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Treatment strategies and training regimens, which induce longitudinal muscle growth and 
increase the muscles’ length range of active force exertion, are important to improve muscle 
function and to reduce muscle strain injuries in clinical populations and in athletes with 
limited muscle extensibility. Animal studies have shown several specific loading strategies 
resulting in longitudinal muscle fiber growth by addition of sarcomeres in series. Currently, 
such strategies are also applied to humans in order to induce similar adaptations. However, 
there is no clear scientific evidence that specific strategies result in longitudinal growth of 
human muscles. Therefore, the question remains what triggers longitudinal muscle growth 
in humans. The aim of this review was to identify strategies that induce longitudinal human 
muscle growth. For this purpose, literature was reviewed and summarized with regard to 
the following topics: (1) Key determinants of typical muscle length and the length range of 
active force exertion; (2) Information on typical muscle growth and the effects of mechanical 
loading on growth and adaptation of muscle and tendinous tissues in healthy animals and 
humans; (3) The current knowledge and research gaps on the regulation of longitudinal 
muscle growth; and (4) Potential strategies to induce longitudinal muscle growth. The 
following potential strategies and important aspects that may positively affect longitudinal 
muscle growth were deduced: (1) Muscle length at which the loading is performed seems 
to be decisive, i.e., greater elongations after active or passive mechanical loading at long 
muscle length are expected; (2) Concentric, isometric and eccentric exercises may induce 
longitudinal muscle growth by stimulating different muscular adaptations (i.e., increases in 
fiber cross-sectional area and/or fiber length). Mechanical loading intensity also plays an 
important role. All three training strategies may increase tendon stiffness, but whether and 
how these changes may influence muscle growth remains to be elucidated. (3) The approach 
to combine stretching with activation seems promising (e.g., static stretching and electrical 
stimulation, loaded inter-set stretching) and warrants further research. Finally, our work 
shows the need for detailed investigation of the mechanisms of growth of pennate muscles, 
as those may longitudinally grow by both trophy and addition of sarcomeres in series.

Keywords: growth, muscle-tendon complex, treatment, training, stretching, lengthening, cerebral palsy, 
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INTRODUCTION

In order to move and perform locomotion, humans and animals 
generate joint moments by transmitting forces from muscles 
onto bones. The capability of the muscles to generate force 
over a range of joint angles is largely determined by optimum 
muscle length and the length range of active force exertion, 
which are determined by several morphological characteristics 
of the muscle. Prime morphological determinants are the 
number of sarcomeres arranged in series, the physiological 
cross-sectional area (PCSA, i.e., the cumulative cross-sectional 
area of all muscle fibers at optimum muscle length) and the 
pennation angle (PA). The number of sarcomeres in series 
determines optimum muscle fiber length, which together with 
the PA determine the muscle belly length as well as the length 
range over which force can be  generated.

The PCSA determines the optimal muscle force and the 
force generating capacity. The product of optimum muscle fiber 
length and PCSA is the muscle volume, which contains all 
sarcomeres arranged in series and in parallel and is indicative 
of the maximal muscle power generating capacity. Skeletal 
muscles have a strong ability to adapt during growth and 
undergo changes in both architecture and contractile properties 
of their constituents (e.g., O’Brien et al., 2010a,b; Benard et al., 
2011; Kubo et  al., 2014) and training (e.g., Blazevich et  al., 
2007; Duclay et  al., 2009; Malliaras et  al., 2013; Franchi et  al., 
2014; Noorkõiv et  al., 2014; Guex et  al., 2016). In general, 
during development, muscles adapt primarily in response to 
longitudinal bone growth, and in response to mechanical 
overload (Toigo and Boutellier, 2006; Schiaffino et  al., 2013; 
Carlson, 2019).

During development, there is the need for skeletal muscles 
to adapt in length to grow with the longitudinal bone growth 
(e.g., Haines, 1932). Trophy, i.e., an increase in PCSA, allows 
for sufficient force exertion over a muscular length range that 
corresponds to the required joint range of motion during daily 
life movements (Weide et  al., 2015). Since muscle architecture 
is related to muscle function, limitations in mobility arise in 
case the ability of a muscle to adapt is restricted, when optimal 
muscle length is limited such as in athletes with decreased 
muscle extensibility (Wan et al., 2017) or in case of neuromuscular 
disorders such as cerebral palsy (CP), respectively (Herskind 
et  al., 2016; Willerslev-Olsen et  al., 2018).

Treatment strategies to enhance longitudinal muscle growth 
and increase both optimal muscle length and the length range 
of active force exertion are favorable for movement performance 
of both individuals with neuromuscular disorders and athletes 
with reduced muscle extensibility. Longitudinal adaptations 
also improve the muscle power generating capacity, which 
critically determines movement performance in both 
populations. Based on animal studies, specific interventions 
or mechanical loading strategies such as stretching or 
lengthening contractions are currently applied to induce 
longitudinal muscle growth. Since these studies have shown 
that, for instance, prolonged lengthening immobilization results 
in an increase in serial sarcomere number in animals (Williams 
and Goldspink, 1978), it is assumed that stretching treatments 

may also induce such adaptations in humans (e.g., Wiart 
et al., 2008; Zhao et al., 2011). However, the scientific evidence 
has not yet confirmed this assumption and the overall 
effectiveness of stretching in humans is still in question 
(Katalinic et  al., 2011; Novak et  al., 2013; Wan et  al., 2017). 
The question remains what triggers longitudinal muscle 
adaptations during growth and training.

The aim of this review was to identify potential strategies 
that may induce longitudinal muscle growth in humans. 
Therefore, we firstly described the key determinants of optimum 
muscle length and the length range of active force exertion. 
Secondly, we  summarized information on natural growth and 
the effects of loading on adaptation of muscle and tendinous 
tissue in healthy animals and humans. Finally, the current 
knowledge and potential strategies with regard to longitudinal 
muscle adaptation were discussed, and research gaps 
were highlighted.

DETERMINANTS OF MUSCLE LENGTH 
AND THE LENGTH RANGE OF ACTIVE 
FORCE EXERTION

The skeletal muscle-tendon complex (MTC) consists of a 
bundle of striated muscle fibers (i.e., the muscle belly), 
connected to bones and/or capsules by collagenous structures 
(i.e., tendon/aponeurosis). Muscle fibers contain sarcomeres 
(comprised of contractile myofilaments actin and myosin), 
which are arranged both in parallel and in series. In response 
to excitation, the muscle belly generates force by contraction 
of the sarcomeres, pulling origin and insertion of the MTC 
towards each other. The force exerted actively by a muscle 
can be expressed as a function of muscle length. The muscle 
length at which the muscle does not generate actively force 
while being stimulated is referred to as active slack length. 
The muscle length at which the muscle exerts maximal active 
force is referred to as optimum muscle length, the difference 
between the optimum and the active slack length is referred 
to as length range of active force exertion (Figure  1). Both 
the amount of force and the length over which the  
force is generated are determined by several mechano- 
morphological muscle properties that are summarized in 
the subsequent sections.

Skeletal muscles have diffrent types of geometry, parallel fibered 
muscles and pennate muscles. The contribution of the different 
determinants of muscle length and length range of active force 
exertion are largely dependent on the muscle’s geometry. Therefore, 
within this review, findings are described as much as possible 
separately for both geometries, without accounting for differences 
between uni-, bi- and multi-pennate muscles.

Parallel Arrangement of Sarcomeres
The muscle cross-sectional area perpendicular to the muscle 
fiber axis, which is determined to the number of muscle fibers, 
is called PCSA. Optimal muscle force is proportional to the 
number of muscle fibers that are recruited by stimulation, the 
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number of parallel arranged sarcomeres within the muscle fiber 
(i.e., fiber cross-sectional area (fCSA also ‘fiber diameter’)), 
the amount of overlap of actin and myosin (Huxley and Hanson, 
1954; Figure  2), as well as the stimulation frequency.

The number and length of the cytoskeleton proteins, and 
the amount of connective tissue arranged in parallel determine 
the passive force over the muscles’ length range of active force 
exertion (Wang et al., 1991; Figure 3). Therefore, passive muscle 
force is positively related to the PCSA.

Figure 4 shows a schematic representation of the contribution 
of sarcomeres to the morphology in parallel and pennate 
fibered muscles.

Serial Arrangement of Sarcomeres
Optimum muscle length, active slack length and the muscle 
length range of active force exertion are largely determined 
by optimal sarcomere length and the number of sarcomeres 
arranged in series (Huxley and Hanson, 1954; Figure  3). 
Moreover, the number of sarcomeres in series is strongly 
correlated with the maximal contraction velocity of muscles 
(Hill, 1938; Wilkie, 1949; Wickiewicz et  al., 1984; Lieber and 
Friden, 2000). In addition, serial distribution of sarcomere 
lengths within muscle fibers and distribution of fiber mean 
sarcomeres lengths between muscle fibers are associated with 
a reduced optimal force and an enhanced muscle length range 

of active force exertion (Huxley and Peachey, 1961; Lieber 
and Baskin, 1983; Willems and Huijing, 1994). The relation 
between fiber mean sarcomere length distribution (i.e., 
heterogeneous lengths) and muscle length range can be explained 
by the length-force relationship of individual sarcomeres and 
fibers constituting the muscle. In case of heterogeneous lengths, 
some sarcomeres within a fiber reach their optimum length, 
or a length over optimum, while other sarcomeres will still 
have a length on the ascending limb of the length-force relation. 
In comparison to a muscle consisting of homogeneous fiber 
mean sarcomere lengths, a muscle with heterogeneous lengths 
has a lower optimal force and a wider length range of active 
force exertion.

Pennation Angle
In parallel fibered muscles, optimum muscle length and muscle 
length range of force exertion are predominantly determined 
by optimum muscle fiber length and the muscle fiber length 
change (active slack length to optimum length). However, most 
human skeletal leg muscles are pennate (Ward et  al., 2009). 
The pennation angle (PA) describes the angle of the muscle 
fibers with respect to the line of pull of the muscle. In pennate 
muscles, the optimum muscle length is negatively related to 
the PA and the length range at which force can actively 
be  exerted is positively related to the PA. To be  more specific, 

FIGURE 1 | Schematic representation of the active and passive length-force relationship of a muscle. The figure illustrates the active length-force curve (continuous 
line), the red dots show the active slack length (length at which the muscle does not active exert force) and the optimum muscle length length of the active muscle 
at optimum length), together with the optimal muscle force, these are measures of the length range of active force exertion (···). The exponential curve (---) shows 
the passive force, which can be explained as the exerted resistance to stretch caused by passive elastic properties.
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a high pennate muscle implies a shorter optimum muscle length 
and a greater length range over which force can be  actively 
exerted. Moreover, in muscles with a certain degree of pennation, 
muscle length can increase by muscle fiber hypertrophy while 
the muscle fiber length may remain unaltered. Furthermore, 
the PA is negatively related to the muscle length, it is considerably 
greater at active slack length compared to optimum muscle 
length (Zuurbier and Huijing, 1993).

