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Abstract: New drugs were recently developed to treat hyperglycemia in patients with type 2 diabetes
mellitus (T2D). However, metformin remains the first-line anti-diabetic agent because of its cost-
effectiveness. It has pleiotropic action that produces cardiovascular benefits, and it can be useful
in diabetic nephropathy, although metformin-associated lactic acidosis is a hindrance to its use in
patients with kidney failure. New anti-diabetic agents, including glucagon-like peptide-1 receptor
(GLP-1R) agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2
(SGLT-2) inhibitors, also produce cardiovascular or renal benefits in T2D patients. Their glucose-
independent beneficial actions can lead to cardiorenal protection via hemodynamic stabilization and
inflammatory modulation. Systemic hypertension is relieved by natriuresis and improved vascular
dysfunction. Enhanced tubuloglomerular feedback can be restored by SGLT-2 inhibition, reducing
glomerular hypertension. Patients with non-diabetic kidney disease might also benefit from those
drugs because hypertension, proteinuria, oxidative stress, and inflammation are common factors
in the progression of kidney disease, irrespective of the presence of diabetes. In various animal
models of non-diabetic kidney disease, metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2
inhibitors were favorable to kidney morphology and function. They strikingly attenuated biomarkers
of oxidative stress and inflammatory responses in diseased kidneys. However, whether those animal
results translate to patients with non-diabetic kidney disease has yet to be evaluated. Considering
the paucity of new agents to treat kidney disease and the minimal adverse effects of metformin,
GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors, these anti-diabetic agents could be used in
patients with non-diabetic kidney disease. This paper provides a rationale for clinical trials that apply
metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors to non-diabetic kidney disease.

Keywords: dipeptidyl peptidase-4 inhibitor; glucagon-like peptide-1 receptor agonist; inflammation;
metformin; oxidative stress; sodium-glucose transporter-2 inhibitor

1. Introduction

Chronic kidney disease (CKD) is a major public health burden, affecting more than
750 million people worldwide [1]. Because of the increasing global prevalence of type
2 diabetes mellitus (T2D) in CKD patients, CKD can be classified into diabetic kidney
disease (DKD) and non-diabetic CKD. DKD accounted for 47% of patients initiating kidney
replacement therapy due to end stage kidney disease (ESKD) in the United States in 2018 [2],
and 48% in South Korea in 2019 [3].

During the past decade, a series of new anti-diabetic agents has been developed and
validated to lower glycemia. Those drugs also carry cardiovascular and renal benefits and
risks for patients with T2D. Thiazolidinediones can cause fluid retention and an increased
risk of heart failure in patients with T2D [4]. However, glucagon-like peptide-1 receptor
(GLP-1R) agonists are associated with favorable cardiovascular [5] and renal [6] outcomes
in patients with T2D. Dipeptidyl peptidase-4 (DPP-4) inhibitors carry neither risk nor
benefit to the cardiovascular system [7]. Sodium-glucose transporter-2 (SGLT-2) inhibitors
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emerged as game changers because they brought absolute benefits to cardiovascular [8]
and renal [9] outcomes in patients with T2D.

The beneficial effects of these anti-diabetic agents on the cardiovascular system are
independent of their glucose-lowering action. In particular, proteinuria reduction can be
achieved by systemic or glomerular hemodynamic stability and inflammatory modulation.
Consistent with that, GLP-1R agonists and SGLT-2 inhibitors reduce blood pressure and
can preserve kidney function. As seen in the action of angiotensin II in the kidney and
vasculature [10], hypertension, proteinuria, and renal inflammation are still the most
important mediators for renal progression in both DKD and non-diabetic CKD. In contrast
with DKD, no remarkable agents have been identified as effective measures to treat non-
diabetic kidney disease during the past decade. Recent clinical trials elucidated the ability
of SGLT-2 inhibitors to treat heart failure [11] and CKD [12] in patients without diabetes
mellitus. However, clinical data are lacking to demonstrate their efficacy in specific non-
diabetic kidney diseases. This paper provides a rationale for conducting clinical trials to
test the use of metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors in
various non-diabetic kidney diseases.

2. Metformin

Metformin is a biguanide, a drug class of herbal origin that has been widely used
since the 1950s, and it is currently the first-line pharmacologic treatment for T2D [13].
Metformin acts mainly in the liver, inhibiting gluconeogenesis by blocking mitochondrial
redox transfer [14]. However, its effects are likely pleiotropic because metformin acts on
the metabolism and inflammation via both adenosine monophosphate-activated protein
kinase (AMPK)-dependent and AMPK-independent mechanisms, leading to kidney pro-
tection. Potential uses of metformin in kidney disease have been extensively reviewed
elsewhere [15–17].

2.1. Acute Kidney Injury

Considering the risk of metformin-associated lactic acidosis, early guidelines mention
(without evidence) the need to stop metformin before using intravascular contrast me-
dia [18,19]. However, multiple studies and meta-analyses have shown that the risk of lactic
acidosis is very low and linked more to the underlying disease and co-morbidities than to
the use of metformin [20]. Current guidelines say that patients with an estimated glomeru-
lar filtration rate (eGFR) > 45 mL/min/1.73 m2 can continue to take metformin before and
after exposure to iodine-based contrast media [21,22]. Yu et al. recently reported that in
diabetic patients with eGFR > 30 mL/min/1.73 m2, the continued use of metformin did not
increase the risk of contrast-induced-acute kidney injury (AKI) after primary percutaneous
coronary intervention for ST-segment elevation myocardial infarction [23]. In patients with-
out diabetes or prior renal impairment, no adverse effect of metformin on renal function
was reported after myocardial infarction and subsequent contrast exposure [24].

On the other hand, metformin offers protective effects against AKI in experimental
animals. Li et al. reported that metformin protected against cisplatin-induced tubular cell
apoptosis and AKI by stimulating AMPKα activation and autophagy induction in tubular
cells [25]. In a rat model of renal ischemia/reperfusion injury, metformin markedly relieved
insufficient autophagic flux in the kidney cortex and improved cellular stress and apoptotic
markers [26]. Autophagy is the physiologic, regulated mechanism by which cells remove
unnecessary or dysfunctional components [27]. Under pathological conditions, renal cells
upregulate autophagy in response to cell stress, but maladaptive autophagy or insufficient
autophagic flux can induce apoptosis and renal injury [28,29]. In short, metformin induces
autophagy, which provides beneficial cellular effects.

