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Background: With the growing uncovering of drug resistance in melanoma treatment,
personalized cancer therapy and cancer stem cells are potential therapeutic targets for this
aggressive skin cancer.

Methods: Multi-omics data of cutaneous melanoma were obtained from The Cancer
Genome Atlas (TCGA) database. Then, these melanoma patients were classified into
different subgroups by performing "CancerSubtypes" method. The differences of
stemness indices (mRNAsi and mDNAsi) and tumor microenvironment indices (immune
score, stromal score, and tumor purity) among subtypes were investigated. Moreover, the
Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) algorithms were performed to identify a cancer
cell stemness feature, and the likelihood of immuno/chemotherapeutic response was
further explored.

Results: Totally, 3 specific subtypes of melanoma with different survival outcomes were
identified from TCGA.We found subtype 2 of melanoma with the higher immune score and
stromal score and lower mRNAsi and tumor purity score, which has the best survival time
than the other subtypes. By performing Kaplan–Meier survival analysis, we found that
mRNAsi was significantly associated with the overall survival time of melanomas in subtype
2. Correlation analysis indicated surprising associations between stemness indices and
subsets of tumor-infiltrating immune cells. Besides, we developed and validated a
prognostic stemness-related genes feature that can divide melanoma patients into
high- and low-risk subgroups by applying risk score system. The high-risk group has a
significantly shorter survival time than the low-risk subgroup, which is more sensitive to
CTLA-4 immune therapy. Finally, 16 compounds were screened out in the Connectivity
Map database which may be potential therapeutic drugs for melanomas.

Conclusion: Thus, our finding provides a new framework for classification and finds some
potential targets for the treatment of melanoma.
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INTRODUCTION

Melanoma is a quite lethal tumor once it has spread
(metastasized). Melanoma arises from the precursor lesion
with an accumulation of unrestrained mutations; orthotopic
melanoma can be cured by resection in combination with
continuously proven adjuvant therapy (Bray et al., 2018; Siegel
et al., 2019).

Progression of melanoma can be characterized by the
genetically distinct subpopulations which are related to a high
occurrence of chemotherapy resistance. Given that about 90% of
metastatic tumors develop resistance, a high incidence of
melanoma in the reduced overall survival rate is due to the
resistance to chemotherapies (Chow et al., 2011). At present,
there are some validated adjuvant treatments for melanoma. Still,
considering the side effects and different drug treatment
responses of melanoma patients, the best choice and
implementation of comprehensive melanoma therapy are
unresolved. It is critical to find a more targeted selection for
advanced melanoma patients.

Among tumor cells, the strong chemoresistance of tumor stem
cells is closely related to high mortality after metastasis. Cancer
stem cells are defined as the precursors by tumorigenesis, self-
renewal, and pluripotency, namely, a subset of tumor-initiating
cells (Abbaszadegan et al., 2017). To date, melanoma stem cells
have been identified as a subpopulation of melanoma cells which
can express cellular markers, like CD271, CD133, ABCB5,
MDR1, etc. (Civenni et al., 2011; Keshet et al., 2008; Sharma
at al., 2010). According to recent studies, melanoma stem cells
can participate in related signal transduction pathways and play
vital roles in escaping from immune surveillance and resistance to
radiation therapy or chemotherapy (El-Khattouti et al., 2014;
Mohme et al., 2017; Pak et al., 2004). Studies have found that
molecules related to the expression of stemmarkers in tumors can
enhance the resistance of tumors to chemotherapy, which is the
basis for cancer stem cells to resist the toxic effects of
chemotherapy drugs. The expression level of some stem cell-
related markers is positively correlated with chemotherapy
tolerance. The reason why cancer stem cells can escape from
the cytotoxic effect of chemotherapeutic drugs includes their drug
excretion mechanism, anti-apoptosis mechanism, and DNA
damage repair mechanism (Meng et al., 2014; Schoning et al.,
2017). Cancer stem cells also could express stronger stem cell-
related potentials when they resist chemotherapy by activating
specific pathways (Takeda et al., 2016). Therefore, the study of the
characteristics of drug resistance mechanism of cancer stem cells
has excellent application prospects and significance, and it is
meaningful for complementary drug treatment programs to
melanoma patients.

Current therapeutic strategies targeting tumor stem cells
mainly include targeting specific surface markers or
intracellular signal transduction pathways, inducing tumor
stem cell differentiation, and changing the tumor stem cell
microenvironment (Pei et al., 2020; Qin et al., 2020; Zhang
et al., 2020). However, some studies have shown that tumor
cells can be dedifferentiated into tumor stem cells to supplement
depleted tumor stem cells under the influence of their

surrounding environment. The ability of this new tumor stem
cell to tolerate chemotherapy is still unknown. The heterogeneity
of tumors and the complexity of the surrounding
microenvironment make tumor treatment extremely
complicated, so understanding the tumor heterogeneity and its
external environment is vital (Lian et al., 2019). In particular,
changes in the immune environment related to tumors will help
us further to understand the melanoma therapeutic strategy.

