Aisw2) strain had no visible chlamydospores by day 14 but did produce lateral chlamydospores without suspensor cells after 4 to
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5 weeks of incubation. (B) Micrographs of Calcofluor White-stained chlamydospores from C. albicans SC5314 (A1, A2) and the DRL6
(Aisw2/Aisw2) strain (B1, B2) captured after 2 and 4 weeks of incubation, respectively, with an Olympus FV500 Inverted (Olympus IX-
81) Confocal Microscope. The average size of the WT chlamydospores formed on suspensor cells are 8.32 + 0.94 (SD) ym, whereas the
chlamydospores lacking suspensor cells are 7.88 + 1.12 (SD) pm; n = 50. The images were analyzed with ImagedJ (NIH) software for
diameter measurement.

doi:10.1371/journal.pone.0164449.9004

ISW2 deletion promotes chlamydospore formation in Staib agar

Chlamydospore formation in Staib agar is diagnostic for C. dubliniensis in that C. albicans is
unable to induce chlamydospores in the same medium [47]. Later, Staib and Morschhauser
showed that down regulation of NRG1 in C. dubliniensis allows chlamydospore formation in
Staib agar and, as a corollary, that CaNRGI acts as a repressor of this ability. Consequently, the
nrglA/nrglA mutant of C. albicans produced chlamydospores in Staib medium [21, 23]. In C.
albicans, the NRGI gene encodes a transcriptional repressor of filamentation that acts in part
synergistically with TUPI gene, a transcriptional corepressor. Therefore, we examined the
growth behavior of DRL6 (Aisw2/Aisw2) strain on Staib agar in comparison to C. dubliniensis
and WT SC5314. Within a week of incubation, C. dubliniensis produced filaments and
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Fig 5. Filamentation morphologies and cell cycle progression is unaltered by ISW2 deletion. (A) Yeast cell morphology after overnight growth in
YPD at 30°C. (B) Hyphal formation after overnight growth in YPD at 37°C. (C) Vigorous filamentation in embedded GPP agar after 16 hrs at 37°C. (D)
Histograms from flow cytometry analysis of cell cycle for each cell population (G1 and G2) percentage from three biological replicates. Representative
flow cytometry plots shows that cell cycle progression is similar to that of WT strain. G1 synchronized cells were analyzed via a time course with PI
staining as described under Materials and Methods.

doi:10.1371/journal.pone.0164449.g005
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Fig 6. DRL6 induces chlamydospores in Staib agar. (A) Abundant chlamydospore formation by C. dubliniensis W284. (B) Poor filamentation and no
detectable chlamydospores by C. albicans SC5314. (C) Occasionally visible chlamydospore formation by DRL6 (Aisw2/Aisw2) strain in Staib agar as
indicated by the black arrow heads. Plates were grown at room temperature in the dark for up to 7 days, and representative pictures are from at least 3
independent experiments.

doi:10.1371/journal.pone.0164449.g006

chlamydospores (Fig 6A) whereas SC5314 as expected, failed to produce filaments or chla-
mydospores (Fig 6B). Surprisingly, the DRL6 strain showed moderate filamentation and spo-
radic occurrence of some conventional prototype chlamydospores (i.e. with suspensor cells) on
Staib agar (Fig 6C). We have never observed chlamydospores with suspensor cells for the
DRL6 strain on corn meal agar. The Anrgl/Anrgl mutant was reported to produce chlamydo-
spores occasionally on corn meal agar[23]. Thus, the appearance of chlamydospores with sus-
pensor cells on Staib agar is intriguing because it shows that suspensor cell production is
nutritionally regulated.

ISW2 deletion reduces virulence and alters the inflammatory immune
response in the mouse model of disseminated candidiasis

The well-established mouse model of disseminated candidiasis was used to compare virulence
among the WT, DRL6 (Aisw2/Aisw2),and DRL7 (Aisw2:ISW2/Aisw2) strains. Mice infected
with the DRL6 strain had a significantly higher survival rate compared with mice infected with
the WT SC5314 strain (n = 15, p<0.001, Fig 7A). A control group of mice that received sterile
non-pyrogenic saline i.v. did not show any mortality. The Gehan-Breslow-Wilcoxon test haz-
ard ratio estimates indicated 3.4-times greater lethality for WT infection compared to infection
by the DRL6 strain. Complementation of one allele in the DRL7 strain restored virulence to the
level of the WT parent strain and significantly increased virulence compared with the DRL6
strain (Fig 7A, p<0.001).