Intramuscular and Tendinous Connective 
Tissue
Intramuscular connective tissue (including the aponeurosis, 
which is an intramuscular tendon) and tendons are responsible 
for force transmission from sarcomeres to bones (Huijing, 
2009). Force generated by sarcomeres is transmitted to connective 
tissue at the myotendinous junction, and laterally to connective 
tissue structures surrounding the muscle fibers, fascicles, and 
subsequently to the tendons. The collagen composition and 
cross-linking of connective tissue determines the mechanical 
properties of these structures and influence the muscle active, 
as well as passive length-force characteristics.

Due to their elastic properties, tendons contribute to the 
extensibility of the MTC. The degree of elongation depends 
on the force exerted and the stiffness of the tendon. Both 
active and passive MTC length-force characteristics are affected 
by the length and elastic modulus of the tendon. The aponeurosis 
length of an active muscle is determined by its thickness and 
material properties and depends on muscle length, muscle fiber 
force, and degree of activation (Ettema and Huijing, 1989; 
Ettema et  al., 1990; Zuurbier and Huijing, 1993; Scott and 
Loeb, 1995; Raiteri, 2018).

The collagenous structures surrounding the muscle and 
muscle fibers influence the active and passive muscle force 
transmission, however, are beyond the scope of this review 
(for details: Zuurbier et  al., 1994 or Huijing, 2009).

Other determinants of muscle geometry are the curvature 
and 3D orientation of muscle fibers. Muscle fibers located 
at the outside of the muscle are more curved than internally 
located muscle fibers (Otten, 1988). Muscle fibers located 
more towards the proximal and distal ends of the muscle 
bulge because the cumulative attachment area of the muscle 
fibers at the aponeurosis does not accommodate to the increase 

FIGURE 2 | Schematic representation of the sarcomere length-force curve. The figure illustrates the relationship between the amount of actin-myosin overlap and 
the isometric force generation. At very short sarcomere length force is low “owing to double interdigitation of actin filaments with both myosin and actin filaments 
from opposite sides of the sarcomere” (Lieber and Ward, 2011). In the ascending limb of the curve, active force (continuous line) of the single sarcomere increases 
with increasing sarcomeres length. When the sarcomere length is close to optimal (optimal actin-myosin overlap) and active force is maximal, passive force (---) 
starts to increase. Further increases in sarcomere length results in decreases in actin and myosin overlap, consequently active force decreases and passive force 
increases. The grey areas in the image represent the optimum length and the normal length range at which sarcomeres are usually functioning, both differ between 
species and muscles.
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in muscle fiber diameter when the muscle shortens (Otten, 
1988; Huijing, 1998). Due to the bulging, the angles of the 
muscle fibers with the respective aponeuroses are at one end 
larger and at the other end smaller than straight fibers and 
as such have only limited effect on the muscle optimal force. 
When muscle length increases, the curvature of muscle fiber 
decreases due to the decrease in muscle fiber cross-sectional 
area. Note that at both lateral sides of the mid-longitudinal 
plane of a pennate muscle, muscle fibers are also slightly 
oriented in a lateral direction, reducing their forces exerted 
in the direction of the muscle line of pull. The magnitudes 
of the effects of curvature and 3D orientation on the length-
force characteristics are not well known. Using 2D linearized 
muscle geometry modelling of rat GM, based on the dimensions 
and geometry of the muscle mid-longitudinal plane and 
neglecting curvature and variations in 3D orientation, yielded 
rather similar length-force characteristics as those 
experimentally assessed (slack and optimum length are less 
than 2% different; c.f. van der Linden et  al., 1998). These 
data suggest that for rat GM effects of bulging seem relatively 
small compared to those of other morphological variables 
such as muscle fiber length, PCSA and PA (van der Linden 
et  al., 1998).

ANIMAL EXPERIMENTATION

Typical Muscle Growth in Animals
During development, bone growth causes tensile stress on 
skeletal muscles and increases muscle excursion,  
both are presumed to stimulate (Haines, 1932; Crawford, 
1950) longitudinal muscle growth, whereas increased body 
mass is highly related to the increase in muscle PCSA 
(Woittiez et  al., 1986; de Koning et  al., 1987; Papenkort 
et al., 2020). Muscle growth can be modulated by alterations 
in external stimuli applied to (e.g., immobilization and 
inactivity, physical activity, mechanical loading, hormones, 
nutrition). The morphological changes during muscle growth 
and adaptation in response to changes in physiological 
conditions are discussed in the following paragraph.

In both parallel fibered and pennate muscles of both 
rats and rabbits, optimum muscle belly length (Alder et  al., 
1958; Woittiez et  al., 1986; de Koning et  al., 1987; Willems 
and Huijing, 1992) and the muscle length range of active 
force exertion (Woittiez et  al., 1989) increase during 
development. Muscle fibers grow longitudinal by addition 
of sarcomeres in series (Williams and Goldspink, 1971; 
Tardieu et  al., 1977). The rate of longitudinal muscle fiber 

FIGURE 3 | Schematic representation of the length-force relationship of muscles with different sarcomere numbers The active and passive force relationship of a 
muscle fiber with a low number of parallel and serial sarcomeres (blue); a muscle fiber with double number of parallel sarcomeres (red); and a muscle fiber with 
double number of serial sarcomeres (green). Increasing the number of sarcomeres in series results in increased active slack (dots) and optimum length (squares), as 
well as an increase in the length range of active force exertion. Increasing the number of parallel sarcomeres results in a higher optimal muscle force, without 
increasing the active slack and optimum muscle length or the length range of active force exertion.
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growth in rodents is fast during the first four weeks after 
birth and then levels off. In addition, the rate of longitudinal 
muscle fascicle growth within lower limb muscles is muscle 
specific. For some muscles (i.e., gastrocnemius lateralis (GL) 
and GM, as well as flexor digitorum longus in rabbits), 
muscle fascicle length reaches a maximal value after 6 weeks 
after birth, while other muscles ((m. tibialis anterior and 
m. plantaris) in rabbits continue increasing their length at 
a constant rate) until at least 15 weeks after birth (Böl et al., 
2017; Siebert et  al., 2017). In rat parallel fibered muscles, 
growth is only determined by longitudinal muscle fiber 
growth (Willems and Huijing, 1992), while in pennate 

muscles of rats and ducks, longitudinal muscle growth also 
occurs by radial growth of muscle fibers (Swatland, 1980; 
Woittiez et  al., 1986; Papenkort et  al., 2020).

During development, muscle PCSA increases (Woittiez et al., 
1986, 1989; de Koning et  al., 1987; Papenkort et  al., 2020, 
2021) by an increase in fCSA (Swatland, 1980; Alnaqeeb and 
Goldspink, 1987; Willems and Huijing, 1992). Although some 
studies (e.g., Enesco and Puddy, 1964; Ross et  al., 1987) have 
reported hyperplasia during postnatal development in rat 
muscles, more have shown that hyperplasia does not occur 
in muscles from rodents (Goldspink, 1972; Timson and 
Dudenhoeffer, 1990; White et  al., 2010). Therefore, the fiber 
number does not account for increases in PCSA during 
postnatal development.

Due to longitudinal muscle fiber growth and fiber hypertrophy 
during development, the muscle will function at an absolute 
higher muscle length, attaining a higher slack and optimum 
length, as well as a higher length range of active force exertion 
(Woittiez et  al., 1986; de Koning et  al., 1987).

In an almost completely parallel fibered muscle (i.e., 
semimembranosus lateralis of the rat), the fiber PA has been 
found to increase during development (Willems and Huijing, 
1992). In pennate muscles of growing rats and rabbits (GM) 
and rabbits (soleus and plantaris muscles), it seems that the 
PA increases only slightly during growth (Heslinga and  
Huijing, 1990; Papenkort et  al., 2020, 2021). Note that  
changes in PA over age may differ between muscle types  
(cf. Siebert et  al., 2017).

In rodents, longitudinal bone growth continues beyond 
young-adulthood (Heslinga and Huijing, 1990). In mature 
rats, muscle morphology seems to adapt in proportion to 
longitudinal bone growth. However, these morphological 
adaptations differ from those at young age (Heslinga and 
Huijing, 1990; Heslinga et al., 1995). In mature rats, increases 
in muscle mass, PCSA, and serial sarcomere numbers could 
only be  shown in the parallel fibered soleus muscle (i.e., 
pennation angle <4 degrees). In contrast, in pennate muscles, 
increases in muscle length are attained by increases in the 
length component of the PCSA, aponeurosis length, and 
aponeurosis angle (Heslinga and Huijing, 1990). Such results 
indicate that during adulthood, adaptation of pennate muscle 
of rodents seems to differ from changes in mechanical demand 
than during childhood or adolescence.

Effect of Growth on Aponeurosis and Tendon 
Dimensions
During growth, the increase in muscle PCSA in rats and 
rabbits is accompanied by an increase in aponeurosis length 
and width (Woittiez et  al., 1989; Willems and Huijing, 1992; 
Böl et  al., 2017; Siebert et  al., 2017), accommodating the 
greater fCSA. Tendons of rats and rabbits also increase in 
length and thickness (Alder et  al., 1958; de Koning et  al., 
1987; Woittiez et  al., 1989; Böl et  al., 2017; Siebert et  al., 
2017). The increase in tendon CSA occurs by the increase 
in CSA of tendon fibers (Woittiez et  al., 1989; Nakagawa 

A

B

FIGURE 4 | Schematic representation of the contribution of sarcomeres 
(serial and in parallel) to the muscle belly length, as well as PCSA in parallel 
and uni-pennate fibered muscles. (A) In parallel fibered muscles, the length of 
the muscle belly is determined by the number of sarcomeres in series, as well 
as the slack, optimum length and the length range of active force exertion, 
whereas sarcomeres arranged in parallel determine the (fiber) CSA. (B) In 
pennate fibered muscles, the muscle belly length is determined both by 
sarcomeres in series, as well as by the number of sarcomeres in parallel. The 
number of sarcomeres in parallel also determines the (fiber) CSA. This latter is 
described as the area of the transversal section perpendicular to the muscle 
fiber direction. In pennate muscles, the PCSA contributes to the optimum 
length and range of active force exertion. When muscle fibers that are under a 
line of pull generate force, the contribution to the muscle length is less than 
that of the muscle fiber length itself.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kruse et al. Strategies to Induce Muscle Growth

Frontiers in Physiology | www.frontiersin.org 7 October 2021 | Volume 12 | Article 742034

et  al., 1994; Nakagawa, 1996). The longitudinal and radial 
tendon growth affects their mechanical properties, such as 
tensile strength, and stiffness (Haut and Little, 1972; Walker 
et  al., 1976; Woo et  al., 1980; Shadwick, 1990; Nakagawa, 
1996). However, tendon and muscle belly do not grow 
proportionally. The growth rate of tendons and aponeuroses 
are muscle-specific (Böl et  al., 2017; Siebert et  al., 2017). As 
the growth ratio differs considerable between muscles, even 
from the same species, the tendon-muscle belly or fascicle 
length ratio differ between muscles and are dependent on 
the growth stage (Böl et  al., 2017; Siebert et  al., 2017). For 
example, the GM and GL of rabbits showed high tendon-
muscle fascicle length ratios 3 weeks after birth, the ratio 
had almost doubled by the age of 14 weeks (Siebert et  al., 
2017). This was explained by a lack of longitudinal muscle 
fascicle growth and a large increase in aponeurosis, as well 
as tendon length during growth. In contrast, for tibialis anterior 
muscle of rabbits at the age of 3 weeks, a low tendon-muscle 
fascicle length ratio was shown, which was slightly decreased 
by the age of 14 weeks (Siebert et  al., 2017). The tibialis 
anterior showed a linear increase of the fascicle lengths during 
growth, while the growth ratio of the tendon and aponeurosis 
were low.