MATERIALS AND METHODS

Data Collection and Cancer Subtype
Identification
The transcriptome profile of RNA sequencing data and matched
DNA methylation data of cutaneous melanoma as well as clinical
information were obtained from the TCGA database. After data
processing like distribution check, imputation, and
normalization, three data types including gene expression,
miRNA expression, and DNA methylation merged into a final
dataset for integrative analysis. Next, these melanoma patients
were divided into different subgroups by performing three
clustering methods in R package ("CancerSubtypes").

Stemness Index Calculation
Stemness Index Workflow (https://bioinformaticsfmrp.github.io/
PanCanStem_Web/) provides the steps and processes to
regenerate our stemness indices (mRNAsi and mDNAsi),
which train a stemness signature using normal stem cells and
apply the one-class algorithm to define a stemness index for each
tumor sample. The mRNA stemness index based on a gene set
contains 11,774 genes, and the DNA stemness index calculated by
a DNA methylation set contains 151 differentially methylated
CpG sites. We first scored melanoma patients by applying
Stemness Index Workflow and then scaled the stemness
indices range from 0 to 1.

Tumor Microenvironment Estimation
The immune score, stromal score, and tumor purity were
calculated from gene expression data by applying the
ESTIMATE algorithm in R package (“ESTIMATE”). By
running the ESTIMATE algorithm, immune score, stromal
score, and tumor purity of each melanoma patient can be
estimated. Then, we also scaled the value of immune score,
stromal score, and tumor purity range from 0 to 1.

Evaluation of the Relationship Between
Subtype and Clinical Variables
To clarify the clinicopathologic characteristics of the cancer
subtypes, the subgroup analysis of clinical variables including
mRNAsi, mDNAsi, immune score, stromal score, tumor purity,
age, sex, and metastatic status was performed. Next,
Kaplan–Meier plots were used to explore the prognostic value
of stemness index (mRNAsi and mDNAsi) and found that only
mRNAsi had a significant association with overall survival time in
all melanoma patients. Hence, mRNAsi was screened out for
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further analysis. Afterwards, each subtype of melanoma was
divided into low and high mRNAsi groups by median cutoff
of value, and Kaplan–Meier plots were drawn. The differences
between low and high mRNAsi groups in subtypes were
compared by log-rank tests. Eventually, Kaplan–Meier survival
analysis showed that the mRNAsi was only significantly
associated with overall survival in subtype 2. In addition, the
cutaneous melanoma patients in subtype 2 were randomly
divided into a 70% training dataset and a 30% validation
dataset. In training datasets, samples were divided into high
and low mRNAsi groups. “Limma” package in R software was
applied to identify the differentially expressed genes (DEGs). The
|log 2 fold change (FC)| ≥0.5 and p values <0.05 were considered
as the cutoff criterion for DEGs. Then, univariate Cox regression
analysis was used to screen the prognostic DEGs (p values <0.05).
Next, for subsequently selecting the important mRNAsi-related
features, the Least Absolute Shrinkage and Selection Operator
(LASSO) and Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) algorithms were applied to reduce the
prognostic DEGs.

Identification and Validation of Stemness
Features
LASSO and SVM-RFE algorithms jointly determine the qualified
seed of DEGs for the risk formula, and the risk score is generated

as follows: risk score � ∑
N

i�1
(coefi × expri), in which N means the

number of feature genes, expri means the expression level of
genes, and coefi means regression coefficient calculated by
multivariate Cox regression analysis.

The risk score of each sample in training dataset was
estimated, and the patients were accordingly classified into
high- and low-risk group by the median cutoff. Univariate and
multivariate Cox logistic analyses for OS were performed on the
patient clinical characteristics (age, gender, stage, and metastasis)
and the risk score of stemness features.

To compare the differences between high- and low-risk
groups, we drew Kaplan–Meier survival curves and calculated
the significance by log-rank tests. The area under the curve
(AUC) of receiver operating characteristic curves (ROC) was
used to evaluate the 5-year overall survival predictive accuracy of
the model. Besides, to test the robustness of our results, stemness
features were further verified in a validation dataset (GSE65904)
which was downloaded from the GEO database.