We screened a panel of cytokines and chemokines at day 2 PI to assess the innate immune
response to infection. WT infected mice had significantly higher serum levels of IL-6, TNF-a,
IL-10 and MIP1-o compared with both the mutant infected mice and the uninfected control
group (Fig 7B). Deletion of ISW2 did not significantly alter the responses to infection of serum
cytokines IL-17, IL-1B, GM-CSF and the chemokines MCP-1 and RANTES relative to that
observed in infected WT mice (Figure A in S1 File).

Absence of chlamydospores in kidneys infected with the DRL6 mutant

We next examined the in vivo formation of chlamydospores by the DRL6 strain compared to
WT SC5314. We examined infected mouse kidneys harvested from the survival assays (Fig 7A)
described in the previous section to determine whether DRL6 strain lost its ability to form chla-
mydospore-like structures in vivo. Infected kidneys were examined at the subacute phase (day
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Fig 7. Deletion of ISW2 prolongs survival in the mouse model of systemic candidiasis and alters host cytokine and chemokine expression.
(A) Effect of ISW2 deletion on mouse survival following intravenous C. albicans injection. Survival of mice injected with WT C. albicans SC5314 (@), the
null mutant DRL6 (Aisw2/Aisw2) (l) and single copy reconstituted DRL7 (A). Gehan-Breslow-Wilcoxon test hazard ratio estimates indicated 3.4-times
greater lethality for WT infection compared to infection by the DRL6 strain. (n = 15; p<0.001, uninfected control = 6, data not shown). (B) Effects of Isw2p
expression in C. albicans on host serum cytokine and chemokine induction after infection. Serum levels of the indicated cytokines (IL-6, TNF-a, IL-10,
and MIP1a) were assessed at day 2 PI for mice infected with WT (checkerboard) or DRL6 (Aisw2/Aisw2) strain (horizontal lines) and statistically
compared with both uninfected control and mutant. Control (crosshatch) values at day 0 are mean values determined for sera from five uninfected mice.
Quantitative data represent mean + SEMD. ** = p< 0.01; *** = p< 0.001.

doi:10.1371/journal.pone.0164449.9007

3-6) when the kidney cortex is predominantly colonized and chlamydospore-like structures
are first observed [34]. Thorough examination of representative sections showed no chlamydo-
spore-like structures in kidneys from mice infected using the DRL6 strain (Figure B in S1 File).
In contrast, we consistently observed chlamydospore-like cells in kidneys from mice infected
with SC5314 or the ISW2-complemented DRL7 strains (Fig 8). Therefore, the large cells
(arrow heads) noted in GMS stained sections from WT and DRL7 strains are most likely chla-
mydospores, as indicated by the 100 um size bar positioned at the bottom of the panel (Fig 8).
A few solitary chlamydospores, indicated by the arrow in a representative section at day 8 PI,
were visible in SC5314 WT infected kidney matrix in the resolution phase. Furthermore, we
did not observe overwhelming kidney colonization by DRL6 compared with the characteristic
phenotypes of SC5314 and DRL7 strains (Figure B in S1 File), consistent with the lower viru-
lence of the DRL6 strain (Fig 7A). Otherwise, the DRL6 strain did not deviate from the kidney
pathogenesis pattern of WT [30, 34, 35] and progressed to medullary colonization at the
chronic stage of kidney infection (Figure B in S1 File).

