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Background: Necroptosis, an innovative type of programmed cell death, involves

the formation of necrosomes and eventually mediates necrosis. Multiple lines of

evidence suggest that necroptosis plays amajor role in the development of human

cancer. However, the role of necroptosis in lung adenocarcinoma (LUAD) remains

unclear. In this study, we aimed to construct an NRL-related prognosticmodel and

comprehensively analyze the role of NRL in LUAD.

Methods: A necroptosis-related lncRNA (NRL) signature was constructed in the

training cohort and verified in the validation and all cohorts based on The

Cancer Genome Atlas database. In addition, a nomogram was developed. The

tumor microenvironment (TME), checkpoint, human leukocyte antigen, and

m6Amethylation levels were compared between low-risk and high-risk groups.

Then, we identified five truly prognostic lncRNAs (AC107021.2, AC027117.1,

FAM30A, FAM83A-AS1, and MED4-AS1) and constructed a ceRNA network, and

four hub genes of downstream genes were identified and analyzed using

immune, pan-cancer, and survival analyses.

Results: The NRL signature could accurately predict the prognosis of patients

with LUAD, and patients with low risk scores were identified with an obvious

“hot” immune infiltration level, which was strongly associated with better

prognosis. Based on the ceRNA network, we postulated that NRLs regulated

the TME of patients with LUAD via cyclin-dependent kinase (CDK) family

proteins.

Conclusion:We constructed an NRL signature and a ceRNA network in LUAD and

found that NRLs may modulate the immune microenvironment of LUAD via CDK

family proteins.
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1 Introduction

According to statistics, there were 2.2 million new cases of

lung cancer and 1.8 million deaths in 2020, making lung cancer

the second most prevalent cancer and the leadingcause of cancer-

related deaths, accounting for approximately 1 in 10 (11.4%)

diagnosed cancers and 1 in 5 (18.0%) deaths (Sung et al., 2021).

Worse yet, the mortality and incidence of lung cancer are

increasing (Bade and Dela Cruz, 2020). Among lung cancers,

lung adenocarcinoma (LUAD) is the most common subtype of

non–small-cell lung cancer (NSCLC), accounting for 50% of all

NSCLC cases (Denisenko et al., 2018; Peng et al., 2018). Although

the widespread application of targeted therapy and

immunotherapy has improved the prognosis of some patients,

the survival rate remains far from satisfactory (Miller et al., 2019).

Necroptosis is an innovative type of programmed cell death

that is regulated by receptor-interacting protein kinase 1

(RIPK1), RIPK3, mixed lineage kinase domain-like (MLKL),

and other proteins. Caspase is well known as an essential

component of apoptosis that can modulate multiple pathways

(Wong, 2011; Maes et al., 2017). Only when caspase activity is

inhibited can some death-related receptors, such as tumor

necrosis factor receptors, be activated, resulting in the

activation of downstream RIPK1, RIPK3, and MLKL and

formation of necrosomes, eventually mediating necroptosis

(Nunes et al., 2014; Cao et al., 2018; Yuan et al., 2019).

Multiple lines of evidence suggest that the necroptotic

signaling pathway plays a role in tumorigeneses, metastasis,

and necrosis, eliciting immunogenicity and promoting natural

or therapeutically driven anticancer immunosurveillance

(Galluzzi et al., 2017; Yan et al., 2022). Although necroptosis

has received increased attention, the mechanism and role of

necroptosis in LUAD remain unclear.

Long non-coding RNAs (lncRNAs) are RNA molecules

with nearly 200 nucleotides that regulate gene expression at

the RNA splicing, transcription, and post-transcriptional

levels, primarily participating in the epigenetic regulation

of human tumors. Increasing evidence suggests that

lncRNAs can disrupt gene expression, resulting in cancer

progression (He et al., 2016; Dai et al., 2021). Furthermore,

Jiang et al. (2021) hypothesized that lncRNA could control

programmed cell death, such as autophagy, apoptosis,

ferroptosis, and necroptosis.