Adaptive Responses to Increased 
Contractile Activity and Mechanical 
Loading
The effects of alterations in the magnitude of contractile 
activity on muscle morphology and function have been 
extensively studied over the years in animal models. These 
models have been used to study the effects of prolonged 
muscle activity, mechanical overload, stretching, and 
combinations of these. Different approaches and devices (e.g., 
treadmill running and electrical muscle stimulation) have 
been used to study the effect of physical activity in animals. 
Mechanical loading was induced by several different overloading 
models, such as synergist ablation and denervation, unloading 
of the front paws or hind limbs, or by using weights. Animal 
studies with prolonged activity models simulate an increase 
in muscle endurance and/or in repetitions, whereas increased 
mechanical load simulates an increase in strength. Muscle 
immobilization and stretching were further used to study its 
effects on muscle length, the range of active force exertion 
and muscle stiffness.

The “active position hypothesis” (i.e., sarcomere lengths at 
which muscles are mostly active) by Herring et  al. (1984), 
states that the number of sarcomeres in series is regulated to 
assure that each single sarcomere is at the optimum length 
on its active length-force curve, which is near to the joint 
position where the highest force is exerted and motor units 
of the muscle are fully recruited.

Effects of Overload on Muscle Growth
Mechanical loading of skeletal muscle may occur by (active) 
contraction at high resistance or by applying external tensile 

forces onto the muscle. Different models cause high mechanical 
loading and stimulate skeletal muscle hypertrophy, for example, 
weightlifting and synergist denervation. In addition, mechanical 
loading of muscle may also originate from surrounding muscle 
tissue via myofascial force transmission (Huijing, 2009). Muscle 
fiber hypertrophy in the flexor carpi radialis muscle has been 
reported in cats after a period of weight lifting which was 
accompanied by an increase in power generating capacity 
(Gonyea, 1980). Increased load, due to resection of synergistic 
muscles (soleus and GM) showed that muscle fibers from the 
plantaris muscle increased their CSA (Vaughan and Goldspink, 
1979). Van der Meer et  al. (2011) showed that denervation 
of the plantaris synergists muscles caused a considerable addition 
of myonuclei, which was followed by hypertrophy in the 
plantaris of young-adult and old rats. As a result of increased 
CSA, caused by increased mechanical loading, passive force 
increases as well, and thus affects the length-force relationship 
of the muscle.

Effects of Prolonged Muscle Activity on Muscle 
Growth
The effects of activity on muscle length seem to be  highly 
dependent on the length at which the muscle is maintained 
or the length range over which the muscle is operating. Low 
frequency stimulation of the low pennate soleus muscles of 
rabbits (i.e., 10–13 degrees PA (Siebert et  al., 2017; Papenkort 
et  al., 2020)) showed increases in their number of sarcomeres 
in series only when the muscles were kept at high length, the 
opposite occurred at short length (Williams et  al., 1986). The 
reduction of the serial sarcomere number was higher than 
that of muscles immobilized at short muscle length without 
activation. These findings indicate that the serial sarcomere 
adaptation is enhanced by contractile activity. Moreover, 
activation seems to prevent connective tissue accumulation 
caused by immobilization (Williams et  al., 1988).

In addition to morphological changes, activation seems 
to affect muscle phenotype. For instance, low-frequency 
muscle stimulation was reported to stimulate the adaptation 
towards a slow-contracting muscle (i.e., higher amount of 
slow muscle fibers; Pette and Vrbová, 1999). This should 
be  considered when applying as a treatment since these 
fibers have a lower power output and smaller fCSA. Specific 
consequences of this change in phenotype, for muscle force 
in parallel fibered muscles and muscle length in pennate 
muscles are yet not known.

In summary, based on the data of different animal models, 
it is concluded that mechanical overloading of muscle leads 
to muscle fiber hypertrophy (i.e., increase of the fCSA and 
PCSA) in both parallel fibered and pennate fibered muscles. 
However, longitudinal muscle growth, due to increased muscle 
activity has only been shown in parallel fibered muscles when 
placed in a lengthened position. Moreover, the activity as a 
sole intervention regulates the addition and subtraction of 
sarcomeres in series depending on the muscle length during 
muscle activity.
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Muscle Adaptations in Response to Concentric 
and Eccentric Exercise Interventions
To the best of our knowledge, there are no studies showing 
the effects of isometric contraction training on muscle function 
or morphology of animal muscles. Therefore, only the effects 
of concentric and eccentric exercise interventions on muscle 
growth of animal muscles are summarized in the following sections.

Concentric contractions are characterized by muscle 
shortening while force is actively produced. Uphill walking 
that is characterized by concentric activity at short muscle 
length, and promotes the loss of serial sarcomeres in the vastus 
lateralis (VL) and intermedius of rats (Butterfield et  al., 2005). 
Furthermore, Lynn et  al. (1998) showed that the vastus 
intermedius of rats running uphill had less sarcomeres in series 
than that of rats running downhill. Moreover, the range of 
the torque-angle curves of the animals performing concentric 
exercise was smaller than that of animals which performed 
eccentric exercise.

Although these studies reported slightly different results, it 
seems that animal hind limb muscles reduce their number of 
sarcomeres in series within 5 to 10 days after starting concentric 
exercises at short muscle length.

Eccentric contractions are characterized by MTC lengthening 
while muscles are actively exerting a resistance to lengthening. 
Effects of eccentric contractions are determined by the uniformity 
of the muscle architecture and the length range over which 
the muscle is eccentrically contracted.

Eccentric exercise at short muscle length was shown to 
cause only a regional addition of sarcomeres in series in 
the tibialis anterior (TA), but no addition in the extensor 
digitorum longus of rabbits (Koh and Herzog, 1998; Butterfield 
and Herzog, 2006). Moreover, downhill running with a 20° 
decline did not increase the number of sarcomeres in series 
in the soleus and extensor digitorum longus in rats (Chen 
et al., 2020). Neither did downhill running with a 14° decline 
in the GM, vastus medius and lateralis in mice (Morais 
et  al., 2020). In contrast, the vastus intermedius (low PA) 
of rats who ran downhill with a 16° decline on a treadmill 
showed a substantial increased number of sarcomeres in 
series compared to sedentary rats and rats that ran uphill 
(i.e., concentric contractions; Lynn and Morgan, 1994). Similar 
results were found by Butterfield et  al. (2005) in the vastus 
intermedius and lateralis. These results suggest that a 
non-uniform muscle architecture causes the lack of adaptation 
to eccentric exercise, as the non-uniformity results in differences 
in  local strains.

Furthermore, eccentric exercises performed at high muscle 
length of the TA of rabbits did not affect the number of serial 
sarcomeres in the lateral muscle regions, which was similar 
to control muscles (Butterfield and Herzog, 2006). Whereas 
in the medial, central superficial, and deep regions, the number 
of serial sarcomeres increased.

Eccentric contractions performed over the full muscle length 
range of the TA resulted in an increased number of sarcomeres, 
whereas contractions performed over a small muscle length 
range reduced the number of sarcomeres in series compared 
to control muscles (Butterfield and Herzog, 2006).

Eccentric exercises also stimulate the addition of parallel 
arranged sarcomeres within the muscle fibers resulting in 
increases in both fCSA and the PCSA, moreover, when applied 
to the muscle at long lengths showed higher increases in PCSA 
than those performed at smaller muscle lengths (Butterfield 
and Herzog, 2006). Eccentric exercises improve the length 
force-characteristics by improving both the maximum force 
and length range of active force exertion.

Immobilization
Joint immobilization is a common intervention to maintain a 
muscle at a certain length (e.g., in a shortened, neutral or 
lengthened position) by fixating the joint(s) over which a target 
muscle generates joint moments. In this review, we  describe 
the effects of lengthened immobilization (e.g., target muscles 
are lengthened by moving joints in full plantar or dorsi flexion) 
on muscle length and the range of active force exertion.

Effect of Immobilization on Muscle Force and 
Length of Parallel Fibred Muscles
As in muscles with a low degree of pennation (i.e., parallel 
fibered), changes in optimum muscle length are only achieved 
by changes in the number of sarcomeres in series. Immobilization 
in a lengthened position (i.e., full dorsi flexion), results in a 
considerable addition of serial sarcomeres (Tabary et  al., 1972; 
Williams and Goldspink, 1973; Williams and Goldspink, 1978; 
Soares et  al., 2007), ensuring that the optimum muscle length 
is attained in the imposed immobilized joint position.

Lengthening immobilization of mouse soleus muscle was 
shown to induce an increase of the optimal muscle force and 
a shift of the optimum length to longer muscle lengths. Moreover, 
immobilized and control muscles showed similar passive length-
force curves (Williams and Goldspink, 1978). In addition, 
lengthening immobilization of the soleus, GM and tibialis 
anterior muscles in rats leads to hypertrophy (Coutinho et  al., 
2004). Lengthening immobilization of the rabbit extensor 
digitorum, tibialis anterior and soleus muscles stimulates the 
IGF-1 expression within these muscles. IGF-1 is an anabolic 
growth factor, stimulating muscle hypertrophy by enhancing 
the rate of protein synthesis and inhibiting protein degradation 
(Yang et  al., 1997; Glass, 2005). These results suggest that 
lengthening immobilization increases the PCSA of 
immobilized muscles.