Metformin also effectively blocked AKI in a rat model of gentamicin nephrotoxic-
ity [30]. Gentamicin induces mitochondrial dysfunction, which produces reactive oxygen
species (ROS) [31]. Potential therapeutic approaches to mitochondrial dysfunction in
kidney disease include metformin and other drugs [32].
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2.2. Chronic Kidney Disease

Renal mass reduction and chronic adenine administration are two representative ani-
mal models of CKD. Metformin improved kidney function and ameliorated kidney fibrosis
and structural alterations in an ablation and infarction rat model of subtotal nephrec-
tomy [33]. Those authors concluded that restoring AMPK activity could suppress the
progressive loss of renal function in non-diabetic CKD. In a rat model of adenine-induced
CKD, metformin prevented renal progression and features of mineral and bone disorder
such as hyperphosphatemia, hypocalcemia, secondary hyperparathyroidism, and vascular
calcification [34]. As expected, metformin also ameliorated cellular infiltration, fibrosis,
and inflammation in the kidney.

Unilateral ureteral obstruction (UUO) is an animal model frequently used to inves-
tigate renal interstitial fibrosis. Metformin attenuated kidney inflammation and fibro-
sis in mice with UUO [35]. Feng et al. found that metformin reduced UUO-induced
transforming growth factor β1 (TGFβ1) mRNA and protein expression by stimulating
AMPKα2-dependent targeting of TGFβ1 production and AMPKα2-independent targeting
of Smad3 phosphorylation downstream of TGFβ1 [36]. In an AMPK-independent pathway,
metformin inhibited the activation of ERK signaling and attenuated the production of
extracellular matrix proteins and collagen deposition in the obstructed kidneys [37]. The
DEP domain-containing mTOR interacting protein (DEPTOR) is an endogenous negative
regulator of mTOR that inhibits the kinase activity of both mammalian target of rapamycin
complex 1 (mTORC1) and mTORC2. According to Wang et al., metformin attenuated renal
interstitial fibrosis by increasing DEPTOR expression and inhibiting the mTOR/p70S6K
pathway in the kidneys of UUO rats [38]. Because metformin limited the infiltration of
immune cells into the UUO kidney, systemic immunomodulatory action was suggested,
probably via inhibition of signal transducer and activator of transcription 3 (STAT3) activ-
ity [39]. Systemic lupus erythematosus is an autoimmune disease, and immune cells can be
therapeutic targets of metformin. In Roquinsan/san mice, metformin attenuated inflammation
in kidney and liver tissues and inhibited B cell differentiation into plasma cells and the
formation of germinal centers in association with enhanced AMPK expression and the
inhibition of mTOR-STAT3 signaling [40].

Proteinuria plays an important role in the pathogenesis of CKD, and it can be modified
by metformin. In spontaneously hypertensive rats, metformin reduced proteinuria and
increased the production of vascular endothelial growth factor (VEGF)-A in rat kidneys,
probably by hypoxia-inducible factor (HIF)-2α activation [41]. A cell experiment mimicking
albuminuria explored the beneficial action mechanisms of metformin. Metformin treatment
restored AMPK phosphorylation and augmented autophagy in rat renal proximal tubular
(NRK-52E) cells exposed to albumin. In addition, metformin treatment attenuated the
albumin-induced phosphorylation of protein kinase B (AKT) and the downstream targets
of mTOR and prevented the albumin-mediated induction of epithelial-mesenchymal tran-
sition marker α-SMA, pro-apoptotic endoplasmic reticulum (ER) stress marker CHOP, and
apoptotic caspases -12 and -3 in renal cells [42].

In clinical practice, however, metformin has not been used for non-diabetic kidney
diseases. A phase 3 randomized controlled trial (Metformin as RenoProtector of Progressive
Kidney Disease (RenoMet); NCT03831464) is ongoing to test the effects of metformin in
stage 2 and 3 CKD [43]. Table 1 summarizes the results of metformin treatment in animal
models of non-diabetic kidney disease.
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Table 1. Animal studies of metformin treatment for non-diabetic kidney disease.

Animal Model Renal Function Kidney Biomarker Reference

Cisplatin-induced AKI
(CD1 mice) ↓BUN

↓Tubular injury
↓Inflammatory cell infiltration

↑AMPKα activation
↑Autophagy
↓Apoptosis

[25]

Ischemia/reperfusion AKI
(Wistar rats) N/A

↓Tubulointerstitial damage
↓Oxidative stress
↓Pro-fibrotic markers
↑AMPK activity
↓mTOR activity
↑Autophagy
↓Apoptosis

[26]

Gentamicin-induced AKI
(male rats)

↑GFR
↑RBF
↑RPF
↓RVR

↓Tubular necrosis
↓Oxidative stress

↓Mitochondrial dysfunction
[30]

Ablation/infarction CKD
(Wistar rats)

↑GFR
↑RBF

↓Renal oxygen consumption per
sodium reabsorbed

↑AMPK activity
↓Glomerulosclerosis
↓Interstitial fibrosis

[33]

Adenine-induced CKD
(Wistar rats)

↓Serum creatinine
↑Creatinine clearance
↓Serum phosphorus

↓Tubulointerstitial injury
↓2,8-dihydroxyadenine crystals
↓Pro-inflammatory cytokines

[34]

UUO
(C57BL/6 mice) N/A

↑AMPKα activity
↓Pro-inflammatory cytokines
↓Macrophage infiltration
↓TGFβ1 and pSmad3,
↓Collagen I and α-SMA
↓Interstitial fibrosis

[35,36]

UUO
(C57BL/6J mice) N/A

↓ERK activation
↓TGFβ

↓Fibronectin and collagen I
↓Interstitial fibrosis

[37]

UUO
(Sprague-Dawley rats)

↓BUN
↓Serum creatinine

↓Macrophage infiltration
↓Interstitial fibrosis
↑DEPTOR

↓mTOR-p70S6K

[38]

UUO
(C57BL/6NRj mice) N/A

↓KIM-1, α-SMA and HMGB1
↓Immune cell infiltration

↓pSTAT3
↓CXCL2/MIP-2 and CXCL1/KC

[39]

Lupus nephritis
(Roquinsan/san mice) N/A

↓Nephritis histopathology
↑AMPK

↓mTOR-STAT3
[40]

Hypertensive nephropathy
(SHR)

↓Proteinuria
↓Serum creatinine

↓Podocyte foot process effacement
↑VEGF-A and HIF-2α [41]