Several markers have been found to predict the prognosis of

patients with LUAD, but they have not been clinically used (Lin

et al., 2021). Therefore, finding an optimal method in LUAD is

required. This study used The Cancer Genome Atlas (TCGA)

public data to perform a systematic bioinformatics analysis of

necroptosis-related lncRNA (NRL) and constructed a prognostic

prediction signature. Our findings may provide new evidence for

predicting prognosis and therapeutic targets in patients

with LUAD.

2 Materials and methods

2.1 Data collection

The transcriptome data and matching clinical

information were extracted from TCGA database, which

contained 497 LUAD samples and 54 adjacent normal

lung tissues. The fragments per kilobase of sequence per

million mapped reads value was converted into transcripts

per millionand normalized. The inclusion criteria were as

follows: (1) LUAD pathological type of samples, (2)

availability of complete clinical information, and (3)

survival durationof >20 days. Ultimately, 457 patients were

enrolled for further analyses. We randomly categorized the

457 patients into a training cohort (229 patients) and a

validation cohort (228 patients) at a proportion of 1:

1 based on the “caret” R package. A total of

67 necroptosis-related genes (NRGs), listed in

Supplementary Table S1 were retrieved from a previous

study (Zhao et al., 2021). The mutation statistics of

561 patients with LUAD were acquired from TCGA

database on 30 December 2021. Pan-cancer data were

extracted from the Xena browser (https://xenabrowser.net/

datapages/), which comprised 33 cancer types. All data used

in this study are publicly available.

2.2 Somatic mutation and copy number
variations (CNV) analysis of NRGs

The tumor mutation burden score of patients was

calculatedas follows: (total mutation ÷ total covered bases) ×

106. The results were analyzed using the “maftools” R package.

The sites on chromosomes and the frequency of mutation

alterations of NRGs were analyzed using “RCircos” R

language and Perl language.

2.3 Establishment and validation of the
NRL prognostic signature

The transcriptome data of 67 NRGs were obtained using the

“limma”R package and divided into mRNA and lncRNA

matrices. The correlation coefficients and p-values of the
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67 NRGs and each lncRNA were calculated using the “limma”R

package, and 3643 NRLs with coefficients >0.4 and p <
0.00001 were selected. A false discovery rate (FDR) of

0.05 and log2|FC| of >1 were used to filter out differentially

expressed NRLs. We also constructed a volcano plot. Univariate

Cox regression analysis with a p-value of <0.05 was used to

select the prognostic NRLs. The LASSO regression analysis was

used to identify the prognostic NRL signature by the “glmnet” R

package, and the value of the penalty parameter (λ) was

determined based on the minimum partial likelihood

deviation. The lambda.min is 0.03836908 and the lambda.1se

is 0.1285979 in establishing signature using LASSO regression

analysis. The risk scores were calculatedas follows: risk score =

sum (each gene’s expression × corresponding coefficient). The

corresponding coefficient of each lncRNA is shown in

Supplementary Table S2. The survival, receiver operating

characteristic (ROC), risk plot, t-distributed stochastic

neighbor embedding (t-SNE), principal component, and

subgroup analyses were performed to test the accuracy of the

NRL signature.

2.4 Construction of nomogram and
calibration

Using univariate and multivariate Cox regression,

independent analysis was performed on clinical characteristics

(including age, sex, clinical stage, and TNM classification of

malignant tumors stage) and the NRL signature (Lu et al., 2021).

Then, the nomogram and calibration diagram were developed

usingthe “Regplot” R package.

2.5 Multifaceted analyses between high-
risk and low-risk groups

2.5.1 Functional enrichment analysis of
differently expressed genes (DEGs)

The DEGs between the high-risk and low-risk groups were

screened using the “edgeR” R package (| log2FC| of ≥1 and FDR

of <0.05). Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG)were used to investigate the enriched

pathways associated with the DEGs. Using a gene set (c2.

cp.kegg.v7.4. symbols.gmt), gene set enrichment analysis

(GSEA) was used to identify the significantly enriched

pathways in both groups.