Evaluation of the Association Between
Stemness Indices and Immune
Microenvironment
To explore the relationship between stemness indices and
immune microenvironment in different melanoma subtype,
single sample gene set enrichment analysis (ssGSEA) method
in R package (“GSVA”) was applied to specifically discriminate 24
human immune cells, including innate and adaptive immune
cells. The innate immune cells contain natural killer (NK) cells,
CD56bright NK cells, CD56dim NK cells, dendritic cells (DCs),
activated DCs (aDCs), immature DCs (iDCs), plasmacytoid DCs

(pDCs), neutrophils, macrophages, eosinophils, and mast cells,
and the adaptive immune cells, including T cells, B cells, and
cytotoxic cells. Moreover, the T cells consist of T effector memory
(Tem), T central memory cells (Tcm), CD8 T cells, Tgd cells,
regulatory T cells (Treg), T helper cells and T follicular helper
cells (TFH), Th1, Th2, and Th17. Next, the correlation analysis
between stemness indices (mRNAsi/mDNAsi) and 24 immune
cells expression was performed.

Immuno/Chemotherapeutic Response
Prediction
To explore the potential immuno/chemotherapeutic drugs, we
predicted the candidate compounds response for each sample
based on the Connectivity Map website (https://portals.
broadinstitute.org/cmap/). The significant compounds were
selected (p< 0.05). Additionally, immune checkpoint inhibitors
have been approved as routine drugs for melanoma. Thus, we also
predicted the potential response to immunotherapy by using the
TIDE website tool (http://tide.dfci.harvard.edu/).

Statistical Analysis
All statistical analyses were conducted using the R package
(v.3.5.2) and corresponding packages. Survival analysis was
applied by using “survival” and “survivalROC” package.
LASSO algorithm was conducted by “glmnet” package. SVM
algorithm was calculated with the “e1017” package. The
correlation coefficient was calculated by Spearman test. For
comparisons of two groups and more than two groups,
Kruskal–Wallis test and one-way analysis of variance were
used as non-parametric and parametric methods, respectively.
The association between subgroup and clinicopathological
characteristics was analyzed with the chi-square test.

RESULTS

Data Collection and Cancer Subtype
Identification
After combining multi-omics data into integrative analysis, 449
melanoma patient samples were obtained from the TCGA
database. Then, according to prior studies, these patients were
divided into three subtypes by three clustering methods including
consensus clustering (CC), consensus non-negative matrix
factorization (CNMF), and similarity network fusion with CC
(SNFCC) (Lu et al., 2018). Although all the clustering methods
can classify melanoma patients into 3 subtypes with different
survival outcomes (CC: p value � 4.23e-10; NMF: p value � 2.62e-
09; SNFCC: p value � 7.51e-09) (Figure 1A) and clear boundaries
between different color areas (Figure 1B), combined with the
value of average silhouette width (ASW) which works as a
measure of cluster coherence to assess whether samples are
more similar within subtypes. SNFCC showed more
advantages than other methods and were selected for
subsequent analysis (CC: ASW � 0.74; CNMF: ASW � 0.82;
SNFCC: ASW � 0.89) (Figure 1C). In SNFCC, subtype 1 contains
205 samples, subtype 2 consists of 177 samples, and subtype 3
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FIGURE 1 | Classification of melanoma patients by three clustering methods including consensus clustering (CC), consensus non-negative matrix factorization
(CNMF), and similarity network fusion with CC (SNFCC). (A): Kaplan–Meier survival analysis of three subtypes with log-rank test p value; (B): clustering heatmap of three
subtype samples; (C): average silhouette width representing the coherence of clusters.
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includes 67 samples. Among three subtypes, subtype 2 has the
longest survival time compared to others.

Clinicopathologic Characteristics of the
Cancer Subtypes
According to the methods, we acquired stemness indices
(mRNAsi and mDNAsi) and tumor microenvironment
indices (immune score, stromal score, and tumor purity) of
449 melanoma patients. After excluding adjacent, duplicated,
and incomplete samples, data of 427 patients were included for
further subgroup analysis. Firstly, the melanoma patients were
ordered by their values of stemness and tumor
microenvironment indices (from low to high) to explore
whether any clinical feature was associated with these
calculated indices (Figures 2A–E). Remarkably, the patients
in subtype 1 had higher value of mRNAsi (median value �
0.71) than subtype 2 (median value � 0.66) and subtype 3
(median value � 0.63) patients (Table 1). Boxplots of mRNAsi
suggested that there is a significant difference among subtypes
(Figure 2F). Similarly, subgroup analysis of tumor purity
showed that patients in subtype 1 (median value � 0.88)

had higher values than subtype 2 (median value � 0.57) and
subtype 3 (median value � 0.83) (Figure 2J and Table 1). As
for immune and stromal score, results manifested that subtype
2 samples had higher values (immune median value � 0.61;
stromal median value � 0.49) than subtype 1(immune median
value � 0.28; stromal median value � 0.30) and subtype 3
(immune median value � 0.33; stromal median value � 0.34)
(Figures 2H,I and Table 1). However, there is no statistical
difference among the three subtypes in mDNAsi index
(Figure 2G). The median values of three subtypes were
0.25, 0.24, and 0.25, respectively (Table 1). Next, the
subgroup analysis of other clinical variables like overall
survival time, age, gender, race, metastatic status, and stages
was also applied. The results showed that survival time, age,
metastatic status, and stages were statistically different among
melanoma subtypes (Table 1).