Note: AKI, acute kidney injury; AMPK, adenosine monophosphate-activated protein kinase; α-SMA, α-smooth muscle actin; BUN, blood
urea nitrogen; CKD, chronic kidney disease; CXCL, chemokine ligand; DEPTOR, DEP domain-containing mTOR interacting protein; GFR,
glomerular filtration rate; HIF-2α, hypoxia inducible factor-2α; HMGB1, high mobility group box protein 1; KC, keratinocyte-derived
chemokine; KIM-1, kidney injury molecule-1; MIP-2, macrophage inflammatory protein-2; mTOR, mammalian target of rapamycin; N/A,
not available; pSmad3, phospho-Smad3; pSTAT3, phospho-signal transducer and activator of transcription 3; p70S6K, ribosomal protein
S6 kinase; RBF, renal blood flow; RPF, renal plasma flow; RVR, renal vascular resistance; SHR, spontaneously hypertensive rat; TGFβ,
transforming growth factor β; UUO, unilateral ureteral obstruction; VEGF-A, vascular endothelial growth factor-A, ↑, increase; ↓, decrease.
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2.3. Autosomal Dominant Polycystic Kidney Disease

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common
hereditary kidney disease, and it frequently leads to ESKD during or after the sixth decade
of life through the development and inexorable expansion of multiple cysts throughout the
kidney parenchyma [44]. Although hypertension control is important to protect kidney
function, disease-modifying therapeutic drugs based on ADPKD pathophysiology are
needed. An increase in cyclic adenosine monophosphate (cAMP) plays an important role
in generating and maintaining fluid-filled cysts in collecting duct principal cells because
cAMP activates protein kinase A (PKA) and stimulates epithelial chloride secretion through
the cystic fibrosis transmembrane conductance regulator (CFTR) [45]. A vasopressin V2
receptor antagonist, tolvaptan, was recently found to successfully preserve kidney function
in ADPKD by targeting the role of vasopressin-mediated cAMP in cyst growth [44].

Metformin suppresses glucagon-dependent glucose output from hepatocytes by re-
ducing cAMP production and PKA activity via AMPK activation [46], which inhibits the
CFTR chloride channel activity in polarized epithelia [47]. Consistently, metformin was
shown to slow renal cystogenesis in vitro and ex vivo and to produce a significant decrease
in cystic growth in two different mouse models of ADPKD [48]. The intracellular pathways
of metformin action for non-diabetic kidney diseases are summarized in Figure 1.
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Figure 1. Intracellular pathways for the action of metformin that lead to renoprotection in non-
diabetic kidney disease. AMPK activation inhibits TGFβ1 and mTOR and acts against inflammation
and cell death. cAMP suppression could inactivate PKA and CFTR in ADPKD. AMPK-independent
pathways include the inhibition of ERK and AKT signaling, which acts against cell proliferation
and apoptosis. mTOR inhibition via DEPTOR can also improve autophagic flux. Red arrows
indicate stimulation, and blue broken lines indicate inhibition. AMPK, 5’ adenosine monophosphate-
activated protein kinase; AKT, protein kinase B; cAMP, cyclic adenosine monophosphate; CFTR,
cystic fibrosis transmembrane conductance regulator; DEPTOR, DEP domain-containing mTOR-
interacting protein; ERK, extracellular signal-regulated kinase; HIF-2α, hypoxia-inducible factor-2α;
mTOR, mammalian target of rapamycin; PKA, protein kinase A; p-Smad3, phosphorylated mothers
against decapentaplegic homolog 3; PKA, protein kinase A; STAT3, signal transducer and activator of
transcription 3; TGFβ1, transforming growth factor β1; VEGF-A, vascular endothelial growth factor-A.
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Pisani et al. retrospectively compared the decline in eGFR between seven diabetic
ADPKD patients treated with metformin and seven matched non-diabetic ADPKD controls
not receiving metformin treatment [49]. During three years of follow-up, they found that
renal progression was slower when metformin was used. A phase II randomized placebo-
controlled clinical trial completed on 7 December 2020, assessed the safety, tolerability,
and effects of metformin treatment on kidney volume growth and eGFR in patients with
early to moderate ADPKD (eGFR ≥ 50 mL/min/1.73 m2) [50]. The results from another
clinical trial (NCT02903511) testing the feasibility of metformin therapy in ADPKD are
being analyzed.

It is well-known that metformin can cause subclinical increases in lactic acid and
lactic acidosis in extreme overdose, but long-term experience and trial data have shown no
safety concerns for metformin use except in a relatively small subset of patients with severe
liver, heart, or renal dysfunction [14]. Ongoing trials will address the safety concerns for
metformin use in non-diabetic kidney diseases.

3. Glucagon-Like Peptide-1 Receptor Agonists

In response to food intake, glucagon-like peptide-1 (GLP-1) is secreted by intesti-
nal endocrine cells to facilitate insulin secretion from pancreatic β-cells. GLP-1 exerts
its effects by binding to GLP-1R and subsequently activating adenylate cyclase, which
leads to the generation of cAMP. cAMP stimulates insulin secretion by activating PKA
and exchange factor directly activated by cAMP 2 (EPAC2) in pancreatic β-cells [51]. The
glucose-lowering effect of GLP-1 occurs via stimulation of glucose-dependent release of
insulin from pancreatic islet cells, slowing gastric emptying and decreasing appetite stimu-
lation in the brain. This is the pathway by which GLP-1R agonists could improve blood
glucose and confer weight loss [51,52]. In addition to the pancreas, GLP-1R is expressed in
multiple organs, such as the gut, kidneys, heart, and central nervous system [52]. Thus, the
GLP-1R agonists can exert extrapancreatic action to protect multiple organs in the body,
including the cardiovascular system, lungs, and kidneys [53]. The beneficial effects of
GLP-1 on the cardiovascular system, such as blood pressure control and improvement
of endothelial function, can also extend the renal protection (Figure 2). In particular, the
GLP-1R agonists have anti-apoptotic and anti-inflammatory action and can increase nitric
oxide production [54].
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3.1. Acute Kidney Injury

Contrast-induced nephropathy, the major cause of hospital-acquired AKI, has multiple
pathophysiology mechanisms, including renal hypoxia, oxidative stress, and endothelial
dysfunction [55]. Hussien et al. showed the prophylactic effect of exendin-4, a GLP-1R
agonist, against contrast-induced nephropathy in a rat model. Pretreatment with exendin-4
ameliorated biomarkers of renal function, oxidative stress, vascular dysfunction, and apop-
tosis [56]. Similar results were obtained from a rat model of renal ischemia/reperfusion
injury. When the rats were pretreated with exendin-4 before reperfusion, the kidney injury
was attenuated by reducing the expression of caspase-3 and macrophage infiltration and
increasing heme oxygenase-1 (HO-1) expression [57]. Exendin-4 also reduced cisplatin-
induced renal injury and apoptosis in mice [58].