2.5.2 Estimation of tumor microenvironment
(TME) and m6A methylation

The immune cell expression and immune score were

calculated in LUAD using the ESTIMATE and single-sample

GSEA (ssGSEA) databases. The “ggpubr” R package was used to

compare the levels of m6A methylation, human leukocyte

antigen (HLA), and checkpoint expression between the high-

risk and low-risk groups.

2.5.3 Drug sensitivity analysis
Geeleher et al. (2014) developed a drug response prediction

algorithm based on 138 drug actions in over 700 cell lines using the

Cancer Genome Project database’s expression matrix. We used the

“pRRophetic” R package (https://github.com/paulgeeleher/

pRRophetic) to predict drug effects in the high- and low-risk groups.

2.6 The search for genuine prognostic
lncRNAs

The “ggpubr” R package was used to analyze the correlation

between signature lncRNAs and clinical stages to identify the

lncRNAs that affect patient disease progression. The “survminer”

R package was then used to compare the overall survival (OS)

between the high-risk and low-risk groups. The “ggpubr” R

package was used to analyze the differential expression of

these lncRNAs in cancerous and adjacent non-tumor tissues.

2.7 Construction of competing
endogenous RNA (ceRNA) network

We created a ceRNA network to highlight the potential role

of genuine prognostic lncRNAs in LUAD and to demonstrate

their relationship. We identified differentially expressed mRNAs

and miRNAs in LUAD using the R package “limma.” To find

targeted miRNAs of genuine lncRNAs, we used the StarBase

website (http://starbase.sysu.edu.cn/). To predict the miRNA

target genes, the MiRTarBase website (http://mirtarbase.cuhk.

edu.cn) was used. The network diagram of 2lncRNA - 3miRNA -

120mRNA was created using Cytoscape.

2.8 Screening and analysis of hub genes

The protein–protein interaction (PPI) network of the STRING

website identified the relationship between the downstream genes

with the highest confidence (0.9). The Cytohubba software was then

used to identify 15 hub genes. The ssGSEA database was used to

examine the relationship between immune cells and hub genes. The

Wilcox test was used to calculate the expression of the hub genes in

most cancers, and the GEPIA database (http://gepia.cancer-pku.cn)

was used to analyze the survival (OS and DFS) of the hub genes.

2.9 Statistical analysis

All statistical analyses were performed using the R and Perl

languages, except descriptive analysis. All p-values or FDRs
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were calibrated using the Benjamini–Hochberg method (Ren

et al., 2021). A p-value of <0.05 was considered statistically

significant.

3 Results

3.1 Genetic variation of NRGs in LUAD

Figure 1 depicts the workflow diagram. We examined the

number of somatic mutations and CNV in LUAD to

investigate the NRG mutation. As shown in Supplementary

Figure S1A, 296 of 561 LUAD samples (52.76%) developed

NRG mutation, with missense mutation being the most

common variation. In addition, the estimated glomerular

filtration rate mutation frequency was highest in 67 NRGs,

followed by HDAC9 and BRAF. Supplementary Figures S1B,C

show the chromosome mutation sites and CNV variation

frequency of these 67 NRGs.

3.2 Construction and validation of the NRL
prognostic signature

The clinical characteristics of 457 patients with LUAD are

shown in Supplementary Table S3. The correlation and

differential expression analyses revealed 968 NRLs with high

or low expression in LUAD (Figure 2A). The univariate Cox

regression analysis revealed 35 NRLs that were significantly

related to prognosis (Figure 2B, p < 0.01). LASSO regression

analysis was also performed, and 13 lncRNAs were screened

using 10-fold cross-validation (Figures 2C,D). Finally, in the

training cohort, a prognostic NRL signature was identified, which

included FAM30A, AC027117.1, MED4-AS1, AC026355.2,

AP000864.1, AC107021.2, FRMD6-AS1, AC018529.1,

AL035458.2, FAM83A-AS1, AP001178.1, AC092168.2, and

AC034102.8. Patients in the validation and all cohorts were

divided into high-risk and low-risk groups based on the same

median risk score (0.7443). The primary characteristics and

statistical analysis results of each group are presented in

Supplementary Table S4.