Effects of Immobilization on Muscle Force and 
Length of Pennate Fibred Muscles
At young age, in pennate rat muscles, optimum length is 
increased by both an increase in the number of sarcomeres 
in series and PCSA (Heslinga and Huijing, 1993), while in 
young adult rats the increase in optimum length is mainly 
due to an increase in PCSA (Heslinga et  al., 1995). However, 
the effects of long length immobilization in those muscles 
have not been widely studied in animals. Though, there is 
evidence that pennate muscles immobilized in a lengthened 
position add sarcomeres in series and reduce their sarcomere 
lengths (Heslinga et  al., 1995).
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Effects of Continuous High or Low Strain on 
Single Muscle Fiber Size Adaptation
Culture of single fiber (iliofibularis muscle of Xenopus laevis) 
at low strain, comparable with short muscle length immobilization 
in vivo, did not show a reduced number of sarcomeres in 
series or atrophy. Immobilization at high strain did not show 
the expected trophic response (in neither longitudinal nor 
radial direction; Jaspers et  al., 2004). The lack of the expected 
trophic adaptation suggests that either mechanical interaction 
with neighboring (muscles)-fibers is needed to trigger adaptation 
of muscle fiber size (Jaspers et  al., 2006) or other factors  
in vivo (e.g., growth factor or cytokines) differ in vivo from 
that in vitro.

Young Muscle and Tendon Adaptation to 
Immobilization
Immobilization in a lengthened muscle position in young 
(1 week of age mice; 4 weeks old rabbit) muscles resulted in 
a lack of increase in sarcomeres in series, also the length of 
the sarcomeres remained unchanged (Tardieu et  al., 1977; 
Williams and Goldspink, 1978). Moreover, tendon length 
increased such that the mechanical stimuli (strain and force) 
on the sarcomeres remained low (Tardieu et al., 1977; Williams 
and Goldspink, 1978; Blanchard et  al., 1985).

Effects of Immobilization Combined With 
Enhanced Contractile Activity
Studies investigating the effects of rabbit muscle immobilization 
at an extended length in combination with electrical stimulation 
showed increases in muscle length by an addition of serial 
sarcomeres after only 4 days when compared to non-stimulated 
control muscles or to muscles which were only immobilized 
muscles (Cotter and Phillips, 1985; Williams et  al., 1986). 
Immobilized soleus muscles of cats in extended position increased 
their number of sarcomeres in series, irrespectively whether 
the muscle was innervated or not, however, the rate of increase 
in number of sarcomeres in series was lower in denervated 
muscle (Goldspink et  al., 1974). These results suggest that 
neural drive is not necessary for longitudinal muscle adaptation 
and that the number of sarcomeres in series may be  regulated 
predominantly by passive force.

Furthermore, young denervated cat soleus muscle (pennate 
muscles) immobilized in an extended position had serial 
sarcomere addition and less tendon length growth than in 
innervated muscles (Blanchard et al., 1985). Treatments aiming 
to lengthen muscles or to increase the range of force exertion 
in children with neuromuscular disorders may benefit from 
such effects.

Effects of Stretching
Effects of Passive Stretching on Muscle Growth
Stretching is often defined as a form of physical exercise that 
includes several sets of stretching stimuli applied to target 
muscles during a relative short amount of time to target muscles. 
Static passive stretching has been found to slightly increase 
the number of sarcomeres and the fCSA in a fully extended 

soleus muscle of Wistar rats (Coutinho et  al., 2004). A study 
with incremental  static stretching of the latissimus dorsi of 
rabbits during 3 weeks (5% above the optimum length every 
week), resulted in an increase in serial sarcomere number, 
muscle mass, as well as fCSA of type 1 fibers (Cox et  al., 
2000). The collagen content, on muscular level, was also 
increased, however, returned to baseline values when the stretch 
was maintained for 6 weeks. The tetanus force and the maximal 
muscle power decreased. This latter might be  explained by 
the shift in MHC muscle fiber composition from fast fatigable 
towards more slow twitch fibers. Moreover, the fCSA of type 
I  fibers increased by 30%, and the fCSA in type 2B fibers 
decreased slightly. The adaptations on collagen content are 
opposite to those of muscles subjected to electrical stimulation 
(Williams et  al., 1988), and may emphasize the importance 
of activity to prevent an increase of collagen within the muscle.

Effects of Intermittent Static Stretching on 
Muscle Growth
Intermittent stretching is characterized by holding a muscle 
under stretch for a certain period interrupted by short breaks 
in which no force is applied. Passive intermittent static stretching 
of the soleus muscle of rabbits increased the number of 
sarcomeres in series and muscle mass (de Jaeger et  al., 2015). 
No changes were observed in the number of sarcomeres or 
muscle mass of the gastrocnemius and plantaris muscles. The 
passive torque- ankle angle relationship and muscle stiffness 
remained unchanged. Moreover, intermittent stretching prevents 
the loss of sarcomeres in series and loss of range of force 
exertion in muscles immobilized in a shortened position 
(Williams, 1990). These results suggest that the effects of static 
stretching are dependent of the muscle architecture.

Effects of Passive Stretching Combined With 
Enhanced Contractile Activity on Muscle Growth
To date, no animal studies are known that investigated the 
effects of passive stretching combined with enhanced contractile 
activity on serial sarcomere addition. However, to the best of 
our knowledge, there is only one study that assessed the effects 
of stretching combined with enhanced contractile activity on 
muscle PCSA (Stauber et  al., 1994). This study showed that 
muscle hypertrophy was dependent on stretch velocity. Slow 
stretching of soleus rat muscles (10 mm/s) resulted in increased 
muscle mass and mean fCSA. In contrast, fast stretching 
(25 mm/s) of the soleus induced an increase in muscle mass, 
while fCSA was reduced and connective tissue content was 
increased. The reduced muscle fiber size in combination with 
the increase in connective tissue suggests that fast stretching 
causes muscle fiber injury, an increase in variation in muscle 
fiber diameter, and concomitant fibrosis. These results indicate 
that slow velocity stretching increases muscle size and likely 
improves muscle force generating capacity, whereas fast stretching 
is not beneficial for muscle integrity and force generating 
capacity. Further studies are required to investigate the underlying 
mechanisms of muscle fiber injury caused by fast stretching, 
and the possible implications for human muscles.
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HUMAN STUDIES

Typical Muscle Growth in Children and 
Adolescents
In contrast to studies concerning growth-related muscle and 
tendon changes in animals, studies in humans are scarce and 
the existing knowledge mainly comes from cross-sectional 
studies. These studies may give a certain overview of occurring 
changes, however, longitudinal studies are still needed to 
understand critical phases in tissue development during growth 
(Table 1). Since biological maturation may vary in level, timing, 
and rate between individuals of the same chronological age 
(Mirwald et  al., 2002; Lloyd et  al., 2014), future studies should 
also evaluate the maturity status of the subjects.

Muscle Development
In accordance with maturational processes in animals, human 
muscle growth is driven by bone elongation and related increases 
in body mass (Morse et  al., 2008; Benard et  al., 2011). Since 
human muscles already contain the full adult complement of 
muscle fibers by the time of birth (Carlson, 2019), existing 
muscle fibers increase in length and grow in diameter in 
proportion to the growth of the body. These growth mechanisms 
may be  different from the onset of the pubertal age since sex 
hormones start to contribute, which results in a pronounced 
rise of whole-body muscle mass and strength during adolescence 
(Round et al., 1999). After adolescence, adult values are attained 
(van Praagh and Dore, 2002). These adaptations are also reflected 
in both increases in muscle CSA (Deighan et  al., 2006) and 
muscle strength with age (Morse et  al., 2008; Pitcher et  al., 
2012). Before puberty, increases in muscle force generating 
capacity during growth occur in parallel with increases in 
muscle CSA, whereas increases in strength exceed those in 
muscle CSA after puberty (see van Praagh and Dore, 2002 
for summary).

Studies on gross muscle morphology of pennate muscles 
(knee extensors and plantar flexors) further reported smaller 
fascicle and muscle lengths, muscle volumes and PCSA in 
children when compared to adults (Morse et  al., 2008; O’Brien 
et  al., 2010b). Further investigations showed that increases in 
muscle volume likely result from an increase in fascicle length 
and PCSA (O’Brien et al., 2010b; Benard et al., 2011). Therefore, 
during childhood, an addition of sarcomeres in series and in 
parallel as reported for pennate animal muscles seems to occur. 
Besides, there is still no conclusive evidence about alterations 
of the fascicle PA with age (Binzoni et  al., 2001; O’Brien et  al., 
2010b; Benard et  al., 2011).

During pubescence, relatively higher gains in body mass 
than in body height and tibia length result in higher loads 
on the musculoskeletal system (Benard et  al., 2011; Weide 
et  al., 2015). Today, there is evidence that longitudinal growth 
of pennate muscles (e.g., GM muscle) during pubescence seems 
to be mediated by increase in PCSA solely (Weide et al., 2015) 
rather than by longitudinal fascicle growth, which is likely 
due to increased serum levels of growth factors (Rogol 
et  al., 2002).

Tendon Development
Although neglected for decades, recent studies in humans 
demonstrated that tendons also adapt to biological maturation 
processes by alteration of their properties (Kubo et  al., 2001b; 
O’Brien et  al., 2010a; Waugh et  al., 2012; Mogi et  al., 2018). 
Age-related increases in body mass and force generating 
capabilities during maturation are associated with an increase 
in tendon loading that stimulates adaptations in tendinous 
tissue and changes the tendon’s mechanical properties (Waugh 
et  al., 2012).

Several studies have shown that tendon length and CSA 
increase during childhood until adulthood (O’Brien et al., 2009; 
Waugh et  al., 2012; Mogi et  al., 2018). It seems that before 
the onset of the adolescent growth spurt (i.e., peak height 
velocity, PHV), longitudinal growth of the MTC results from 
increases in both the muscle belly and tendon lengths (O’Brien 
et  al., 2010a; Mogi et  al., 2018). After PHV, the longitudinal 
MTC growth results from increases in muscle length only 
(Mogi et  al., 2018). Increases in tendon CSA mainly appear 
before the adolescent growth spurt (Mogi et al., 2018), whereby 
the CSA is highly variable and may even decrease around 
PHV (Neugebauer and Hawkins, 2012). Moreover, the relative 
Achilles tendon CSA (to body mass) was reported to be greater 
in (pre-) pubertal children than in adults (Kubo et  al., 2014). 
Both findings indicate the occurrence of critical phases of 
tendon development during adolescence (see Mersmann et  al., 
2017 for review).