3.2. Chronic Kidney Disease

Few data are available from the use of GLP-1R agonists in non-diabetic CKD. The anti-
inflammatory action of an GLP-1R agonist (liraglutide) was shown in a mouse model of T
cell–mediated glomerulonephritis [59]. Liraglutide treatment decreased renal infiltration
and the proliferation of T cells, but albuminuria was not improved. Table 2 summarizes
the treatment results of GLP-1R agonists in animal models of non-diabetic kidney disease.

Table 2. Animal studies using a GLP-1R agonist to treat non-diabetic kidney disease.

Animal Model Renal Function Kidney Biomarker Reference

CIN
(Sprague-Dawley rats)

↓BUN
↓Serum creatinine
↑Creatinine clearance
↓Proteinuria

↓Oxidative stress
↓Vascular dysfunction markers
↓Caspase-3 expression
↓Histopathological lesions

[56]

Ischemia/reperfusion AKI
(Sprague-Dawley rats) ↓Serum creatinine

↓ATN score
↓Apoptosis

↓Macrophage infiltration
↑HO-1 expression

[57]

Cisplatin-induced AKI
(C57BL/6 mice)

↓BUN
↓Serum creatinine

↓ATN score
↓Oxidative stress
↓Apoptosis

[58]

Nephrotoxic serum nephritis
(C57BL/6J mice)

↓Albuminuria
↓Urinary NGAL

↓Glomerular crescents
↓Inflammation and fibrosis [59]

Note: ATN, acute tubular necrosis; BUN, blood urea nitrogen; CIN, contrast-induced nephropathy; GLP-1R, glucagon-like peptide-1
receptor; HO-1, heme oxygenase-1; NGAL, neutrophil gelatinase-associated lipocalin, ↑, increase; ↓, decrease.

An arteriovenous fistula is the vascular access required to maintain hemodialysis
in ESKD patients. Thrombotic tendency is inevitable due to the turbulent blood flow
and endothelial damage. Chien et al. investigated whether exendin-4 could relieve arte-
riovenous fistula injury in rats with CKD [60]. They reported that exendin-4 treatment
restored normal endothelial morphology and improved arteriovenous fistula function by
upregulating HO-1, consistent with the role of hypoxia and oxidative stress in immature
arteriovenous fistulae [61,62].

Since the overall safety data for GLP-1R agonists from previous clinical trials in dia-
betic patients are reassuring, a few side effects of GLP-1R agonists including gastrointestinal
symptoms, injection-site reactions, and an increased heart rate can preclude use of GLP-1R
agonists in some cases, and such use needs to be avoided in subjects with medullary
thyroid tumor or history of acute pancreatitis [63].

4. Dipeptidyl Peptidase-4 Inhibitors

The pharmacologic action of DPP-4 inhibitors is similar to that of GLP-1R agonists. The
major therapeutic effects of DPP-4 inhibitors protect against degradation of the substrates
GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), which are physiological
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substrates that affect insulin and glucagon secretion in a glucose-dependent manner [64].
GLP-1 accumulates with the inhibition of DPP-4 because the soluble form of DPP-4 cir-
culates in the plasma and rapidly degrades GLP-1. However, DPP-4 is also expressed as
a membrane-bound form in a variety of tissues, primarily on endothelial and epithelial
cells [65]. In the kidney, DPP-4 is expressed on the brush border of the proximal tubules
and glomerular podocytes [66].

In addition to the extrapancreatic action derived from GLP-1, DPP-4 inhibitors can
offer organ protection via GLP-1-independent mechanisms [53]. The enzyme DPP-4 cleaves
multiple peptides other than GLP-1, such as brain-derived natriuretic peptide (BNP),
neuropeptide Y (NPY), and stromal-derived factor (SDF)-1α. Thus, multiple substrates
might be responsible for the pleiotropic action of DPP-4 inhibitors (Figure 3).
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disease. The anti-inflammatory, anti-oxidative, and anti-apoptotic actions of DPP-4 inhibitors use both
GLP-1-dependent and GLP-1-independent mechanisms. Hemodynamic benefits could be conferred
through natriuresis and vasodilation. Red words denote stimulatory effects, and blue words denote
inhibitory effects. BNP, brain-derived natriuretic peptide; CXCR4, C-X-C chemokine receptor type
4; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; NADPH, nicotinamide adenine
dinucleotide phosphate; NHE3, Na+/H+ exchanger type 3; NLRP3, NLR family pyrin domain
containing 3; PI3K-AKT, phosphatidylinositol 3-kinase-protein kinase B; SDF-1α, stromal-derived
factor-1α.

4.1. Acute Kidney Injury

Vildagliptin pre-treatment in a rat model of ischemia/reperfusion injury preserved kid-
ney function in association with reduced tubular necrosis and decreased apoptotic, oxida-
tive, and proinflammatory markers [67]. Post-treatment with sitagliptin offered similar ben-
efits in terms of kidney recovery and pleiotropic actions after acute ischemia/reperfusion
injury [68].

Treatment with alogliptin reduced cisplatin–induced AKI and reduced the renal
mRNA expression ratios of Bax/Bcl-2 and Bim/Bcl-2, markers of apoptosis [58]. In addition,
the cisplatin-induced increase in the levels of other DPP-4 substrates, such as SDF-1α and
NPY, was reversed. Teneligliptin also attenuated cisplatin-induced AKI and accelerated
kidney recovery by promoting the proliferation of surviving epithelial cells in the proximal
tubule via the chemokine ligand CXCL12 (or SDF-1α) and its receptor chemokine receptor 4
(CXCR4) [69]. Upregulation of the mRNA expression of both SDF-1α and CXCR4 was also
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found in the kidney after acute ischemia/reperfusion injury [70]. Thus, the SDF-1α/CXR4
axis could have a role in kidney repair by regenerating tubular epithelial cells in both
ischemic and nephrotoxic injury. As shown in Figure 3, SDF-1α is an important DPP-4
substrate that potentially mediates the protective effects of DPP-4 inhibition in the kidney.