Notably, patients with LUAD with low risk scores

generally had longer survival times in all three cohorts

(Figures 3A–C; all p < 0.001). The area under the curve in

the ROC curves of the training cohort was 0.830, 0.822, and

0.821, that of the validation cohort was 0.673, 0.700, and

0.669, and that of all cohort was 0.754, 0.760, and 0.747, for 1-,

3-, and 5-years OS rates, respectively (Figures 3D–F). Risk

score and distributions of survival status are shown in Figures

3G–I. For all three cohorts, more deaths occurred in the high-

risk group than in the low-risk group. The heatmap suggested

that FAM30A, AC027117.1, MED4-AS1, AC026355.2,

AC034102.8, and AC018529.1 were down-regulated, while

AL035458.2, FAM83A-AS1, AP001178.1, AP000864.1,

AC107021.2, AC092168.2, and FRMD6-AS1 were

upregulated in the high-risk group. The PC and t-SNE

analyses showed good results (Figures 3J–L and

Supplementary Figure S2).

FIGURE 1
The workflow diagram of this study.
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3.3 Clinical subgroups analysis of the NRL
signature

A clinical subgroup analysis was performed, including the

conventional clinicopathological characteristics age

(≥65 and <65 years), sex(female and male), clinical stage (I–II

and III–IV), T stage (T1–2 and T3–4), M stage (M0 andM1), and

N stage (N0–1 and N2–3), which revealed that this signature is

accurate in predicting the prognosis in almost all patients with

LUAD (Supplementary Figure S3).

3.4 Independent prognostic analysis

Considering the clinicopathological features, univariate and

multivariate Cox regression analyses were performed, which

revealed that only risk score was an independent factor

affecting the prognosis of patients with LUAD (Figures 4A,B,

p < 0.001). In addition, a nomogram was constructed and

calibration was performed, which revealed that the 1-, 2-, and

3-years OS rates could be relatively well predicted compared with

an ideal model (Figures 4C,D).

3.5 Multifaceted analyses between high-
risk and low-risk groups

3.5.1 Functional enrichment analysis of DEGs
A heatmap was created to further understand the

differences in clinical characteristics and lncRNA

expression between high-risk and low-risk groups, which

revealed higher number ofstage III and IV patients in the

FIGURE 2
Construction of the necroptosis-related lncRNA prognostic signature. (A) The volcano diagram of 968 differentially expressed necroptosis-
related lncRNAs. Red and blue colors represent upregulated and downregulated lncRNAs, respectively, in LUAD. (B) The hazard ratio (HR) and 95%
confidence interval of 35 necroptosis-related lncRNAs were calculated using the univariate Cox regression analysis. The red and blue colors
represent hazardous and protective factors, respectively. (C) The LASSOCox analysis of necroptosis-related lncRNAs in the training cohort. The
LASSOCox coefficient of each lncRNA associated withOS is represented as a curve. (D) The value of the penalty parameter (λ) was determined based
on the minimum partial likelihood deviationby 10-fold cross-validation.
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high-risk group, while age, sex, and TNM stage were similar

in both groups (Figure 5A). The GO enrichment analysis

revealed that pathways were highly enriched on humoral

immune response, organelle fission, tissue homeostasis,

chromosome segregation, mitotic nuclear division,

antimicrobial humoral response, and antibacterial humoral

FIGURE 3
Validation of the necroptosis-related lncRNA prognostic signature. (A–C)The overall survival curves of high-risk and low-risk groups in the
training, validation, and all cohorts. (D–F)The area under the curve (AUC) of the ROC curve shows the accuracy of the predictive survival signature.
(G–I) The risk score and survival status distribution diagrams of the high-risk and low-risk groups. (J–L) Principal component analysis (PCA) of the
high-risk and low-risk groups.
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response (Figure 5B). KEGG analysis revealed that DEGs

were mostly associated with pertussis, Staphylococcus aureus

infection, the estrogen signaling pathway, phagosome, and

the Wnt signaling pathway (Figure 5C). GSEA showed that

genes were significantly enriched on DNA replication,

homologous recombination, mismatch repair, pyrimidine

metabolism, and the p53 signaling pathway in the high-

risk group and asthma, intestinal immune network,

autoimmune thyroid disease, hematopoietic cell lineage,

and arachidonic acid metabolism in the low-risk group

(Figure 5D).