Tendons of pre-pubertal children seem to be  less stiff when 
compared to those of adults, which was reported for both the 
Patellar tendon (O’Brien et al., 2010a) and tendinous structures 
(i.e., combined deep aponeurosis and distal tendon (Kubo et al., 
2001b)). As reported for animals, tendon stiffness increases 
during childhood (Waugh et  al., 2012). Consequently, the 
difference in tendon stiffness between children and adults 
disappears during adolescence (Kubo et  al., 2001b). It could 
be  shown that a significant increase in both Achilles tendon 
stiffness and Young’s modulus occurred at and/or around the 
PHV with no further changes thereafter (Mogi et  al., 2018). 
Therefore, it is assumed that tendon stiffness does not increase 
linearly from child- to adulthood but predominantly around 
the PHV due to alterations in the material property since 
tendon CSA did not change during that growth phase. This 
finding may be  supported by the observation that the inner 
tendon core is highly metabolically active until adulthood 
(Heinemeier et  al., 2013; Gumucio et  al., 2015). Adaptations 
in adult tendon may predominantly occur in its outmost layers, 
evoking tendon CSA increases (Gumucio et  al., 2015).

Adaptations of Muscle-Tendon Properties 
Due to Loading in Adults
Besides natural development, loading of the MTC also causes 
muscle-tendon adaptations in humans. However, to the best 
of our knowledge, it is still not clear which loading strategy 
may stimulate longitudinal muscle growth and may alter 
the MTC length and the range of active force exertion. 
Although the effects of pure concentric or eccentric 
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contractions are difficult to evaluate in humans, several 
studies exist that focused on the effects of training 
interventions including only concentric, eccentric, or isometric 
contractions as stimuli. The effects are summarized in the 
following sections and the deduced research gaps are compiled 
in Table  1.

Although muscle growth may be enhanced by specific loading 
strategies already in adolescents (Lloyd and Oliver, 2012), studies 
on the effects in this population are scarce. Consequently, the 
main findings were based on studies in adults, mainly males 
in the age range of 20 to 30 years and may only be  partially 
transferred to young as well as elderly people. In this context 
it is also important to develop appropriate strategies considering 
the physical and psychological development of the children 
and adolescents (Lloyd and Oliver, 2012).

Concentric-Only Strength Training
There is evidence that concentric-only strength training (CT) 
leads to increases in muscle strength and enhanced muscle 
size as reported for several muscles (e.g., VL, quadriceps, biceps 
brachii) after 8–12 weeks of training (Higbie et al., 1996; Housh 
et  al., 1996; Seger et  al., 1998; Farthing and Chilibeck, 2003; 
Moore et  al., 2012; Franchi et  al., 2014; Farup et  al., 2014b; 
Quinlan et  al., 2021). For instance, Franchi et  al. (2014) found 
VL muscle volume increases of 8% after 10 weeks of CT and 
increases in VL ACSA in the muscle’s mid and distal portions 
(11 and 2%, respectively). Farup et al. (2014b) further reported 
larger enhancements when the VL CSA was measured at 
mid-muscle-level. In contrast, no significant change in mean 
ACSA of the elbow flexors was observed after 12 weeks of CT 
(Vikne et  al., 2006). Interestingly, both Franchi et  al. (2014) 
and Seger et  al. (1998) found regional hypertrophy in the 
central region of the VL ACSA (11%) and total quadriceps 
ACSA (3.4%) after CT, respectively. Increases in quadriceps 
muscle volume were also observed by Quinlan et  al. (2021) 
after only 4 weeks of submaximal CT performed for 8 weeks 
with a leg press in young (mean age: 23.3 years) and older 
males (mean age: 69.1 years).

Concerning changes in fascicle length and PA, only a few 
studies are available. Despite observed increases in VL fascicle 
lengths of 2% after 4 weeks of CT (Franchi et  al., 2015) and 
around ~6% after 10 weeks of CT (Blazevich et al., 2007; Franchi 
et  al., 2014), decreases in fascicle lengths of 11.8% and ~ 11.7% 
were reported for the biceps femoris and supraspinatus after 
the performance of isokinetic CT (Kim et  al., 2015; Timmins 
et al., 2016). Regarding changes in fascicle PA after CT, studies 
consistently showed increases in the VL (ranging from 13–30%), 
biceps femoris (21.1%) and supraspinatus (~22.7%; Blazevich 
et  al., 2007; Franchi et  al., 2014; Kim et  al., 2015; Timmins 
et  al., 2016; Quinlan et  al., 2021). In this context, Quinlan 
et  al. reported significant increases in VL PA already after 
2 weeks of submaximal CT in both young and older males. 
Note that the magnitude of the observed changes was higher 
in the younger compared to the older group.

Regarding muscle fiber hypertrophy, increases in VL type 
1 fiber area of 12.5% were reported after 12 weeks of isotonic 

CT that were even higher with protein supplementation 
(Farup et  al., 2014a). VL type 2 fiber CSA increased by 
25.7% exclusively in the subjects who received the protein 
supplementation (Farup et  al., 2014a). In contrast, no  
change in VL fiber area was observed following a cycle 
ergometer training for 8 weeks (LaStayo et  al., 2000) and 
only slight non-significant increases were displayed  
after 12 weeks of progressive isokinetic CT (Hortobagyi 
et  al., 1996).

Seger et  al. (1998) investigated the effects of CT on VL 
muscle fiber CSA of fibers type 1, 2A, and 2B: the absolute 
areas tended to increase (9.9–23.5%). Concerning the elbow 
flexors, no difference in fiber type 1 proportion in the 
biceps brachii was found after 12 weeks of CT (Vikne et  al., 
2006). Despite that, a significant reduction in 2X fibers of 
2.8% and a trend for reduction of the 2AX fibers  
was observed. Please note that both fiber types are subtypes 
of the fast twitch fibers. They are classified based on 
differential myosin heavy chain gene expression and  
hybrid myosin heavy chain gene expression (Talbot and 
Maves, 2016).

Only a few studies have yet examined the effects of CT 
on tendon properties and tendinous structures. After 12 weeks 
of CT, Patellar tendon stiffness and Young’s modulus were 
reported to increase by 75.7% (Malliaras et al., 2013). Similarly, 
Patella tendon stiffness and Young’s modulus were already 
significiantly increased after 4 weeks of CT in young as well 
as older males (Quinlan et  al., 2021). Quinlan et  al. further 
showed that while the observed changes in tendon mechanical 
properties stayed constant in the young males, they continued 
to increase from week 4 to week 8  in the older males 
suggesting a delayed response. Accordingly, a significant 
decrease was observed in tendon elongation and strain by 
Malliaras et  al. (2013). In contrast, no change in Achilles 
tendon stiffness was reported after 6 weeks of a heel-drop 
regimen (Morrissey et  al., 2011). In the previous studies, 
the Patella tendon CSA and length remained unchanged 
(Malliaras et  al., 2013; Quinlan et  al., 2021), while increases 
in Patella tendon CSA (+14.9%) were found after a 12-week 
CT performed with whey protein supplementation (Farup 
et  al., 2014b).

In summary, studies that investigated the effects of CT 
mainly showed its potential to stimulate muscle hypertrophy 
in both upper and lower limb muscles at variable rates and 
locations. However, no clear conclusion can be  drawn about 
the underlying mechanisms. Franchi et  al. (2014) suggested 
that CT leads to hypertrophy mainly through addition of 
sarcomeres in parallel. This idea might be  supported by the 
findings of larger muscle PA observed after CT in several 
studies and evidence of enhanced fiber areas. Furthermore, 
CT also stimulates an increase in tendon stiffness likely due 
to changed tendon material properties. As discussed by Quinlan 
et  al. (2021), muscle and tendon adaptations may occur 
simultaneously to maintain the efficacy of the whole MTC 
irrespective of the contraction mode since synchronous 
adaptations were also found after eccentric-only strength training 
(see subsequent section).
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Eccentric-Only Strength Training
Similar to the effects of CT, eccentric-only strength training 
(ET) also leads to increased muscle strength and muscle 
hypertrophy. For instance, increases in muscle volumes were 
reported for the VL, total quadriceps muscle, and separate 
quadriceps muscles after 10 weeks of isokinetic and overload 
ET (Higbie et  al., 1996; Norrbrand et  al., 2008; Franchi et  al., 
2014; Quinlan et  al., 2021). Similarly, increases in muscle 
volume, ACSA, and PCSA of different hamstring muscles were 
found after performing the Nordic hamstring exercise (NHE; 
Bourne et  al., 2017; Seymore et  al., 2017) or a hip extension 
exercise (Bourne et  al., 2017) for several weeks. Elbow flexor 
ACSA increased by 11% after 12 weeks (Vikne et  al., 2006) 
and biceps brachii muscle CSA by 6.5% after 9 weeks of ET 
(Moore et  al., 2012). Increases in muscle thickness were also 
reported for different muscles (Farthing and Chilibeck, 2003; 
Duclay et  al., 2009; Baroni et  al., 2013; Guilhem et  al., 2013; 
Cadore et  al., 2014; Franke et  al., 2014; Leong et  al., 2014; 
Kim et al., 2015; Timmins et al., 2016; Alonso-Fernandez et al., 
2018). Interestingly, the comparison of the effects of ET performed 
with submaximal and supramaximal intensity (80 and 110% 
of the concentric 1RM, respectively) showed no different effect 
on biceps brachii thickness (Krentz et al., 2017). By comparing 
the effects of CT and ET on muscle ACSA, only Higbie et  al. 
(1996) and Vikne et  al. (2006) found a superior effect for the 
latter. Further information on the comparison can be  found 
in a previous review (Franchi et  al., 2017).

As for CT, a location-specific response in muscle hypertrophy 
after ET was reported (Seger et  al., 1998; Franchi et  al., 2014). 
However, after ET, significant increases in muscle ACSA occurred 
in the distal and not the central portion of the muscles (Seger 
et  al., 1998; Franchi et  al., 2014, respectively).