Natriuresis induced by DPP-4 inhibitors or GLP-1R agonists could be linked to reno-
protection (Figure 3). Active sodium transport along the nephron is primarily driven
by basolaterally located Na+-K+-ATPase that uses ATP hydrolysis as a source of energy.
That process requires oxygen consumption to maintain a sustained rate of ATP generation
in the kidney [71]. Na+/H+ exchanger type 3 (NHE3) is the major sodium transporter
in the proximal tubule, and Girardi et al. reported that the administration of a DPP-4
inhibitor to Wistar rats for 7 days reduced both NHE3 activity and protein abundance
in the proximal tubule brush border [72]. They also reported that NHE3 activity in LLC-
PK1 cells was decreased by treatment with exendin-4 [73]. Downregulation of NHE3
could limit energy consumption in the proximal tubule and protect the kidney from acute
ischemia/reperfusion injury [74].

4.2. Chronic Kidney Disease

As in diabetic nephropathy, albuminuria is an important marker of CKD and in-
dicator of renal disease progression. Although DPP-4 inhibition appears to effectively
ameliorate albuminuria [7], it is unlikely to improve renal survival in T2D patients [75]. It
should be determined whether DPP-4 inhibitors are useful in patients with non-diabetic
kidney disease.

Many preclinical studies have shown the renoprotective effects of DPP-4 inhibition
in non-diabetic CKD. Alogliptin treatment ameliorated renal inflammation and fibrosis
in mice with UUO [76]. Evogliptin also attenuated UUO-induced renal atrophy and
tubulointerstitial fibrosis in association with the inhibition of pro-fibrotic gene expression
and extracellular matrix production [77]. Consistent with that, linagliptin suppressed the
induction of pro-fibrotic miRNA such as miR-199a-3p and restored levels of the anti-fibrotic
miR-29c in rats with 5/6 nephrectomy [78]. Linagliptin also reduced albuminuria and
attenuated glomerular hypertrophy and interstitial fibrosis in non-diabetic rats with 5/6
nephrectomy [79]. Joo et al. showed that in the rat remnant kidney model, sitagliptin
improved renal functional and morphological changes by attenuating activation of the
phosphatidylinositol 3-kinase (PI3K)-AKT pathway [80]. In aging mice, linagliptin improved
kidney function and tubulointerstitial fibrosis in association with alterations to nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase-2 and NADPH oxidase-4 [81].

The anti-inflammatory action of DPP-4 inhibition has also been shown in animal
models of glomerulopathy. Alogliptin reduced the number of CD68-positive inflammatory
macrophages in the kidney in a rat Thy-1 glomerulonephritis model [82]. Linagliptin pre-
treatment in anti-GBM nephritic rats reduced the number of crescents, glomerulosclerosis,
tubular injury, and renal fibrosis [83]. In mice with doxorubicin nephropathy, evogliptin
reduced albuminuria in association with restored nephrin expression in podocytes and de-
creased podocyte injury [84]. Sitagliptin and linagliptin ameliorated NLRP3 inflammasome
activation and oxidative stress markers in rats with doxorubicin nephropathy [85].

The anti-inflammatory action of DPP-4 inhibition was also demonstrated in animal
models of salt-sensitive hypertension. Vildagliptin attenuated the development of salt-
induced hypertension in Dahl salt-sensitive rats by increasing urine sodium excretion [86].
In addition, sitagliptin improved albuminuria and serum creatinine in Dahl salt-sensitive
rats in association with the amelioration of inflammatory markers in the kidney [87].
Saxagliptin also improved albuminuria and suppressed inflammation- and fibrosis-related
genes in Dahl salt-sensitive rats [88]. Table 3 summarizes the results of DPP-4 inhibitor
treatment in animal models of non-diabetic kidney disease.

Although a few potential risks associated with DPP-4 inhibitors have been reported
with respect to effects in the immune system and risk of acute pancreatitis, there is a relative
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lack of unwanted off-target or adverse effects associated with the DPP-4 inhibitors that are
used therapeutically [64].

Table 3. Animal studies using DPP-4 inhibitors to treat non-diabetic kidney disease.

Animal Model Renal Function Kidney Biomarker Reference

Ischemia/reperfusion AKI
(Wistar-Han rats) ↓Serum creatinine

↓Tubular damage and inflammation
↓Apoptosis

↓Oxidative stress
↓CXCL10 mRNA

[67]

Ischemia/reperfusion AKI
(Sprague-Dawley rats)

↓BUN
↓Serum creatinine
↓Proteinuria

↓Tubular injury
↓Oxidative stress

↓Pro-inflammatory markers
↓Apoptosis

[68]

Cisplatin-induced AKI
(C57BL/6 mice)

↓BUN
↓Serum creatinine

↓ATN score
↓Oxidative stress
↓Apoptosis

[58]

Cisplatin-induced AKI
(Sprague-Dawley rats)

↓BUN
↓Serum creatinine

↓Tubular injury
↓Interstitial fibrosis
↓Inflammation
↓Apoptosis

↑Proliferation of PTECs

[69]

UUO
(C57BL/6J mice)

↔BUN
↔Serum creatinine

↓Interstitial fibrosis
↓Pro-inflammatory markers [76]

UUO
(C57BL/6J mice) N/A ↓Interstitial fibrosis

↓Pro-fibrotic gene expression [77]

5/6 nephrectomy
(Wistar rats)

↓Albuminuria
↓Proteinuria

↓Interstitial fibrosis
↓Glomerular hypertrophy

↓Inflammation
↓Lipid peroxidation

[79]

5/6 nephrectomy
(Sprague-Dawley rats)

↓BUN
↑Creatinine clearance

↓Glomerulosclerosis
↓Tubulointerstitial injury
↓PI3K-AKT activity
↓JNK phosphorylation

↓Apoptosis
↓Macrophage infiltration

[80]

Aging C57BL/6 mice ↓Serum creatinine
↓Cystatin C

↓Mesangial matrix
↓Interstitial fibrosis

↓Pro-inflammatory markers
↓Oxidative stress

[81]

Thy-1 glomerulonephritis
(Sprague-Dawley rats) ↓Proteinuria ↓Glomerular injury

↓Macrophage infiltration [82]

Anti-GBM nephritis
(Wistar Kyoto rats) ↓Proteinuria

↓Glomerulosclerosis
↓Crescents

↓Tubular injury
↓Inflammation
↓Podocyte injury

[83]

Adriamycin nephropathy
(BALB/c mice)

↓Proteinuria
↓Albuminuria

↓Macrophage infiltration
↑Podocyte number
↓Inflammation
↓Interstitial fibrosis

[84]

Doxorubicin nephropathy
(Sprague-Dawley rats)

↔Proteinuria
↔Serum creatinine

↓Tubular injury
↓Interstitial fibrosis

↓Inflammatory cell infiltration
↓Oxidative stress

[85]
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Table 3. Cont.