3.5.2 TME, checkpoint, HLA, and m6A
methylation analysis in LUAD

The ESTIMATE and ssGSEA databases revealed that the

high-risk group had lower estimate, immune, and stromal

scores but higher tumor purity than the low-risk group

(Figure 6A and Supplementary Figure S4A, p < 0.001). In

addition, we determined the expression levels of infiltrating

immune cells and pathways and found that the expression of

aDCs, B cells, CD8+ T cells, DCs, iDCs, macrophages, mast

cells, neutrophils, pDCs, T helper cells, Tfh, Th1 cells, TIL,

and Treg were higher in the low-risk group than in the high-

risk group. Moreover, the expression of co-stimulation,

CCR(CC chemokine receptor), checkpoints, cytolytic

activity, HLA, inflammation-promoting response, T-cell co-

inhibition, T-cell co-stimulation, and Type II

interferonresponse was lower in the high-risk group than in

the low-risk group (Figures 6B,C). Further, the risk score was

inversely associated with the number of plasma cells, dendritic

cells, and monocytes but directlyassociated with the number

of macrophage M0 cells, CD4+T cells, and CD8+T cells

(Supplementary Figure S4A). Thus, the levels of m6A

methylation and checkpoint gene and HLA expression

between the high-risk and low-risk groups were evaluated,

which revealed that the m6A methylation genes HNRNPC,

FIGURE 4
Independent prognostic analysis of the NRL signature and construction of nomogram and calibration. (A) The hazard ratio (HR) and 95%
confidence interval of risk score and all clinical features were calculated using the univariate Cox regression analysis. (B)The hazard ratio (HR) and
95% confidence interval of risk score and all clinical features were calculated using themultivariate Cox regression analysis. The factor in this analysis
could be considered as an independent prognostic factor when p-values were both <0.05 in (A,B). (C) The nomogram that includes the risk
score, age, sex, T stage, N stage, and clinical stages predicted the probability of the 1-, 2-, and 3-years OS. (D)The calibration curves for the predicted
1-, 2-, and 3-years OS rates.
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YTHDF1, and RBM15 were significantly higher in the low-

risk group than in the high-risk group, but other m6A

methylation genes did not differ significantly between the

groups. Remarkably, most checkpoint genes were significantly

highly expressed in the low-risk group (Figures 6D–F).

3.5.3 Drug sensitivity analysis
The “pRRophetic” R package was used to predict drug

effects in patients with LUAD based on the drug response

prediction formula described by Geeleher et al. The outcomes

and drug details are presented in Supplementary Figure S5 and

Supplementary Table S5, respectively. We found that

A.443654, cisplatin, CGP.60474, docetaxel, epothilone B,

GW843682X, NVP-TAE684, and paclitaxel showed high

sensitivity in the low-risk group, while ABT.888, bosutinib,

lenalidomide, MK.2206, PAC.1, PD.0332991, and roscovitine

showed high sensitivity in the high-risk group.