Relationship Between Stemness Indices
and Tumor Microenvironment
Kaplan–Meier curves of mRNAsi and mDNAsi manifested that
only mRNAsi was significantly associated with overall survival

FIGURE 2 |Clinical variables associated with the stemness indices (mRNAsi andmDNAsi) and tumor microenvironment indices (immune score, stromal score, and
tumor purity) in melanoma. (A): the association between clinical variables (race, stage, gender, metastatic status, and subtype) and mRNAsi; (B): the association
between clinical variables and mDNAsi; (C): the association between clinical variables and immune score; (D): the association between clinical variables and stromal
score; (E): the association between clinical variables and tumor purity. Columns represent samples sorted by score of indices from low to high (top row). Rows
represent clinical variables. (F): boxplots of mRNAsi in individual samples stratified by subtype; (G): boxplots of mDNAsi in individual samples stratified by subtype; (H):
boxplots of immune score in individual samples stratified by subtype; (I): boxplots of stromal score in individual samples stratified by subtype; (J): boxplots of tumor purity
in individual samples stratified by subtype.
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time in all melanoma patients, and low mRNAsi group had a
longer survival time than high mRNAsi group (log-rank p �
0.009) (Figure 3A). Therefore, mRNAsi was selected out for the
next analysis. Subgroup analysis of mRNAsi showed that subtype
2 was significantly correlated to overall survival time (log-rank p
� 0.037), whereas Kaplan–Meier curves of subtype 1 and subtype
3 showed that there was no statistical difference (Figure 3B). In
addition, correlation analysis revealed that mRNAsi was
positively correlated with mDNAsi (r � 0.155, p � 0.001) and
tumor purity (r � 0.370, p � 0.000), while immune and stromal
score were negatively associated with mRNAsi (r � −0.220, p �
0.000; r � −0.590, p � 0.000) (Figure 3C).

Identification and Validation of Stemness
Features
To identify stemness features, subtype 2 samples were randomly
divided into a training dataset (n � 117) and a validation dataset
(n � 50). The clinical characteristics of training and validation
datasets are listed in Table 2, and statistical results indicated that
they were balanced between two datasets. Firstly, based on the
selection criteria, 364 DEGs were screened out in training
dataset, in which 319 genes were significantly downregulated
and 45 genes were significantly upregulated (Figure 4A). Next,
the univariate analysis of 364 DEGs was conducted, and the
results showed that 27 prognostic DEGs were significantly
associated with overall survival time in the training dataset
(Figure 4B). Finally, 11 mRNAsi-related genes were selected
by performing LASSO and SVM-RFE algorithm, and these genes
were further used to construct a risk score system (Figures
4C–E). By applying this risk model, a risk score for each
sample in the training dataset will be generated. Then,
melanoma patients were divided into a high-risk group (n �
58) and a low-risk group (n � 59) by using the median cutoff

value of the risk scores. Kaplan–Meier curves showed that
patients in the high-risk group have a shorter survival time
than low-risk group with a log-rank test of p< 0.001. To estimate
the prediction power of 11 mRNAsi-related genes’ signature, the
ROC curve was drawn, and five years of AUC was 0.944
(Figure 5A). Besides, in order to confirm the robustness of
the result, a verification test was conducted in the validation
dataset and GSE65904 dataset. The validation and GSE65904
datasets were classified into high-risk and low-risk groups
according to the training dataset. Kaplan–Meier curves
showed that there is a significant difference between high-risk
and low-risk groups in both validation dataset (log-rank p <
0.001) and GSE65904 dataset (log-rank p < 0.001) (Figure 5B
and Figure 5C). The five years of AUC were 0.846 and 0.680,
respectively.What is more, to explore the prognostic value of risk
score and other clinical features (age, race, gender, and
metastatic status), univariate and multivariate logistic
regression were applied. Based on the results, only the risk
score was significantly associated with overall survival in both
univariate and multivariate analysis (Table 3).