Animal Model Renal Function Kidney Biomarker Reference

Hypertensive nephropathy
(Dahl salt-sensitive rats)

↓Albuminuria
↓Serum creatinine

↓Interstitial fibrosis
↓Pro-inflammatory markers
↓Endothelial dysfunction
↓Oxidative stress

[87]

Hypertensive nephropathy
(Dahl salt-sensitive rats)

↓Serum creatinine
↓Proteinuria
↓Albuminuria

↓Vascular injury
↓Pro-inflammatory gene expression
↓Pro-fibrotic gene expression

[88]

Note: AKI, acute kidney injury; ATN, acute tubular necrosis; CXCL10, C-X-C motif chemokine ligand 10; GBM, glomerular basement
membrane; IRI, ischemia-reperfusion injury; JNK, c-Jun N-terminal kinase; N/A, not available; NHE3, sodium hydrogen exchanger type 3;
PCR, protein to creatinine ratio; PI3K, phosphatidylinositol 3-kinase; PTECs, proximal tubular epithelial cells; UUO, unilateral ureteral
obstruction; ↑, increase; ↓, decrease;↔, no significant change.

5. Sodium-Glucose Transporter-2 Inhibitors

The kidney plays an important role in glucose homeostasis via gluconeogenesis,
glucose utilization, and glucose reabsorption from the glomerular filtrate [89]. Glucose is
produced in the renal cortex and contributes 20% to 25% of the total body glucose in the
fasting state. Glucose is also used in the renal medulla, accounting for 10% of total glucose
uptake by the body in the fasting state [90]. In addition, plasma glucose is freely filtered
through glomeruli and completely reabsorbed in the proximal tubule via apical SGLTs
and basolateral glucose transporters (GLUTs). In the early proximal tubule, SGLT-2 acts
as a high-capacity, low-affinity (sodium: glucose ratio of 1:1) secondary active transporter
and is responsible for most of the renal glucose reabsorption, in concert with GLUT-2.
The remaining glucose is reabsorbed by SGLT-1 (sodium: glucose ratio of 2:1) in the late
proximal tubule and then reabsorbed into the blood via GLUT-1 [91].

In patients with T2D, renal glucose metabolism is altered. Both renal and hepatic
gluconeogenesis are increased in the fasting state [92]. Postprandial renal glucose release
also increases to a greater extent in patients with T2D than in people with normal glucose
tolerance [93]. In parallel with increased glucose production, renal glucose uptake or
utilization is increased in both the fasting and postprandial states in patients with T2D.
Renal tubular transport physiology is also altered in diabetic patients. Glucose reabsorption
is increased in the proximal tubule in response to the increased filtered load of glucose.
Specifically, the transport maximum for glucose is increased by the upregulation of SGLT-2
in the proximal tubule [94]. Thus, diabetic patients can have glucosuria at higher-than-
normal plasma glucose levels [91].

The upregulation of SGLT-2 in patients with T2D is associated with important metabolic
and hemodynamic consequences because multiple therapeutic benefits are produced by
SGLT-2 inhibition [95]. First, SGLT-2 inhibitors increase urinary glucose and calorie excre-
tion, thereby reducing plasma glucose levels and body weight. Second, the accompanying
natriuresis induced by SGLT-2 inhibition lowers blood pressure and diabetic glomeru-
lar hyperfiltration. Initially, glomerular hypertrophy and hyperfiltration are induced by
hyperglycemia in diabetic patients. However, they can be aggravated by altered tubu-
loglomerular feedback at later stages. The upregulation of SGLT-2 in the proximal tubule
decreases NaCl delivery to the macula densa, where adenosine is released to regulate
preglomerular afferent arteriolar resistance. Thus, the decrease in adenosine release in
response to reduced distal delivery of NaCl decreases afferent arteriolar resistance, leading
to glomerular hyperfiltration [96]. This process can be reversed by SGLT-2 inhibition,
reducing albuminuria and protecting the kidney.

The glomerular hyperfiltration theory is not limited to diabetic nephropathy; it could
also be applicable to non-diabetic kidney disease [97]. The single-nephron glomerular
filtration rate would be increased in response to a reduction in functioning renal mass in
CKD, and it might be modulated by SGLT-2 inhibition, reducing albuminuria. Because hy-
pertension in CKD is mainly salt-sensitive, it might also be responsive to SGLT-2 inhibition.
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Furthermore, oxidative stress and inflammatory activation are common pathways leading
to both renal and cardiac fibrosis [98], and the cardiovascular benefits of SGLT-2 inhibition
could be extended to favorable renal outcomes because of the heart–kidney connection.

Furthermore, SGLT-2 inhibitors could protect the kidney by reducing cortical hypoxia,
in association with the downregulation of NHE3 in the proximal tubule [99]. In general,
hypoxia induces cell stress, producing ROS and triggering ER stress from the accumulation
of unfolded proteins in the ER [100]. Cells respond to ER stress by activating a series of
integrative stress pathways, but if ER stress is chronic or excessive, the unfolded protein
response becomes maladaptive and can become cytotoxic by activating apoptosis [101].
Mitochondrial dysfunction is also an important component of various kidney diseases,
inducing ER stress and subsequent cellular damage [32]. Further ROS generation and the
activation of pro-inflammatory pathways are promoted, although those cellular stresses
and organellar derangements are normally constrained by a cellular housekeeping pathway
known as autophagy, a lysosomally mediated degradative pathway that maintains cellular
homeostasis in the kidney [102].

Figure 4 summarizes potential mechanisms for the renoprotection induced by SGLT-2
inhibition in non-diabetic kidney disease. Several cell-signaling pathways are involved in
its pleiotropic action and lead to cardiovascular benefits. First, activation of the PI3K/AKT
pathway decreases ROS generation and increases the phosphorylation of AKT/eNOS,
which reduces inflammation and increases NO production [103]. Li et al. reported that
phlorizin suppressed the expression of SGLT-1 and SGLT-2, activated the PI3K/AKT/eNOS
signaling pathway, and increased the output of NO in palmitic acid–incubated human
vascular endothelial cells [104]. Second, SGLT-2 inhibitors induce both AMPK and sirtuin-
1, directly muting oxidative stress and inflammation and also stimulating autophagy to
relieve cellular stress and renal injury [105]. Third, the SGLT-2 inhibitors might suppress the
AKT and mTORC1 cell signaling pathway, ameliorating oxidative stress and inflammation
and recovering autophagy [106]. Jaikumkao et al. recently reported that dapagliflozin
ameliorated pancreatic oxidative stress, ER stress, inflammation, and apoptosis and restored
kidney autophagy in obese rats [107].