3.6 The search for genuine prognostic
lncRNAs

We believe that lncRNA, which is closely related to tumor

progression, is the genuine prognostic lncRNA. To identify these

genuine lncRNAs, the correlation between the signature

lncRNAs and clinical stages was evaluated (Supplementary

Figure S6). Finally, five lncRNAs, including AC107021.2,

AC027117.1, FAM30A, FAM83A-AS1, and MED4-AS1, were

identified. The survival curve and differential expression of these

lncRNAs were analyzed (Supplementary Figure S7). Ultimately,

FIGURE 5
Functional enrichment analysis of DEGs in the high-risk and low-risk groups. (A) The heatmap of differences in clinical characteristics and
lncRNA expression between the high-risk and low-risk groups. (B) The enriched gene terms in gene ontology (GO) analysis, including biological
process, cellular component, and molecular function. The length of bars represents the number of enriched genes. (C) The enriched gene terms in
the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The size of the circles represents the number of enriched genes. The
horizontal axis represents the percentage of the number of genes enriched in a term to all the differentially expressed genes. The color represents
statistical significance. The darker the color, the more significant the result, with red representing the most significant result. (D) The enriched gene
terms in gene set enrichment analysis (GSEA).
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AC027117.1 and FAM30A were used to construct a ceRNA

network.

3.7 Construction of ceRNA network

LncRNA has been shown to be involved in controlling the

expression of genes as a miRNA sponge(Salmena et al., 2011;

Karagkouni et al., 2021). The present study aimed to discover

a network of lncRNA, miRNA, and mRNA. First, we used the

StarBase website (http://starbase.sysu.edu.cn/) to predict the

targeted miRNAs of AC027117.1 and FAM30A and obtained

51 targeted miRNAs. The differentially expressed miRNAs

and mRNAs in LUAD were explored, and eventually,

differentially expressed 617 miRNAs and 14,147 mRNAs

were identified(|logFC> 1|, p < 0.05). Then,

49 downregulated differentially expressed miRNAs and

51 targeted miRNAs were overlapped, and 3 overlapping

miRNAs (hsa-miR-195-5p, hsa-miR-211-5p, and hsa-miR-

5010-5p) were obtained. Based on the 3 miRNAs,

120 overlapping genes were identified using the

MiRTarBase website (http://mirtarbase.cuhk.edu.cn/) to

predict the miRNA target genes and overlap with

3,444 upregulated differentially expressed mRNAs

(Figure 7A). Cytoscape was used to draw the network to

reveal the relationships between these small RNAs

(Figure 7B). Finally,a ceRNA network was constructed

comprising 2 NRLs, 3 miRNAs, and 120 mRNAs.

Further, we performed GO and KEGG enrichment analyses

to elucidate the roles of 120 downstream genes. No significant

functional, cellular, and behavioral pathways were obtained in

GO analysis (Figure 7C), while KEGG genes were mainly

FIGURE 6
TME, checkpoint, HLA, and m6A methylation analysis in LUAD. (A) The heatmap of immune cells and estimate, immune, and stromal scores
between the high-risk and low-risk groups. (B) The box plots of immune cells between the high-risk and low-risk groups. (C)The box plots of
immune-related pathways between the high-risk and low-risk groups. (D) The box plots of checkpoint-related genes between the high-risk and
low-risk groups. (E) The box plots of HLA-related genes between the high-risk and low-risk groups. (F) The box plots of m6A methylation-
related genes between the high-risk and low-risk groups.*p < 0.05,**p < 0.01, ***p < 0.001.
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enriched in cell senescence, microRNAs in cancer, infection, and

cell cycle pathways (Figure 7D).

3.8 Screening and analysis of hub genes

Through the STRING website, a PPI network was constructed

with a threshold value of 0.9, which revealed that CDK1, CDK4,

CCNE1, and BIRC5 were the hub genes (Figures 7E,F). The ssGSEA

database evaluation revealed that FAM30A was favorably associated

with general immune cells, whereas AC027117.1 was negatively

correlated with general immune cells (Figure 8A).

To further understand the roles of the four hub genes in

human cancers, we performed a pan-cancer examination in

33 common cancers (Figure 8B). The four genes were found

to be generally overexpressed in various cancer tissues, although

some cancers did not exhibit sufficient adjacent normal tissues

for statistical comparison.

The curves of disease-free survival (DFS) and OS of four

genes in LUAD were analyzed using the GEPIA database, which

revealed that CDK1 and BIRC5 are significantly correlated with

the prognosis of patients with LUAD, and patients with high

expression levels of CDK1 and BIRC5 showed poor prognoses.