Association Between Stemness Indices and
Immune Microenvironment
To evaluate the associations between stemness indices and
immune microenvironment, correlations analysis between
immune cell individuals and mRNAsi (Figure 5D) and
mDNAsi (Figure 5E) was performed. In mRNAsi, most of
the immune cells were negatively correlated with mRNAsi, in
which iDC, macrophages, mast cells, NK cells, TFH, and Tgd
were commonly negatively correlated with three subtypes,
while only Th2 cell was commonly positively correlated
with three subtypes. As for mDNAsi, less immune cells
were associated with mDNAsi compared to mRNAsi and

TABLE 1 | Clinicopathological variables of subtypes in melanoma. IQR means interquartile range.

Subtype 1 Subtype 2 Subtype 3 p Test

n 195 167 65
Survival time (median [IQR]) 2.84 [1.30, 5.88] 4.44 [2.27, 9.48] 1.28 [1.01, 2.18] 0.000 Kruskal–Wallis test
Age (median [IQR]) 60.00 [49.00, 70.00] 55.00 [45.00, 68.50] 63.00 [56.00, 76.00] 0.002 Kruskal–Wallis test
Gender (%) Female 64 (32.8) 69 (41.3) 27 (41.5) 0.191 Chi-square test

Male 131 (67.2) 98 (58.7) 38 (58.5)
Race (%) Asian 4 (2.1) 4 (2.4) 4 (6.2) 0.459 Chi-square test

Not reported 5 (2.6) 3 (1.8) 2 (3.1)
White 186 (95.4) 160 (95.8) 59 (90.8)

MetStatus (%) Metastatic 159 (81.5) 155 (92.8) 15 (23.1) 0.000 Chi-square test
Non-metastatic 36 (18.5) 12 (7.2) 50 (76.9)

Stage (%) I/II nos 4 (2.1) 5 (3.0) 1 (1.5) 0.000 Chi-square test
Not reported 13 (6.7) 18 (10.8) 3 (4.6)
Stage I 30 (15.4) 40 (24.0) 3 (4.6)
Stage II 59 (30.3) 30 (18.0) 40 (61.5)
Stage III 77 (39.5) 67 (40.1) 15 (23.1)
Stage IV 12 (6.2) 7 (4.2) 3 (4.6)

mRNAsi (median [IQR]) 0.71 [0.61, 0.79] 0.66 [0.55, 0.73] 0.63 [0.53, 0.72] 0.000 Kruskal–Wallis test
mDNAsi (median [IQR]) 0.25 [0.17, 0.35] 0.24 [0.16, 0.31] 0.25 [0.18, 0.33] 0.533 Kruskal–Wallis test
Stromal score (median [IQR]) 0.30 [0.20, 0.43] 0.49 [0.37, 0.61] 0.34 [0.22, 0.43] 0.000 Kruskal–Wallis test
Immune score (median [IQR]) 0.28 [0.22, 0.39] 0.61 [0.51, 0.75] 0.33 [0.24, 0.44] 0.000 Kruskal–Wallis test
Tumor purity (median [IQR]) 0.88 [0.78, 0.93] 0.57 [0.39, 0.69] 0.83 [0.74, 0.93] 0.000 Kruskal–Wallis test
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only CD8 T cell and cytotoxic cell were commonly negatively
associated with three subtypes.

Immuno/Chemotherapeutic Response
Prediction
Immunotherapy is regarded as an emerging therapy and widely
used in melanoma. Therefore, we conducted the TIDE algorithm

and subclass mapping to compare the expression profile of the
two subgroups and another published dataset containing 47
patients with melanoma that responded to immune checkpoint
inhibitors (CTLA-4 and PD-1). Interestingly, we found that the
low-risk group in subtype 2 is more promising to respond to anti-
CTLA-4 therapy (Bonferroni corrected p � 0.007) (Figure 6B).
Then, we applied the samemethod to predict immune checkpoint
inhibitors for other melanoma subtypes. We surprisingly found

FIGURE 3 | Kaplan–Meier survival analysis and correlation analysis of stemness indices. (A): Kaplan–Meier analysis of mRNAsi and mDNAsi in all melanoma
samples; (B): Kaplan–Meier analysis of each subtype of melanoma patients with high or low mRNAsi; (C): the correlation analysis between mRNAsi and other indices
(mDNAsi, immune score, stromal score, and tumor purity).
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that low-risk groups no matter in subtype 1 (Figure 6A) or
subtype 3 (Figure 6C) significantly responded to anti-CTLA-4
therapy (Bonferroni corrected p � 0.03; Bonferroni corrected p �
0.012). Moreover, chemotherapy is a common treatment for
melanoma. Therefore, the Connectivity Map database was also
applied to predict potential compounds. Compounds
significantly correlated with at least two cancer subtypes will
be selected (Figure 6D). Eventually, 16 compounds were
significantly enriched, including anisomycin, cephaeline,
chenodeoxycholic acid, digitoxigenin, ellipticine, gossypol,
helveticoside, hycanthone, lanatoside C, metixene, nitrofural,
ouabain, oxedrine, prednisone, proscillaridin, and valinomycin.