5.1. Acute Kidney Injury

The possibility of provoking AKI might be a concern with SGLT-2 inhibitors because
they produce a transient decrease in intraglomerular pressure. A total of 511 AKI events
were reported among 36,716 T2D patients in 53 clinical trials [108]. However, SGLT-2
inhibitors reduced the risk of AKI by 25% when data were analyzed from the major
randomized controlled trials [109].

The SGLT-2 inhibitors can protect kidneys from ischemic injury through several
mechanisms. In the proximal tubule, SGLT-2 inhibition can reduce the accumulation of
intracellular glucose and sodium and decrease the activity of Na+-K+-ATPase. Interestingly,
NHE3 activity in the proximal tubule can be affected by SGLT-2 inhibition [110]. The
resultant decrease in tubular workload contributes to reduced tissue oxygen consumption,
which improves renal cortical hypoxia [111]. In an ischemia/reperfusion mouse model,
dapagliflozin reduced renal damage in association with increased renal expression of HIF-
1 [112]. HIF-1α stimulates erythropoiesis and upregulates the expression of VEGF, reducing
systemic hypoxia and renal ischemia. Zhang et al. reported that luseogliflozin prevented
endothelial rarefaction and subsequent renal fibrosis after renal ischemia/reperfusion
injury in non-diabetic mice through a VEGF-dependent pathway [113].

The SGLT-2 inhibitors can protect kidneys by activating cell survival pathways.
Canagliflozin attenuated cisplatin-induced nephropathy in C57BL/6 mice and suppressed
cisplatin-induced renal proximal tubular cell apoptosis in association with the inhibi-
tion of p53, p38, and JNK activation in vitro [114]. Chang et al. also showed that da-
pagliflozin reduced renal expression of Bax, renal tubule injury, and TUNEL-positive cells
in ischemia/reperfusion-injured mice and increased the expression of AMPK and ERK in
hypoxic HK2 cells in vitro [112].
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Figure 4. Potential mechanisms of renoprotection induced by SGLT-2 inhibitors in non-diabetic
kidney disease. Pleiotropic effects include anti-inflammatory, anti-oxidative, and anti-apoptotic
action by SGLT-2 inhibitors. Restoration of enhanced tubuloglomerular feedback could reduce
albuminuria. Stimulation of the PI3K/AKT/eNOS pathway and inhibition of sympathetic nerve
activity improve vascular endothelial function. SGLT-2 inhibition could affect NHE3 activity in the
proximal tubule, reducing tubular workload. Simultaneously, the increase in VEGF induced by HIF-
1α activation relieves renal hypoxia. Red arrows indicate stimulation, and blue broken lines indicate
inhibition. AKT, protein kinase B; AMPK, 5’ adenosine monophosphate-activated protein kinase;
Bax, bcl-2-like protein 4; eNOS, endothelial nitric oxide synthase; HIF-1α, hypoxia-inducible factor
1α; IL-1β, interleukin-lβ; IL-6, interleukin-6; mTORC1, mammalian target of rapamycin complex
1; NHE3, Na+/H+ exchanger type 3; PI3K, phosphoinositide 3-kinase; SGLT-2, sodium-glucose
transporter-2; SIRT1, sirtuin-1; TNF-α, tumor necrosis factor-α; TGF, tubuloglomerular feedback;
VEGF, vascular endothelial growth factor.

5.2. Chronic Kidney Disease

In the DAPA-CKD trial, the composite risk of a sustained decline in eGFR ≥ 50%,
ESKD, or death from renal or cardiovascular causes was reduced by dapagliflozin treatment
in CKD patients, regardless of the presence or absence of diabetes [12]. When the ongoing
EMPA-Kidney trial is successfully completed, the indication for SGLT-2 inhibitors might be
extended to non-diabetic CKD. However, whether the long-term use of SGLT-2 inhibitors
will reduce proteinuria and preserve GFR is unclear at this time of writing [115].

Different animal models of non-diabetic kidney disease have shown conflicting results
from SGLT-2 inhibition. The animal model of renal mass reduction could be appropriate to
test the intact nephron hypothesis or the role of nephron loss in the progression of renal
failure [116]. Zhang et al. administered dapagliflozin to 5/6 nephrectomized rats, but they
found no attenuation of glomerulosclerosis or tubulointerstitial fibrosis and no changes
in the overexpression of TGFβ1 mRNA [117]. A similar negative result was obtained
using another selective SGLT-2 inhibitor, TA-1887, in 5/6 nephrectomized rats [118]. When
empagliflozin was administered to C57BL/6N mice fed an oxalate-rich diet to induce
chronic oxalosis, kidney dysfunction and markers of tubulointerstitial injury and fibrosis
remained unchanged [119].

In rats with adenine-induced CKD, however, canagliflozin reduced albuminuria
and plasma cystatin C, interleukin-1β, interleukin-6, and tumor necrosis factor-α [120].
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Ipragliflozin also relieved plasma creatinine and interleukin-6 and ameliorated tubulointer-
stitial injury and 8-hydroxy-2′-deoxyguanosine expression in the kidneys of non-diabetic
mice treated with adenine for 4 weeks [121]. Cassis et al. induced a mouse model of pro-
teinuric non-diabetic nephropathy by administering bovine serum albumin after unilateral
nephrectomy and found that dapagliflozin relieved proteinuria, glomerular lesions, and
podocyte dysfunction and loss [122]. However, short-term treatment with dapagliflozin
did not modify renal hemodynamic function or attenuate proteinuria in humans or in
experimental focal segmental glomerulosclerosis [123]. Thus, whether SGLT-2 inhibition
is renoprotective in the absence of hyperglycemia or SGLT-2 upregulation still needs to
be determined.