CDK4 was not correlated with prognosis, and CCNE1 was

positively correlated with OS but not with DFS (Figure 8C).

4 Discussion

lncRNAs are a type of non-coding RNA consisting of

approximately 200 nucleotides (Wang et al., 2021a).

Increasing evidence suggests that LUAD lncRNA plays an

important role in prognosis and immunotherapeutic response.

Several studies have developed lncRNA prognosis signatures,

such as m6A-related (Wang et al., 2021b), ferroptosis-related (Fei

et al., 2021), pyroptosis-related (Song et al., 2021), immune-

FIGURE 7
Construction of competing endogenous RNA network. (A) The predicted results of targeted miRNAs and targeted mRNAs obtained using
StarBase and MiRTarBase. (B) The competing endogenous RNA (ceRNA) network between 2 lncRNAs, 3 miRNAs, and 120 downstream mRNAs. (C)
The enriched terms of downstream genes in gene ontology (GO) analysis. (D) The enriched terms of downstream genes in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis. (E,F) A protein–protein interaction (PPI) analysis of downstream genes and network of hub genes.
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FIGURE 8
Further analysis of hub genes. (A) The correlation analysis between the hub genes and lncRNAs and immune functions in LUAD. (B) The pan-
cancer analysis of four hub genes in TCGA. (C) The disease-free survival (DFS) and overall survival (OS) analysis curves of the four hub genes in LUAD.
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related (Qi et al., 2021), and metastasis-related lncRNA

signatures (Dou et al., 2021). However, NRLs are still being

investigated, and their prognostic role in LUAD remains unclear.

Thus, we investigated NRLs systematically and developed a

signature as a potential biomarker for predicting patient

prognosis in LUAD.

We examined the NRGs in LUAD and found that more than

half of them were mutated. We constructed a prognostic NRL

signature using univariate Cox regression and LASSO regression

analyses to accurately predict the prognosis of patients with LUAD,

and the signature’s accuracy was confirmed using KM survival,

ROC, PCA, univariate and multivariate Cox regression, and t-SNE

analyses. Among the 13 lncRNAs studied, FAM30A, FAM83A-AS1,

MED4-AS1, AC026355.2, and AC092168.2 were identified in

previous studies, and the other lncRNAs were discovered in this

study. FAM30A has previously been shown to inhibit the

proliferation, invasion, and migration of laryngeal squamous cell

carcinoma cells in vitro (Long et al., 2021). In contrast, FAM30A

expression was increased in gastric cancer (GC) cell lines, and

patients with GC who had high FAM30A expression had poor

survival outcomes (Wang et al., 2021c). Our findings showed that

FAM30A is highly expressed in low-risk patients, implying that it

may hasten a good prognosis in LUAD. FAM30A was found to be

differentially upregulated in periodontitis and to be positively

associated with the proportion of plasma cells (Wu et al., 2020).