Significant increases in VL and rectus femoris fascicle lengths 
were already observed after 4 weeks of ET (Baroni et  al., 2013; 
Franchi et al., 2015; Quinlan et al., 2021) with similar increases 
in VL fascicle lengths (3.1%) observed after 10 weeks of ET 
(Blazevich et al., 2007). Even higher increases (12–17.6%) were 
found after 10–12 weeks of ET (Baroni et  al., 2013; Franchi 
et  al., 2014). Guilhem et  al. (2013) reported no change in VL 
fascicle lengths after a 9-week isoload or isokinetic ET. In 
contrast, two volume-matched ET regimen (isokinetic vs. 
isotonic) performed for 6 weeks resulted in longer fascicle 
lengths (14.4 and 14.7%, respectively) in another study (Coratella 
et  al., 2015). Longer fascicle lengths were also reported for 
the GM (Duclay et  al., 2009) and the biceps femoris (Potier 
et  al., 2009; Timmins et  al., 2016; Bourne et  al., 2017; Alonso-
Fernandez et  al., 2018; Presland et  al., 2018) after different 
ET interventions. Besides increases in fascicle lengths, no 
superior effect of high volume NHE training could be  found 
compared to low NHE training (Presland et  al., 2018). 
Contrastingly, no change in biceps femoris fascicle length was 
observed by Seymore et  al. (2017) likely caused by training 
at shorter hamstring muscle length when compared to other 
studies. Similarly, supraspinatus fascicle length did not change 
after 8 weeks of isokinetic ET (Kim et  al., 2015). In summary, 
the mentioned studies support the idea that ET leads to longer 
fascicle lengths. However, please note that the results concerning 

biceps femoris fascicle length changes reported after some ET 
interventions should be  considered with caution due to 
methodological issues regarding the extrapolation methods used 
to assess fascicle lengths (Franchi et  al., 2020; Sarto et  al., 
2021), i.e., overestimations and underestimations of fascicle 
length indicating, among other things, a subject dependent 
accuracy of the methods (Franchi et  al., 2020).

Concerning the PA, the reported changes after ET deliver 
no clear trend. Varying increases in VL fascicle PA (+3% to 
21.4%), rectus femoris (+31%) and GM PA (+7.6%) have been 
reported after 4–10 weeks of different ET interventions (isokinetic, 
isoload, cycling; Blazevich et  al., 2007; Duclay et  al., 2009; 
Guilhem et  al., 2013; Franchi et  al., 2014, 2015; Leong et  al., 
2014; Quinlan et al., 2021), whereas others observed no changes 
(Potier et  al., 2009; Baroni et  al., 2013; Coratella et  al., 2015) 
or even a decrease in PA in different muscles (Timmins et  al., 
2016; Alonso-Fernandez et  al., 2018; Presland et  al., 2018).

In contrast to their findings on the effects of CT, several 
authors reported significant increases in VL fCSA after 8–12 weeks 
of ET (Hortobagyi et  al., 1996; LaStayo et  al., 2000). Similarly, 
mean CSA increases of both type 1 and 2A fibers of the 
biceps brachii were also observed (Vikne et  al., 2006). These 
findings indicate that eccentric loading may favor in particular 
the increase of type 2 fiber CSA (Franchi et  al., 2017). In 
addition, independent of protein supplementation, similar 
increases in VL fiber type 1 area (on average + 15.7%) were 
reported after ET when compared to CT (Farup et  al., 2014a). 
In contrast, only Mayhew et  al. (1995) observed a greater 
change in fiber type 2 CSA after CT compared to ET, and 
Seger et  al. (1998) observed a decrease in VL fiber type 2A 
area (−14.9%) after 10 weeks of eccentric isokinetic knee 
extensor training.

Guex et  al. (2016) assessed the effects of 3-week isokinetic 
ET at slow velocity (30°/s) on biceps femoris muscle architecture 
and hamstring function when performed with the hamstrings at 
short and long muscle length. Although no group-by-time 
interactions could be  reported, higher effect sizes were found for 
changes in the long muscle length training group. This study 
may imply that the training of range of motion or the muscle 
excursion range might be important for fascicle length adaptations. 
More details about the underlying mechanisms can be  found in 
the subsequent section. In contrast, Sharifnezhad et  al. (2014) 
did not find a superior effect of isokinetic ET performed at longer 
muscle length of the VL or, in agreement with Krentz et  al. 
(2017), higher intensity of the training after 10 weeks (Sharifnezhad 
et al., 2014). However, the authors reported an increase in fascicle 
length of 14% after ET only when performed with a high (240°/s) 
but not a low fascicle lengthening velocity (90°/s).

Furthermore, there is evidence that ET leads to increases 
in tendon stiffness (Duclay et  al., 2009; Malliaras et  al., 2013; 
Geremia et al., 2018; Quinlan et al., 2021) and Young’s modulus 
(Malliaras et  al., 2013; Geremia et  al., 2018; Quinlan et  al., 
2021). In contrast, some studies have reported a lack of 
significant change (Mahieu et  al., 2008) or even a decrease 
in stiffness (Morrissey et  al., 2011). Since loading intensity 
seems to be key for tendon adaptation (e.g., Arampatzis et al., 
2007, 2010), the differences between studies might be  related 
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to the applied loads or the duration of the training programs 
(Bohm et  al., 2015). However, Quinlan et  al. (2021) did not 
find a difference in neither absolute nor percentage change 
in tendon stiffness and Young’s modulus between ET and 
CT at any training duration (after 2, 4, 6, and 8 weeks of 
training) or between age groups (younger vs. older adults). 
Their findings support the idea that the direction of strain 
applied to a tendon may not be  decisive to evoke changes 
in its properties. Finally, increases in tendon CSA (+9.7%) 
were reported after 12 weeks of ET (Farup et  al., 2014b) with 
even higher increases (+15%) observed after 8 weeks of high-
load ET (Geremia et  al., 2018).

Isometric Strength Training
Since isometric contractions allow for a controlled application 
of force within pain-free joint angles (Oranchuk et  al., 2019), 
isometric strength training (IT) is often used in clinical settings. 
Therefore, it is important to know whether relevant adaptations 
in muscle-tendon properties occur.

Recent studies provided evidence that also IT leads to 
significant muscle hypertrophy. For instance, increases in muscle 
volume were reported for the quadriceps (Kubo et  al., 2006b; 
Noorkõiv et  al., 2014; Balshaw et  al., 2016). Increases in VL 
muscle thickness were observed after 8 weeks of IT depending 
on muscle site and training muscle length (Alegre et  al., 2014) 
and after 14 weeks of IT (~16.5%) performed with varying 
periodization (Ullrich et  al., 2015). Similarly, increased volume 
of the triceps brachii (+12.4%) was reported after 10 weeks of 
high-intensity IT (Kanehisa et al., 2002). Noteworthy, explosively 
performed IT did not result in significant changes in quadriceps 
muscle volume (Balshaw et  al., 2016).

Two studies (Alegre et  al., 2014; Noorkõiv et  al., 2014) 
indicated a superior effect of IT performed at long muscle 
length (LML) to enhance VL muscle volume and thickness 
in comparison to training at short muscle length (SML). A 
shift of peak torque production to the training muscle lengths 
was also observed (Alegre et  al., 2014), with a greater change 
found in the LML training group. As discussed by Alegre 
et al. (2014), the mechanisms underlying superior hypertrophic 
effects of training at LML could be influenced by several factors. 
For instance, IT performed at LML may have caused greater 
damage, therefore, greater adaptation by placing the muscle 
fascicles under greater stretch in comparison to training at 
SML. Furthermore, smaller moment arms resulting from greater 
flexed knee angles may induce greater mechanical fascicle stress. 
Noorkõiv et al. (2014) further highlighted the role of upregulation 
of mechanosensitive signaling mechanisms and augmentation 
of calcium signaling cascades that may only become critical 
when the target muscle was activated at long length. Finally, 
training-dependent releases of insulin-like growth factor or 
mechano growth factors may also be related to training muscle 
length. Furthermore, Oranchuk et  al. (2019) deduced that 
training intensity seems to have a small effect on the hypertrophic 
responses, though it may have to reach a certain threshold 
(>20% of maximum voluntary contraction). In general, higher 
training volume had a superior effect on the hypertrophic 
responses when IT is performed.

Information about the effects of IT on muscle fascicle lengths 
and PA is scarce and inconsistent. Increases in VL fascicle 
length have been reported at the mid portion of the femur 
(+5.6%) after IT at SML, whereas increases in the distal portion 
(+5.8%) were observed after training at LML (Noorkõiv et  al., 
2014). This result may indicate specific adaptations in fascicle 
lengths regarding training muscle length chosen during IT. 
Furthermore, increases in VL fascicle lengths of ~16.5% have 
been observed after IT conducted with the knee joint at 70° 
(Ullrich et  al., 2015), which lies between the angles chosen 
in the study of Noorkõiv et  al. In contrast, Alegre et  al. (2014) 
did not find changes in fascicle lengths after IT at LML and 
other muscles than the VL. Significant increases (+11.7%) in 
VL PA were only found after IT at LML (Noorkõiv et  al., 
2014) and in the long head of the triceps brachii (~15.5%) 
after high- and low-intensity IT (Kanehisa et  al., 2002). No 
change in PA was observed after training at SML (Noorkõiv 
et  al., 2014) and in the study of Ullrich et  al. (2015).

Increases in VL tendon-aponeurosis stiffness were observed 
after 12 weeks of IT at LML (Kubo et  al., 2006b; Massey et  al., 
2018) with no significant change after training at SML (Kubo 
et al., 2006b). It was assumed that the higher mechanical stress 
applied in the LML training (due to shorter moment arm 
length) might have caused the differences between groups. 
Increased Patella tendon stiffness (+20% and + 16%) and Young’s 
modulus (+22% and + 16%) were observed after explosive IT 
and IT, respectively, with no significant differences between 
the interventions (Massey et  al., 2018). VL aponeurosis 
hypertrophy (+7%), assumed to provide an enlarged attachment 
area for increased muscle CSA, was only found after 
non-explosively performed IT, which was in line with the 
greater volume observed in this study. In agreement, increases 
in Achilles tendon-aponeurosis stiffness (+36.0%), elastic modulus 
(~18.2%) and region-specific hypertrophy were found after 
14 weeks of high-strain, but not low-strain IT (Arampatzis 
et  al., 2007), supporting the results of previous studies (Kubo 
et  al., 2001a, 2006a). Arampatzis et  al. (2010) also showed 
that a higher tendon strain duration per contraction may evoke 
superior adaptational responses. No change in Achilles tendon 
CSA, but increases in tendon-aponeurosis stiffness and Young’s 
modulus were also found after 12 weeks of both isokinetic IT 
performed with short and long rest intervals between isometric 
repetitions performed at high-strain (Waugh et  al., 2018). 
However, tendons trained with IT and shorter rest duration 
led to a reduction in collagen organization in the same study.

Unloading Strategies, Immobilization and 
Stretching
In contrast to animal studies, human immobilization studies 
have mainly focused on pennate muscles. There is consistent 
evidence that immobilization in humans results in decreased 
muscle strength and size alongside negative changes in 
peripheral and central neuromuscular function (Campbell 
et  al., 2019). The extent of adaptations might be  related to 
the ground-based model (e.g., bed rest, limb casting) used 
(Campbell et  al., 2019). Furthermore, it appears that the time 
course of the adaptations varies with prolonged unloading: 
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the greatest rate of change in muscle strength may occur in 
the first weeks (approx. in the first two weeks (de Boer et  al., 
2007)), prior to significant changes in muscle structure (Seynnes 
et  al., 2008b; Campbell et  al., 2019). Faster deterioration in 
muscle function might be  explained by changes in neural 
processes (i.e., generation and transmission of neural activation 
signals, transmission to and action of the contractile apparatus; 
Campbell et  al., 2019).