In CKD animals, SGLT-2 inhibition had beneficial effects on salt-sensitive hypertension.
We showed that the salt-sensitive hypertension induced by feeding uninephrectomized rats
an 8% NaCl diet was controlled by empagliflozin treatment [124]. The lower blood pressure
was not accompanied by natriuresis but was associated with increased renal expression
of HIF-1α and the amelioration of renal inflammation. The recent DAPASALT trial also
reported that dapagliflozin produced no significant natriuresis in association with its blood
pressure lowering effect [125], which is compatible with the roles of inflammation, oxidative
stress, and vascular dysfunction in hypertension [126]. In a rat model of angiotensin II-
dependent hypertension, on the other hand, empagliflozin did not affect blood pressure
but did prevent the development of renal glomerulosclerosis, tubulointerstitial fibrosis, an
increase in inflammatory infiltrates, and the expression of collagen types I and IV [127].
Those results stress the anti-inflammatory action of SGLT-2 inhibitors, rather than their
hemodynamic effects on the kidney. The salt-sensitive hypertension induced by feeding
adenine-treated uninephrectomized rats an 8% NaCl diet was relieved by luseogliflozin
treatment in association with a reduction in a low frequency of systolic arterial pressure,
which reflects sympathetic nerve activity [128]. CKD is characterized by sympathetic
hyperactivity, and SGLT-2 inhibitors might reduce sympathetic activation at the renal
level [129].

Finally, renal hypoxia has a pathogenic role in both diabetic and non-diabetic kid-
ney disease. In diabetes mellitus, renal perfusion for oxygen delivery can be reduced by
hyperglycemia-associated microvascular injury. In addition, oxygen demand can be in-
creased by the upregulation of sodium transport in the proximal tubule [130]. A mismatch
between renal oxygen demand and oxygen delivery can occur in non-diabetic kidney
disease as well. According to the intact nephron hypothesis, glomerular hyperfiltration
and increasing tubular workload are inevitable in the remaining nephrons. A series of
microvascular or endothelial injuries in CKD, irrespective of etiology, can produce vas-
cular rarefaction and lead to tubulointerstitial inflammation and fibrosis [131]. Renal
cortical hypoxia in CKD patients was demonstrated using blood oxygen level-dependent
(BOLD)-magnetic resonance imaging (MRI) and was related to the aggravation of kidney
function [132]. However, a recent clinical trial reported that in non-diabetic normotensive
subjects, cortical or medullary tissue oxygenation examined using renal BOLD-MRI was
unchanged by SGLT-2 inhibition [133]. Table 4 summarizes treatment results from SGLT-2
inhibitors in animal models of non-diabetic kidney disease.

A few risks of diabetic ketoacidosis, genital mycotic infections, and lower-limb ampu-
tations with SGLT-2 inhibitors have been reported in subjects with T2D [63]. However, it
remains unclear whether these possible damages can occur in non-diabetic patients.
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Table 4. Animal studies using SGLT-2 inhibitors to treat non-diabetic kidney disease.

Animal Model Renal Function Kidney Biomarker Reference

Ischemia/reperfusion AKI
(C57BL/6 mice)

↓BUN
↓Serum creatinine

↓Tubular injury
↓Apoptosis
↑HIF-1

[112]

Ischemia/reperfusion AKI
(C57BL/6J mice)

↔BUN
↔Creatinine clearance

↓Interstitial fibrosis
↓TGFβ mRNA [113]

Cisplatin-induced AKI
(C57BL/6 mice)

↓BUN
↓Serum creatinine

↓Tubular injury
↓Apoptosis

↓p53, p38, and JNK activity
↑AKT activation

[114]

5/6 nephrectomy
(Sprague-Dawley rats)

↔BUN
↔Creatinine clearance

↔Glomerulosclerosis
↔Interstitial fibrosis [117,118]

Oxalate nephropathy
(C57BL/6N mice)

↔BUN
↔Serum creatinine

↔Oxalate crystal deposition
↔Pro-fibrotic gene expression [119]

Adenine-induced CKD
(Wistar rats)

↓BUN
↓Serum creatinine
↓Albuminuria

↓Oxidative markers
↑Nrf2

↓Tubular necrosis and fibrosis
[120]

Adenine-induced CKD
(C57BL/6JJcl mice)

↓Plasma creatinine
↔Proteinuria

↓Tubular dilatation
↓Interstitial fibrosis [121]

Proteinuric nephropathy
(C56BL/6N mice)

↓Proteinuria
↔GFR

↓Glomerular damage
↓Podocyte loss

↓Macrophage infiltration
[122]

Salt-sensitive hypertension
(Sprague-Dawley rats)

↑Proteinuria
↑Creatinine clearance

↑HIF-1α, HO-1, and VEGF
↓Inflammatory markers
↓Oxidative stress

[124]

Ang II-induced hypertension
(Sprague-Dawley rats) ↔GFR

↓Renal fibrosis
↓Type I and IV collagen expression
↓Inflammatory cell infiltration

[127]

Note: AKI, acute kidney injury; AKT, protein kinase B; Ang II, angiotensin II; BUN, blood urea nitrogen; CKD, chronic kidney disease; GFR,
glomerular filtration rate; HIF-1, hypoxia-inducible factor-1; HO-1, heme oxygenase-1; JNK, c-Jun N-terminal kinase; Nrf2, nuclear factor
erythroid 2-related factor 2; TGFβ, transforming growth factor β; VEGF, vascular endothelial growth factor; ↑, increase; ↓, decrease;↔, no
significant change.

6. Conclusions

The glucose lowering–independent pleiotropic action of metformin, GLP-1R agonists,
DPP-4 inhibitors, and SGLT-2 inhibitors might extend their indications to non-diabetic
diseases. Preclinical studies have shown that all these anti-diabetic agents have robust
anti-inflammatory and anti-oxidative action, leading to improvements in endothelial dys-
function. In addition, metformin could protect the kidney from acute or chronic injury by
inhibiting apoptosis and inducing autophagy. Its effect on proteinuria and GFR will be
verified by ongoing clinical trials in moderately advanced CKD patients. GLP-1R agonists
and DPP-4 inhibitors could induce natriuresis and relieve hypertension via NHE3 down-
regulation or increased BNP release. Clinical evidence is required, although the beneficial
effects of GLP-1R agonists and DPP-4 inhibitors on renal function have been reported
in many preclinical studies. SGLT-2 inhibitors are emerging as a promising treatment
for non-diabetic kidney disease. They can restore both systemic and glomerular hemo-
dynamic alterations, leading to cardiorenal protection. Non-hemodynamic mechanisms
include the relief of renal hypoxia, improvement of organellar dysfunction, inhibition of
apoptosis, and induction of autophagy. Clinical trials are required to test whether the hemo-
dynamic and non-hemodynamic mechanisms are connected to renal benefits in patients
with non-diabetic kidney disease and without SGLT-2 upregulation.
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