DISCUSSION

Worldwide, cutaneous melanoma is known as a common type of
malignancy with high morbidity and mortality, while the
traditional classification lacks clinical benefits and strategies
for treatment are still ineffective. Therefore, in this study, we
tried to establish a more evaluable classification system to help
figure out better treatment choices for advanced melanoma
patients. Therapies without inclusive consideration of gene
transcription characters would bring treatment indeterminacy
(Hamid et al., 2018). Given that, we sought to take gene
expression, miRNA expression, and DNA methylation into
account to partition melanoma profile and compared three
clustering models. We successfully categorized melanoma
patients into 3 validated subtypes. Interestingly, significant
difference in overall survival time was observed among these 3
subtypes, which suggests that there exist biological relevance and
distinction among subgroups. In addition, it’s generally accepted
that melanoma tumors are composed of a mixture of different

cell types such as cancer cells, cancer stem cells, and immune cells.
We also defined the stemness indices (mRNAsi and mDNAsi)
and tumor microenvironment indices (immune score, stromal
score, and tumor purity) for different melanoma subtypes. The
results manifested that subtype 2 with higher immune score and
stromal score and lower mRNAsi and tumor purity score has the
best survival time compared to other subtypes, which was
consistent with our next findings that low risk of mRNAsi has
longer survival than high risk. Correlation analysis also proved
that intimate associations exist among these indices. Thus, our
research provides a framework for exploring how the context of
diverse cell types among subtypes may elucidate the observed
diverse clinical outcomes and treatment effects.

Cancer cells are recently hypothesized to be derived from
cancer stem cells which are closely correlated with relapse of
malignant tumors, drug resistance, and metastasis. Recent studies
have found that some stemness-related genes can not only initiate
malignant neoplastic cascade and maintain the oncogenicity of
stem cells, but also enhance the chemotherapy resistance of
tumor stem cells (Chen et al., 2016; Chiou et al., 2017; Kharas
and Lengner, 2017; Redmer et al., 2017). Therefore, therapeutic
targeting genes associated with melanoma stem cells are urgently
important. In this study, we developed and validated a robust
stemness-related signature which contains 11 genes (LOC284837,
OCLN, ABCC9, MEGF6, TSPYL5, RAB27B, TF, TNXB,
KIAA0495, TCEA3, and KCNH5). Among these stemness-
related genes, some have been identified to be associated with
stem cells. For instance, TF (tissue factor) is a multifunctional
membrane protein which correlates with various advanced
cancers. The overexpression of TF can increase the activity of
breast cancer stem cells in vitro (Shaker et al., 2017). The activated
RAB27B expression will promote the secretion of colorectal
cancer stem cell exosomes (Cheng et al., 2019). TSPYL5 is

TABLE 2 | Clinicopathological variables of training and validation dataset. IQR means interquartile range.

Training samples Validation samples p Test

n 117 50
OS.time (median [IQR]) 4.28 [2.28, 9.34] 4.50 [2.26, 9.44] 0.917 Kruskal–Wallis test
OS (median [IQR]) 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.428 Kruskal–Wallis test
Age (median [IQR]) 53.00 [44.00, 68.00] 57.50 [46.25, 69.50] 0.318 Kruskal–Wallis test
Gender (%) Female 51 (43.6) 18 (36.0) 0.459 Chi-square test

Male 66 (56.4) 32 (64.0)
Race (%) Asian 2 (1.7) 2 (4.0) 0.668 Chi-square test

Not reported 2 (1.7) 1 (2.0)
White 113 (96.6) 47 (94.0)

MetStatus (%) Metastatic 109 (93.2) 46 (92.0) 1 Chi-square test
Non-metastatic 8 (6.8) 4 (8.0)