CSP1and CSP2 gene expression in vivo and in vitro

We investigated expression of two recently reported chlamydospore-associated markers, CSPI
(0rf19.3512) and CSP2 (orf19.4170) [24], in vivo in infected kidneys at day 3 PI (Fig 9). We
examined ISW2, CSPI and CSP2 gene expression in DRL6 and DRL7 strain infected kidneys
compared with SC5314 WT infected kidneys. Three days coincides with the onset of mortality
for WT C. albicans (Fig 7A) and our current and previous observations of chlamydospore
appearance in infected kidneys. Interestingly, neither CSPI nor CSP2 expression was affected
by ISW2 deletion (p < 0.05) under these in vivo conditions (Fig 9).
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Fig 8. Isw2p expression induces chlamydospore formation in kidneys of mice with disseminated candidiasis. Representative GMS
stains of kidney sections dissected from mice infected with WT, and reconstituted DRL7 strains. Arrowheads indicate representative
chlamydospores in histological sections of infected mouse kidneys at 3—6 days PI. Large arrow in left-lower corner image indicates a solitary
chlamydospore in a resolving lesion in mouse kidney cortex at 8 days PI. Scale bar, 100 um.

doi:10.1371/journal.pone.0164449.9008

PLOS ONE | DOI:10.1371/journal.pone.0164449 October 11,2016 17/25



@° PLOS | ONE

Candida albicans ISW2 Regulates Chlamydospore Formation and Virulence

g

fold mMRNA expression

BwT

ISW2 CSP1 CSP2

Aisw2 [] disw2::1sw2

Fig 9. Expression of the chlamydospore-specific genes CSP1and CSP2during in vivo growth of C. albicans. gRT-PCR analysis of
total RNA extracted from infected mouse kidneys harvested at 3 days Pl showing that CSP1and CSP2 were expressed during infection in
vivo by all three strains. Expression is presented normalized to 1 for the WT strain, where mean Ct values were 24.3 for ISW2, 35.59 for
CSP1, and 35.61 for CSP2. Results represent mean + SD from three biological replicates. *** = p< 0.001.

doi:10.1371/journal.pone.0164449.9009

In parallel, we compared the expression of CSPI and CSP2 in cells grown in YPD and corn
meal broth. Basal expression of CSP1 in YPD was not significantly affected by deletion of
ISW2, whereas CSP2 expression decreased in the mutant and was restored in the comple-
mented strain (Figure C panel B in S1 File). Growth of the ISW2 deletion mutant in cornmeal
medium for five days in the dark resulted in significant induction of CSP2 mRNA relative to
that in YPD or basal expression in corn meal medium (Figure C panel D, F in S1 File). In the
same strain, CSPI showed significant induction relative to basal expression in cornmeal
medium on day 5 but not relative to that in YPD (Figure C panel C, E in S1 File). No significant
changes in CSPI or CSP2 expression were observed in corn meal medium for WT SC5314 or
the reconstituted strain. These data suggest that ISW2 is not necessary for induction of CSP1I or
CSP2 expression. The previously reported strong upregulation of CSPI1 and CSP2 during chla-
mydospore induction may depend on undefined factors in Staib or rice extract media that are
not optimal in corn meal medium.
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Discussion

In vivo chlamydospore formation during C. albicans infections and their role in virulence have
been poorly studied to date. Here we document the formation of chlamydospores in Candida-
infected mouse kidneys and reduced virulence of a Aisw2/Aisw2 strain in a mouse model of dis-
seminated candidiasis that coincides with an absence of chlamydospores in infected kidneys.
We also identify ISW2 as a gene that is not required for chlamydospore formation but rather
determines the timing and morphology of chlamydospore development. In an ISW2 null back-
ground, chlamydospores form laterally from the hyphae without an apparent suspensor cell,
which challenges the dogma that suspensor cells are necessary for chlamydospore formation.
Although the ISW2 deleted strain is defective in producing suspensor cells, ISW2 is not neces-
sary for filamentation, cell cycle progression, or induction of the chlamydospore markers CSP1
and CSP2 in corn meal medium. Delayed chlamydospore induction upon ISW2 deletion under
laboratory conditions is consistent with the absence of chlamydospores in kidneys infected
with this strain at day 3 PL.