Most of the mentioned findings are based on studies in 
which the target muscles were immobilized in a short position 
(e.g., with the knee joint in extended position or the ankle 
joint kept in plantarflexed position as in bed rest studies). In 
those studies, negative effects of short length immobilization 
on gross muscle morphology and microscopic muscle properties 
such as fCSA have been reported (e.g., Hortobagyi et al., 2000; 
Kubo et  al., 2000, 2004; Kawakami et  al., 2001; de Boer et  al., 
2007; Suetta et  al., 2009; Hvid et  al., 2010, 2013; Oates et  al., 
2010; Belavy et  al., 2017). However, to receive a clear picture 
about how immobilization affects muscle length growth, 
we  further summarized studies’ findings on the effects of long 
length immobilization.

Effects of Long Length Immobilization on Muscle 
Properties
To gain information about the effects of long length 
immobilization, studies that reported immobilization of  
the knee joint in either 60 or 70 degrees of flexion and/or 
ankle joint angles in 90 degrees flexion were summarized.

In accordance with the results of short length immobilization, 
reductions in isometric force of −13% up to −28% after 7 days 
(Deschenes et  al., 2009, 2012) and ~ −25.5% after 14 days 
(Mitchell et  al., 2018) of unilateral lower limb suspension 
(ULLS) immobilization could be  found for the knee extensors. 
The isometric force of the plantar flexors declined by −10% 
after 14 days of a similar ankle joint immobilization (Seynnes 
et  al., 2008b). Furthermore, decreases in isokinetic strength 
and muscle performance variables (e.g., total work) were reported 
(Deschenes et  al., 2009).

Plantar flexor muscle volumes decreased after 2 weeks of 
ULLS (~ − 5.3%) with higher decreases (−7.7%) present after 
23 days (Seynnes et  al., 2008b). Furthermore, reductions of 
both GL fascicle length and fascicle PA were observed, which 
became significant after 23 days (−4% and − 5%, respectively). 
This was accompanied by declines (−3%) of GL PCSA after 
14 days, which did not further decrease until 23 days due to 
a faster decrease in fascicle length then muscle volume (Seynnes 
et  al., 2008b). Similar to short length immobilization, 
immobilization at long lengths resulted in decreased PCSA of 
the VL, rectus femoris, and total quadriceps in men and women 
(~ − 6.2%, ~ − 3.3% and ~ −5.8%, respectively) after 2 weeks of 
knee bracing (Yasuda et  al., 2005). Declines in fCSA were also 
observed, with similar reductions reported by Oates et  al. 
(2010). These declines seem to be  smaller than those observed 
after 2 weeks of short length immobilization of the knee extensors 
(Hvid et  al., 2010). However, similar values were also reported 
(Hortobagyi et  al., 2000).

In conclusion, long length immobilization seems to result 
in reductions of sarcomeres in series and in parallel in humans. 
Future studies are needed for clarification.

Effects of Immobilization on Tendon Properties
Concerning the effects of immobilization on tendon properties, 
it is assumed that joint positioning and therefore tendon length 
may play a role for the amount of deterioration with disuse 
(Maganaris et  al., 2006). Tendons may be  more vulnerable to 
material and structural deterioration at shorter than longer 
lengths (Maganaris et  al., 2006), however, to the best of our 
knowledge, this has not yet been verified. Since information 
on the joint position was not always retrievable from the 
studies, this assumption could neither be  verified nor falsified 
in this review.

Studies showed that both short-term (2–3 weeks, e.g., Kubo 
et  al., 2004; Reeves et  al., 2005; de Boer et  al., 2007; Shin 
et  al., 2008; Seynnes et  al., 2008a; Couppe et  al., 2012) as 
well as long-term (12 weeks, Reeves et al., 2005) immobilization 
may affect the tendon mechanical and material properties. 
Patellar tendon stiffness decreases of 9.8 to 19.7% after 2 (de 
Boer et  al., 2007; Couppe et  al., 2012), ~30.7% after ~3 (Kubo 
et  al., 2000; de Boer et  al., 2007) and 58% after ~12 weeks 
(Reeves et  al., 2005) of immobilization have been reported. 
Comparing the results regarding differences in knee joint 
immobilization angle (10 degrees vs. 30 degrees by de Boer 
et  al., 2007; Couppe et  al., 2012, respectively), it could 
be  suggested that immobilization at shorter patellar tendon 
length led to higher declines in tendon stiffness. However, 
due to the high variability between studies (e.g., duration of 
immobilization), further results cannot support this hypothesis. 
Nevertheless, the results show that disuse mainly affects the 
material properties rather than tendon CSA (de Boer et  al., 
2007; Shin et  al., 2008; Kinugasa et  al., 2010; Couppe et  al., 
2012). Most studies (except for Kinugasa et  al., 2010) reported 
unchanged tendon length and CSA after short-term (Kubo 
et  al., 2004; de Boer et  al., 2007; Shin et  al., 2008; Couppe 
et  al., 2012) and prolonged unloading (Reeves et  al., 2005). 
It is assumed that the material changes might be  caused by 
adaptations in the collagen fibers (see Kinugasa et  al., 2010 
for summary) as reported in animal studies (Vailas et al., 1988; 
Nakagawa et al., 1989). The resulting changes in tendon stiffness 
may negatively affect, for example, force transmission and the 
electromechanical delay (Kubo et  al., 2000; Reeves et  al., 2005; 
de Boer et  al., 2007) since the muscle has to shorten further 
to stretch the tendon (Maganaris et  al., 2006).

Based on the findings of Maganaris et  al. (2006) who 
investigated the effects of chronic unloading due to paralysis 
and found reductions of patellar tendon CSA of 17%, it can 
be  assumed that changes in the tendon morphology may only 
occur after years of disuse (lesion duration: 1.5 to 24 years).

Passive Static Stretching
Stretching is often used in sports for injury prevention and 
to speed up the recovery of the athletes. In clinical practice 
it is a common treatment approach to counteract, for instance, 
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muscle contractures. Despite evidence that prolonged stretching 
for several weeks can improve joint range of motion (e.g., 
Blazevich et  al., 2014), only trivial effects for reductions in 
muscle stiffness were reported (Freitas et al., 2018). Furthermore, 
it is still not clear if this approach can evoke muscle growth.

Only recently, Nunes et al. (2020) reviewed current studies 
on the effects of static stretching with the aim to elucidate 
whether stretch training is capable to elicit muscle hypertrophy 
in humans. Out of 10 studies only 3 reported positive effects 
in specific muscle size parameters (Nunes et al., 2020). Mizuno 
(2017) investigated the effects of 8-week static stretching only 
and static stretching combined with electrical stimulation (see 
section 4.4.1) on GM muscle architectural parameters. In 
contrast to the control group, GM muscle thickness was 
significantly increased (+5.8%) in the static stretching group 
(n = 12), whereas no change in PA could be  found (Mizuno, 
2017). Increases in gastrocnemii muscle thickness were also 
found by Simpson et al. (2017) after 6 weeks of loaded stretch 
training. However, this result was questioned by other authors 
(Jakobi et al., 2018; Nunes et al., 2018). Additionally, increases 
in muscle fascicle lengths, with differing amounts according 
to measurement site (distal or central region of the muscle), 
muscle (GM vs. GL), and time period (e.g., baseline, day 5, 
week 6), were also reported (Simpson et  al., 2017). Decreases 
in PA were found in the GL muscle at both sites at week 
6 and 1-week post-training, whereas the PA was increased 
(+4.9%) in the GM muscle 1-week post-training when measured 
distally. Increases in biceps femoris fascicle lengths of 13.6% 
were found after 8 weeks of high-intensity stretching training 
in the pilot study of Freitas and Mil-Homens (2015). The 
training was performed 5 times a week with continuous 
stretching for 450 s, in which torque was increased every 90s 
until discomfort was reported. Decreases in PA (−15.1%) 
did not reach statistical significance. Despite a small sample 
size, this finding implies a potential of static stretching to 
induce longitudinal muscle growth if applied for a longer 
time period with a high intensity (i.e., non-rest protocol; 
Freitas and Mil-Homens, 2015). This is supported by a cross-
sectional study of Moltubakk et  al. (2018) who showed that 
ballet dancers, accustomed to regular stretching training over 
years, have longer gastrocnemius fascicle and Achilles tendon 
lengths compared to healthy controls. Sarcomerogenesis due 
to chronical stretch stimulus in VL fascicles of a 16-year-old 
girl following 8 month of surgical femur lengthening was also 
shown by Boakes et  al. (2007).

Furthermore, the idea that stretching intensity (i.e., high 
strain placed upon the muscle) might be  a key factor to evoke 
adaptations on muscular level is also supported by findings 
of recent studies (e.g., Longo et  al., 2021; Moltubakk et  al., 
2021; Panidi et  al., 2021; Yahata et  al., 2021). In contrast to 
Freitas and Mil-Homens (2015) and Panidi et al. (2021), Yahata 
et  al. and Moltubakk et  al. did not find changes in muscle 
architectural properties (i.e., fascicle lengths) when static 
stretching was performed either with a high stretching volume 
(6 sets of 5 min/day, 2 days/week, 5 weeks, in total 18.000 s) or 
for a longer period of time (24 weeks; in total 40.320 s of static 
stretching), respectively. As concluded by Yahata et  al. (2021), 

very high volumes of static stretching training may not substitute 
muscle strain applied with low intensity.

We finally emphasize that the studies which reported 
hypertrophic effects all used an apparatus that may have ensured 
a high stretching (over-) load (Nunes et  al., 2020). Therefore, 
using an apparatus/machine might be  advantageous when 
compared to self-applied stretching by inducing a higher 
stimulus/intensity. However, also other factors, e.g., the total 
amount of or rest duration between stretches, may be important.