Stage (%) I/II nos 4 (3.4) 1 (2.0) 0.197 Chi-square test
Not reported 16 (13.7) 2 (4.0)
Stage I 24 (20.5) 16 (32.0)
Stage II 18 (15.4) 12 (24.0)
Stage III 50 (42.7) 17 (34.0)
Stage IV 5 (4.3) 2 (4.0)

mRNAsi (median [IQR]) 0.66 [0.53, 0.73] 0.67 [0.58, 0.74] 0.362 Kruskal–Wallis test
mDNAsi (median [IQR]) 0.24 [0.17, 0.32] 0.20 [0.14, 0.29] 0.089 Kruskal–Wallis test
Stromal score (median [IQR]) 0.52 [0.37, 0.63] 0.46 [0.38, 0.57] 0.434 Kruskal–Wallis test
Immune score (median [IQR]) 0.61 [0.52, 0.74] 0.60 [0.49, 0.79] 0.969 Kruskal–Wallis test
Tumor purity (median [IQR]) 0.57 [0.42, 0.67] 0.60 [0.35, 0.71] 0.737 Kruskal–Wallis test
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highly expressed in human pluripotent stem cells, and the
overexpression of TSPYL5 is proven to promote cell
proliferation and migration (Na et al., 2019). Moreover,
KCNH5 and TCEA3 are shown to have high concentrations
in mesenchymal stem cells and mouse embryonic stem cells (Cha
et al., 2013; Jeong et al., 2013). Besides, the univariate and
multivariate regression analysis indicated that the risk score of
stemness-related signature could be regarded as an independent
prognostic model in melanoma. Hence, it seems reasonable to

believe that our identified stemness-related signature can be
regarded as a prognostic biomarker for further clinical
research. Consistent with taking advantage of integrated
stemness indices to classified melanoma in our study,
mounting evidence suggests that the control of melanoma
stem cell could be typically administrated to melanoma
patients (Luo et al., 2012; Rappa et al., 2008; Santini et al., 2012).

In this study, we explored the different immune environment of
melanoma with different stemness indices. In mRNAsi of this study,

FIGURE 4 | Stemness-related genes feature selection. (A): volcano plot of the differentially expressed stemness-related genes in training dataset; (B): forest plots
of the prognostic differentially expressed stemness-related genes; (C): the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm coefficient profiles of
the 12 genes that met the prognostic criteria initially; (D): Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. The point highlighted indicates
the lowest error rate, and the corresponding genes at this point are the best signature selected by SVM-RFE. (E): the Venn plot of overlap genes selected by LASSO
and SVM-RFE algorithms.
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we found that T helper 2 cell (Th2 cell) was the only commonly
positively correlated with three subtypes of melanoma. Th2 cells are
induced by interleukin 4, which can be secreted by basophils,
eosinophils, mast cells, natural killer T cells, or differentiated Th2
cells (Lee et al., 2002). Themain effect of Th2 cells is to activate B cell,
and then humoral immunity would be stimulated by plasma cells.
Nevertheless, tumor immunotherapy requires cellular immunity
which is mainly activated by Th1. Both Th1 cells and Th2 cells
can secrete cytokines to promote their proliferation and inhibit each
other’s proliferation (Saito et al., 1999). Under normal immune
environment, Th1 cells and Th2 cells are in a relatively balanced
state. Th2 bias signifies the imbalance of Th1/Th2. Th2 could
strongly inhibit Th1 responses (Guenova et al., 2013). Th2 cells
promote tumor growth and prevent tumor rejection. The bias of Th2
is regarded as one of the mechanisms of tumor immune escape.

Previous research proved that the tumor microenvironment of
advanced melanoma is composed of Th2-type polarization that
facilitates disease progression. Studies have also shown that Th2
dominance could mediate chronic inflammation which could
promote melanoma metastasis (Nevala et al., 2009). It has been
reported that, in melanoma, plasmacytoid dendritic cells can break
this kind of immune homeostasis by OX40L and ICOSL to support
melanoma progression (Aspord et al., 2013). Reversing the
imbalance of Th1/Th2 has been a concerned treatment for
tumors and other diseases (Kidd, 2003). Our results further
supported the importance of treatment to Th2 bias in melanoma.
To date, immunotherapy is pivotal for the treatment of patients with
advanced melanoma patients. Cytotoxic lymphocyte-associated
antigen 4 (CTLA-4) can compete with CD28 receptor-binding
antigen-presenting cell surface binding sites. CD28 receptors can

FIGURE 5 | Identification and validation of stemness-related genes feature for survival prediction. (A): Kaplan–Meier analysis of 11 mRNAsi-related genes’
signature and 5 years of the receiver operating characteristic (ROC) curve in training dataset. (B): Kaplan–Meier analysis of 11 mRNAsi-related genes’ signature and
5 years of the receiver operating characteristic (ROC) curve in validation dataset. (C): Kaplan–Meier analysis of 11 mRNAsi-related genes’ signature and 5 years of the
receiver operating characteristic (ROC) curve in GSE65904 dataset. (D): correlations between the mRNAsi and the subsets of tumor-infiltrating immune cells
estimated by “ssGSEA” method. (F): correlations between the mDNAsi and the subsets of tumor-infiltrating immune cells estimated by “ssGSEA” method.