FAM30A was identified in LUAD as a lncRNA associated with

immune (Wu et al., 2021). A study of vaccine-induced immune-

associated lncRNAs discovered that FAM30A was highly expressed

in B cells and was closely related to immunoglobulin genes located

near B cell-related genes(de Lima et al., 2019). Meanwhile, FAM30A

has been found to play an important role in rheumatoid arthritis (Li

et al., 2020). Surprisingly, the same result was found in our study,

that FAM30A was associated with a plethora of immune and

inflammatory cells, among which it was significantly positively

correlated with B cells, and we speculated that FAM30A may

achieve tumor-suppressive effects in LUAD by regulating the

immune microenvironment by B cells. We hope that the role of

FAM30A in cancer and the immune microenvironment will be

investigated further in the future. Previous studies have shown that

FAM83A-AS1 can sponge various miRNAs to aid progression in

esophageal cell squamous carcinoma, esophageal cancer, and LUAD

(Huang et al., 2020; Jia et al., 2021; Huang et al., 2022). FAM83A-

AS1 was recently found to be involved in the progression of LUAD

tumors (Chen et al., 2022). The antigen presentation process was

found to be negatively correlated with FAM83A-AS1. Furthermore,

FAM83A-AS1 was used to create signatures of ferroptosis- and

pyroptosis-related lncRNA in LUAD (Guo et al., 2021; Song et al.,

2021). Therefore, we believe that FAM83A-AS1 is involved in

ferroptosis, pyroptosis, and necroptosis. A previous study found

that MED4-AS1 was upregulated in A549 cells (human LUAD cell

line) (Wang et al., 2019). However, MED4-AS1 was found to be a

protective factor in our study and should be expressed at a low level

in cancer cells. Furthermore, we found that high expression of

AC026355.2 predicts a better prognosis in patients(He et al., 2021)

and low expression of AC092168.2 predicts better outcomes (Wu

et al., 2021).

We performed GO, KEGG, and GSEA analyses to determine

the reasons for the differences in prognosis. We found that genes

were mainly enriched in DNA repair, cell circulation, and

immune, metabolic, and carcinogenic pathways. The tumor

immune infiltration analysis revealed a greater number of

immune cells in the low-risk group, indicating that the “hot”

immune cell infiltration represents a favorable prognosis. In

addition, we revealed that checkpoint-related and HLA-related

genes were highly expressed in the low-risk group. These results

suggest a dynamic balance between tumor and immune

microenvironments. Patients will demonstrate good prognosis

if the level of “hot” immune cell infiltration is higher than the

level of immune checkpoint blocking. In the nomogram, we

found a novel phenomenon: patients with stage 2 had a higher

riskscores than patients with stage 3. This is different from our

usual understanding of tumor clinical stages. We suspect that this

phenomenon is more likely to be related to the differences in

clinical information of patients in the TCGA database, and the

reasons are still unclear.

We constructed a ceRNA network and identified four hub

genes based on the five lncRNAs that may affect prognosis,

including AC027117.1, AC107021.2, FAM30A, FAM83A-AS1,

and MED4-AS1(CDK1, CDK4, CCNE1, and BIRC5). Later, we

performed a pan-cancer analysis of the four hub genes and found

that they were all overexpressed in human tumors. Differences in

CDK activity can frequently result in tumor-associated cell cycle

defects. CDK dysfunction causes abnormal proliferation as well

as genomic and chromosomal instability (Malumbres and

Barbacid, 2009). Huang et al. demonstrated that inhibiting

CDK1/2/5 can mediate immune cell death and block immune

checkpoint expression in pancreatic cancer, which can transform

immune cell infiltration of cancers from low to high levels via

these two mechanisms, overcoming the immune tolerance

induced by interferon therapy (Huang et al., 2021). CDK4 and

CDK6, as well as their activators (D-type cyclins), are thought to

be a driving force in tumorigenesis and may be useful therapeutic

targets (Puyol et al., 2010; Fassl et al., 2022). Furthermore,

CCNE1 (Cyclin E1) is related to the CDK family. Therefore,

we concluded that NRLs, CDKs, the immune microenvironment,

and tumor cells are all strongly regulated.

Several models are currently being developed to predict

patient prognosis in LUAD. In comparison, our model shows

good stability and wide coverage in the subgroup analysis. The

prediction accuracy of our model is worthy of peer review. Our

model, one of the few based on necroptosis, is a novel apoptosis

mechanism with a promising role in cancer. Furthermore, we not

only built predictive models but also investigated the causes of

necroptosis in patients with LUAD using a ceRNA network.

However, we acknowledge that our study has some limitations.

First, our study is based on publicly available data, with no
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experimental data to back it up. Second, our investigation of the

role of NRLs in antitumor immunity was limited to a cursory

examination of its potential mechanism. Third, our signature has

only been verified internally, not externally.

5 Conclusions

We constructed an NRL signature and tested its accuracy in

predicting the prognosis of patients with LUAD. Furthermore,

we constructed a ceRNA network and hypothesized that NRLs

might modulate the immune microenvironment of LUAD via

CDK family proteins, influencing patient prognosis. However,

these findings are only the beginning of research in this area, not

the end. Thus, additional research is warranted to confirm these

findings.
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