The ability to produce chlamydospores in vitro under inducing conditions is nearly univer-
sal among clinical isolates of C. albicans [66]. Given that yeast-mycelia morphogenesis is fun-
damental to the dissemination and virulence of C. albicans, we reasoned that chlamydospore
morphogenesis may also play some pathophysiological role. Defining a role of chlamydospores
in C. albicans pathogenesis requires careful analysis of clinical samples to exclude chlamydo-
spores associated with secondary mycotic infections. Chlamydospores resemble large blastoco-
nidia of C. albicans [67, 68] and a variety of morphological forms of the common fungal
pathogens Cryptococcus neoformans, Blastomyces dermatitidis, and Paracoccidioides brasilien-
sis [67]. Such confusion in diagnosis could be prevented by identifying unique morphological,
physiological and molecular features of C. albicans chlamydospores. Their characteristically
large size compared to vegetative cells, staining characteristics including their double walled
spherical morphology, distinctive buoyant density, the presence of lipid granules, gene expres-
sion, and association with suspensor cells confirm the chlamydospore formation by C. albicans
in vitro as well as in vivo.

Chlamydospore-like structures were previously reported in human clinical specimens from
skin, brain, gastrointestinal tract, endocardium and kidneys [26, 69-71]. A clinical case report
noted giant forms of C. albicans that resemble chlamydospores in multiple organs including
the lungs and pancreas [67]. Those authors suggested that treatment with antimicrobial agents
could have induced formation of these large structures. Chlamydospore-like structures were
also observed in the gastrointestinal tract of infected immunocompromised mice [25]. Candi-
diasis patients were found to produce antibodies reactive with chlamydospores [72].

Most of these early reports of in vivo chlamydospores predate the identification of C. dubli-
niensis in 1995 as a new Candida species that forms chlamydospores more readily than does C.
albicans [73]. Therefore, these early clinical observations cannot be attributed to C. albicans
rather than C. dubliniensis. We have also observed variation within C. albicans in that strains
A72 and 10231 form chlamydospores more readily and abundantly than SC5314 (unpublished
observation).

The expression of CSP1 and CSP2 in the DRL6 (Adisw2/Aisw2) mutant in vitro and in
infected kidneys is consistent with a RNASeq analysis of a C. albicans Anrgl mutant or C.
dubliniensis grown in Staib medium, which did not find significant changes in ISW2 or other
genes important for chlamydospore formation including SUV3, and SCH9 relative to WT C.
albicans [19, 24]. Therefore, ISW2 expression is not dependent on CSPI or CSP2 expression
levels under the specific growth conditions studied. Conversely, deletion of ISW2 decreased the
basal expression of CSP2 mRNA in YPD but did not alter transient induction of CSP1 or CSP2

PLOS ONE | DOI:10.1371/journal.pone.0164449 October 11,2016 19/25



@° PLOS | ONE

Candida albicans ISW2 Regulates Chlamydospore Formation and Virulence

gene expression in cornmeal medium. Although Csplp and Csp2p protein expression is spe-
cific for chlamydospores, the mRNAs encoding these proteins are also expressing basally in
YPD medium where no chlamydospores are present [24], and we have confirmed this result in
our strains. Therefore, regulation of Csplp and Csp2p protein levels may occur post-transcrip-
tionally, and background expression of their mRNAs by yeast cells precludes any conclusion
that the CSP1 or CSP2 mRNA expression we observed in infected kidneys is associated with
chlamydospores.

The reduced virulence of the ISW2 null mutant DRL6 in a mouse model of disseminated
candidiasis was associated at day 2 PI with decreased up-regulation of IL-6, TNF-a, MIP1-0,
and IL-10, cytokines and chemokines that are known to play a role in innate host defense
against Candida in vivo [58, 74, 75]. These differences may simply reflect the lower fungal load
associated with the mutant Candida strain, but further investigation into the effects of ISW2 on
the host immune response is warranted. The persistence of chlamydospores we observed in
resolving Candida lesions in infected mouse kidney cortex suggests a potential role in resis-
tance to host immunity.

C. albicans ISW2 is not well-studied, but potential functions can be predicted based on stud-
ies of the S. cerevisiae ortholog. A BLAST (bl2seq) search of the amino acid sequence of Isw2p
of C. albicans (orf19.7401) versus Isw2p of S. cerevisiae (YOR304W) using the NCBI BLASTP
tool identified 61% identity and 77% similarity between the two sequences. The yeast replica-
tive life span was extended robustly upon ISW2 deletion in S. cerevisiae, which was accompa-
nied by derepression of a cohort of stress responses genes [76]. This negative regulation
mechanism was also observedin C. elegans as well as in other complex eukaryotes [41, 76], pro-
viding further evidence for a highly conserved function of the ISWI subfamily. However, we
did not observe enhanced sensitivity to osmotic or oxidative stress in the DRL6 strain com-
pared with the WT SC5314 parent, and therefore delayed chlamydospore formation could not
be solely attributed to differential stress responses in the mutant strain [76]. The question
remains whether suspensor cell and/or chlamydospore formation could be governed by a
nutritional stress rather than an oxidative or osmotic stress.