TABLE 3 | Univariate and multivariate Cox regression analyses of 11 mRNAsi-related genes signature and clinical variables associated with overall survival in subtype 2
datasets.

Univariate analysis Multivariate analysis

Marker unicox_p HR lower .95 upper .95 mutlicox_p exp(coef) lower .95 upper .95
Age 0.003 1.026 1.009 1.044 0.051 1.019 1.000 1.039
Gender 0.487 1.197 0.722 1.985 0.716 1.111 0.629 1.962
Race 0.887 1.177 0.123 11.283 0.976 0.968 0.119 7.875
MetStatus 0.065 3.202 0.930 11.021 0.065 3.512 0.926 13.314
Stage 0.186 1.154 0.933 1.428 0.985 0.998 0.784 1.270
Risk score 0.000 1.225 1.154 1.300 0.000 1.270 1.176 1.370
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activate T cells. CTLA-4 is a highly homologousmolecule withCD28
and binds to the B7 molecule (CD80/CD86), and the binding
strength is higher than CD28. So once CTLA-4 is highly
expressed and combined, it will be a loss of the co-stimulatory
signal, and then CTLA-4 would inhibit lymphocyte activation and
proliferation. CTLA-4 plays a key role in regulating the T-cell system
and is often used as suppressive immune molecules in tumor
therapy. Anti-CTLA-4 monoclonal antibodies can augment T-cell
activation and proliferation and amplify immunity by blockading
CTLA-4 pathways, which enhances the patient’s ability to perform
an antitumor immune response. The use of CTLA-4
monoclonal antibodies to block the CTLA-4 pathway in
clinical immunotherapy of tumors also has been the current
research hotspot (Carreno et al., 2000; Wells et al., 2001).
However, in clinical data, the treatment has no survival
benefits (Boasberg et al., 2010; Robert et al., 2011). Immune
checkpoint inhibitors also have some severe side effects mostly
because the blockade of the immune checkpoint pathway makes
the immune responses of related organs and tissues amplified; it
cannot be terminated in time, and autoimmune damage would
occur. Which kind of patients is appropriate to a special
treatment remains unclear. As of now, we still do not have
sufficient evidence to guide clinical decisions. In this study, we
comprehensively described the stemness and environmental
characteristics of melanoma and found that low-risk mRNAsi
groups are promising to respond to anti-CTLA-4 therapy which
may provide effective measurement solutions to help the final
clinical decision and hoped to help patients with advanced
melanoma get the maximum remission rate.

Additionally, 16 potential compounds were identified to
significantly correlate with at least two cancer subtypes. Few of
these compounds have been used in melanoma researches
in vitro or in vivo. For example, previous experiments
proved that low doses of anisomycin can inhibit one-third
of protein synthesis in melanoma cells and induce cancer cell
apoptosis (Slipicevic et al., 2013). Gossypol was demonstrated
to have more cytotoxic to melanoma cell lines than the
conventional drugs like melphalan, cisplatin, and
dacarbazine (Blackstaffe et al., 1997). What is more,
nitrofural is known to act as pro-drugs, and the
combination of olaparib and nitrofural will enhance the
effect for the treatment of melanoma (McNeil et al., 2013).
Although large part of compounds had not been reported for
the treatment of melanoma, these undiscovered compounds
may be regarded as the promising drug for the subsequent
melanoma research.

Although our preliminary results have several implications for
patients with melanoma, several limitations must be considered.
Firstly, melanoma patients are recruited from public database,
and findings in this research are carried out by bioinformatics
methods. Secondly, the sample size in this study is small, and
experimental verifications are lacking. Thus, additional
fundamental researches are needed to explore the underlying
mechanisms.

In conclusion, our studies provide a comprehensive cellular
characterization for melanoma classification and additional
subtypes that may benefit from stemness-related genes
targeted therapies. Our studies also afford strategies to assess

FIGURE 6 | Immunotherapeutic response and potential compounds identification. (A): differential immunotherapeutic response targeting CTLA-4 and PD-1
between the high- and low-risk patients in subtype 1; (B): differential immunotherapeutic response targeting CTLA-4 and PD-1 between the high- and low-risk patients in
subtype 2; (C): differential immunotherapeutic response targeting CTLA-4 and PD-1 between the high- and low-risk patients in subtype 3; (D): heatmap of potential
compounds and enrichment score (positive in red, negative in blue) obtained from the Connectivity Map database for each melanoma subtype. The bottom panel
showed that the number of subtypes significantly enriched in compounds.
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more promising population for immunotherapy and identify
several potential compounds that could supply more effective
treatment.
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