The mechanism by which the ISW2 deletion induces regular chlamydospores in Staib agar
needs further investigation because C. albicans does not induce chlamydospores in Staib agar
except with a Anrgl/Anrgl mutant. One possibility is downregulation of NRG1 in the ISW2
deleted DRL6 strain. In vitro chlamydospore formation is typically induced in unusual growth
media with complex carbohydrate sources. Nutrient depletion conditions can signal stress
responses via the TOR signaling pathway and the ISW2-regulated pathway [76]. SCH9 encodes
a nutrient-responsive protein kinase that acts in parallel to TOR to regulate replicative life span
[77]. C. albicans Asch9/ Asch9 (CJN19) also exhibits defects in its chlamydospore formation
kinetics (This study and [19]). Since chlamydospore formation occurs upon prolonged incuba-
tion, which results in accumulation of aged cells, and is limited to nutritionally-poor media
such as corn meal agar or rice extract agar, such caloric restriction conditions may regulate
unknown chlamydospore-inducing genes.

Our studies identify ISW2 as a regulator of the C. albicans suspensor cells associated with
chlamydospore formation. Our finding of chlamydospore formation in the absence of suspen-
sor cells could account for the previously reported lateral chlamydospores in WT isolates [78].
Further physical and molecular characterization is needed to confirm those morphological
observations. Preliminary morphological evidence for direct formation of chlamydospores
from yeast cells has also been reported [79]. However, the infrequent occurrence of lateral chla-
mydospores in aged yeast cultures needs further examination. Many details of the molecular
function of Isw2p in C. albicans remain unclear. Identifying infection-associated genes regu-
lated by Isw2p will be paramount to understanding the developmental and regulatory steps
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governing chlamydospore formation and their contribution to pathogenesis and modulation of
host responses during systemic and mucosal C. albicans infections.

Supporting Information

S1 File. Table. Primers used in this study. Underlined segment indicate the custom restric-
tion sites inserted for constructing pSFS2AISW2 and pISW2COMP. Figure A. Host serum
cytokine and chemokine responses after infection show no significant dependence on
ISW2. The cytokines IL-17, IL-1B, GM-CSF as well as the chemokines MCP-1, and RANTES
did not exhibit significant differences at day 2 PI for mice infected with WT (checkerboard) or
DRL6 (Aisw2/Aisw2) strain (horizontal lines). Control (crosshatch) values at day 0 are mean
values determined for sera from five uninfected mice. Quantitative data represent

mean + SEM. Figure B. Histopathological observations in kidney sections of mice infected
with WT, DRL6 (4isw2/Aisw2) mutant and reconstituted DRL7 strains. Representative
GMS stains of kidney sections dissected from mice infected with ISW2 deleted DRL6, showing
no chlamydospores in comparison to the wild type and ISW2 complemented strain where
arrowheads indicate representative chlamydospores. Figure C. Expression of the chlamydo-
spore-specificgenes CSP1 and CSP2 during in vitro growth of C. albicans. C. albicans
SC5314, DRL6, and DRL7 strains were grown in vitro in corn meal or YPD broth media, and
total RNA was isolated at days 1, 2, 3 and 5. Basal expression in YPD is shown in panels A and
B. The fold expression of CSP1 and CSP2 in cornmeal medium were normalized to respective
gene expression on day 1 under non-inducing (C, D) and inducing conditions respectively (E,
F). qRT-PCR analysis showed that ISW2 deletion significantly affected the expression of the
chlamydospore-specific markers, CSP1 (A) and CSP2 only on day 5 (B). Results represent
mean + SD from three biological replicates. Quantitative data represent mean * SD.

* = p<0.05; ** = p< 0.01; *** = p< 0.001.

(PDF)
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