Studies that have investigated the effects of long-term static 
stretching on tendon properties are scarce, with limited evidence 
supporting no changes in tendinous tissues, at least when 
performed up to 6 weeks. In this context, 30 sessions of 
overloaded stretch training did not alter Achilles tendon length 
or tendon thickness (Simpson et al., 2017). Additionally, Konrad 
and Tilp (2014) reported no change in passive Achilles tendon 
stiffness after 6 weeks of plantarflexor stretching (Konrad and 
Tilp, 2014). In agreement, Kubo et  al. (2002a) investigated the 
effects of 3-week static stretching (two times a day, five stretches 
for 45 s, 15 s rest between stretches) on the viscoelastic properties 
of human tendon structures (i.e., stiffness and hysteresis). The 
stretching training did not result in changes in stiffness but 
in significantly decreased hysteresis. Based on this finding, the 
authors concluded that static stretching does not affect the 
serial elastic component but may affect the connective tissue 
elements in parallel with the muscle fibers (i.e., the endomysium, 
perimysium, and epimysium).

Combined Methods—Stretching and 
Loading
Static Stretching and Electrical Stimulation
Mizuno (2017) also investigated if static stretching combined 
with electrical stimulation might be  superior in altering the 
GM muscle architectural properties when compared to static 
stretching alone. In the combined group, the muscle was 
contracted during the stretches as well as during the resting 
period (Mizuno, 2017). The authors reported a similar increase 
in GM muscle thickness for the static stretching and static 
stretching/stimulation group, therefore demonstrating no 
increased benefit of the combined approach.

Stretching and Strengthening
There are a few studies that have investigated the effects of 
stretching on muscle hypertrophy when combined with strength 
training or strength exercises (e.g., Kubo et  al., 2002b; Junior 
et  al., 2017; Ferreira-Júnior et  al., 2019). A brief overview of 
the results can be  found in Nunes et  al. (2020). The studies 
either showed reductions or no impairment of the hypertrophic 
responses when stretching was performed immediately before 
(Junior et  al., 2017; Ferreira-Júnior et  al., 2019) or separated 
from the strength training sessions (Kubo et  al., 2002b). Still, 
no clear conclusions can be  drawn.

Interestingly, it appears that loaded interset-stretching, i.e., 
stretching performed between the sets of strength exercises, 
may have a positive additional effect on strength and extensibility 
(Souza et  al., 2013), and the occurring hypertrophic responses 
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(Silva et  al., 2014; Evangelista et  al., 2019). For instance, Silva 
et al. (2014) reported greater increases in GM muscle thickness 
in the interest- stretching group after calf strengthening for 
5 weeks. Additionally, Evangelista et  al. (2019) found greater 
changes in VL thickness and the summed thickness of 4 muscles 
when compared to the results of a traditional strength training 
program. Future work has to verify the additional benefit of 
interest stretches on hypertrophic responses.

Proprioceptive Neuromuscular Facilitation 
Stretching
Proprioceptive neuromuscular facilitation (PNF) stretching is 
commonly used with the aim to increase the joint range of 
motion and to lengthen the MTC (Sharman et  al., 2006). 
Compared to static stretching, PNF further involves a static 
isometric (maximal) contraction of the stretched target muscle 
and/or a concentric contraction of the opposing muscle in 
order to lengthen the target muscle applied during the stretching 
procedure (Sharman et  al., 2006).

Konrad et  al. (2015) investigated the effects of a 6-week 
PNF stretching performed 5 times a week on muscle and 
tendon stiffness as well as GM muscle architecture and observed 
a slightly enhanced PA but no changes in muscle fascicle 
lengths after the intervention (Konrad et al., 2015). Furthermore, 
no changes in MTC and GM muscle stiffness appeared, whereas 
decreases in Achilles tendon stiffness were observed. In contrast, 
Mahieu et  al. (2009) demonstrated no alterations in Achilles 
tendon stiffness after 6 weeks of PNF stretching (Mahieu 
et  al., 2009).

In summary, no clear statement about the effects of PNF 
stretching on muscle growth can be  deduced yet.

CONCLUSIONS AND CLINICAL 
IMPLICATIONS

The main aim of this review was to identify potentially efficient 
strategies to induce longitudinal muscle growth in humans. 
The knowledge on muscle and tendon growth and adaptation 
provides important implications for treatments that aim to 
interact with the MTC. Therefore, we  summarized studies on 
natural muscle growth and reviewed different treatments and 
training strategies. Finally, we  also highlighted potentially 
important research gaps (Table  1).

Typical Growth in Humans
There is evidence that addition of sarcomeres in series and 
increases in fCSA are the important contributors for muscle 
belly growth in children. Longitudinal and radial growth of 
tendon and aponeurosis contribute to the length range and 
extensibility of the MTC. Animal and human studies showed 
that tendons are highly compliant and adaptable at young age, 
which might influence treatment outcomes (section “Effects 
of Immobilization on Muscle Growth”). During pubescence, 
length growth of pennate muscles seems to be  mediated by 
increases in PCSA alone, likely due to growth factors. In 

adulthood, muscle growth, i.e., adaptation, seems to be dependent 
on the loading applied to the muscles.

Effects of Strength Training on Muscle 
Growth
In contrast to CT that may induce longitudinal muscle growth 
by increases in fCSA, ET seems to trigger the addition of 
serial-sarcomeres as indicated by longer muscle fascicle lengths. 
These mechanisms of architectural remodeling seem further 
not to be  impacted by age. However, research findings are 
variable and the underlying mechanisms have still to be clarified. 
Further information on muscle remodeling due to CT compared 
to ET can be  found by Franchi et  al. (2017). Since IT resulted 
in muscle hypertrophy and may also increase muscle fascicle 
lengths, it might be  an appropriate training regimen especially 
for clinical populations as it allows controlled supervision of 
force within pain-free joint angles. From animal studies it 
appears that the muscle length at which the training is performed 
might be  decisive for the efficiency with a tendency to greater 
changes after training at long muscle length. Furthermore, 
training intensity might also play an important role. Nevertheless, 
more studies have to be  performed to elucidate the underlying 
mechanisms of the observed adaptations and the role of the 
chosen muscle length.

Changes of training regimen regarding these aspects can 
be  easily made with regard to healthy people and athletes. 
However, when it comes to clinical populations, there will 
be  barriers restricting the implementation. Despite the fact 
that strength training may not be easy to perform with specific 
patient populations at all, focusing on muscle length and 
sufficient muscle excursion as well as applying a high intensity 
might be  additionally problematic, for instance, due to altered 
muscle-morphometrics and reduced patient compliance, 
respectively. Although IT allows controlled supervision of force 
within pain-free joint angles and may evoke longitudinal muscle 
growth, limited selective motor control may restrict the desired 
adaptations. In this case, electrical stimulation could be  of 
help, but is often not tolerated, especially by younger patients. 
Similarly, eccentric and concentric strength training are not 
easy to perform and specific (individual) approaches and devices 
supporting/guiding the required movements are needed.

All three strength training strategies resulted in changes of 
tendon properties. However, it is still not clear how, for instance, 
increased tendon stiffness may influence muscle morphological 
properties and therefore longitudinal muscle growth (see also 
section The effects of stretching on muscle growth).

Effects of Immobilization on Muscle 
Growth
Evidence exists that immobilization of pennate muscles at 
long muscle length in animals does not result in an addition 
of sarcomeres in series similar to parallel fibered muscles. 
Furthermore, in young animals, immobilization of the soleus 
muscle resulted in a lower serial-sarcomere number and 
increased tendon length, possibly as adaptation to decrease 
the tension. In humans, immobilization of pennate muscles 
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resulted in muscle atrophy (e.g., decreases in fCSA, PCSA) 
independent of the chosen muscle position (short or long 
length). Additionally, stiffness’ decreases and changes in the 
material properties of tendons were also observed that may 
negatively affect the interaction between muscles and tendons. 
These findings are important since commonly used treatments 
such as serial casting or orthotics are based on the theory 
that a muscle adapts to an imposed lengthening stimulus 
as shown in animal studies. At least in children with CP, 
recent casting and orthotic studies already demonstrated the 
mentioned (negative) adaptations in muscle and tendinous 
tissues (McNee et  al., 2006; Hösl et  al., 2015; Peeters 
et  al., 2018).

The Effects of Stretching on Muscle 
Growth
Based on the animal studies, it was further assumed that 
traditional stretching treatments such as static stretching also 
induce longitudinal muscle growth in humans (e.g., Wiart 
et al., 2008; Zhao et al., 2011). With regard to static stretching 
in healthy populations, there is slight evidence that high-
intensity or a high stretching (over-) load over a longer 
period of time (> 8 weeks) is needed to induce longitudinal 
muscle growth (Freitas and Mil-Homens, 2015). Based on 
animal studies that reported increases in muscle length, the 
approach to combine static stretching with electrical stimulation 
or strength exercises might be  worth to be  investigated, 
especially in clinical populations. However, to date, studies 
supporting an increased benefit of such an approach in 
humans are still lacking. Similarly, the effects and the potential 
of loaded inter-set stretching during a strength training 
regimen should be  assessed in future studies since such 
approaches could be easily integrated in the training routines 
of athletes.

Besides a lack of studies that have evaluated the impact of 
PNF stretching on muscle-tendon properties in healthy subjects, 
hold-relax PNF stretching performed with a robotic ankle-foot 
rehabilitation system in hemiplegic poststroke patients resulted 
in decreased tendon length (Zhou et  al., 2016). Consequently, 
investigating the effects of PNF on tendon properties, especially, 
changes in tendon stiffness, and possibly related adaptations 
in muscle properties could be  a promising research direction.

Influences of Intermuscular and Adjacent 
Connective Tissue on (Regional) Muscle 
Adaptation
The addition of sarcomeres in series as an adaptive effect is 
hypothesized to occur as a regulatory effect to assure that 
each single sarcomere is at its optimum length on the active 
length-force curve during common activities (Herring et  al., 
1984). However, stress caused by acutely lenghtening the muscle 
is not uniform throughout the muscle (e.g., Yucesoy et  al., 
2003). This latter explains local addition of sarcomeres, such 
that in some muscle regions additions may occure as an effect 
to the lenghtening intervention, whereas in other regions this 
might be  absent. Further research concerning the regional 

muscle adaptation caused by strength training, immobilization 
and stretching is needed.

In vivo, muscle force is transmitted through the 
myotendinous pathway, but also through intra- and extra-
muscular connective tissue (Loeb, 1984; Trotter, 1990; Trotter 
et  al., 1995; Huijing and Baan, 2001; Maas et  al., 2001; 
Huijing, 2002; Yucesoy et  al., 2003). This latter consists of 
intermuscular and adjacent connective tissue. The mechanical 
interaction between adjacent muscles and connective tissue 
is an important factor that has to be  considered  
when performing lengthening interventions. The presence 
of mechanical interaction between adjacent muscles  
generates asymmetrical strain on target muscles when 
lengthened. Besides, exerted forces are dependent on the 
relative position of adjacent muscles (Maas et  al., 2001, 
2003, 2004). Further research concerning the influence of 
intermuscular and adjacent connective tissue on  
muscle adaptation during muscle lengthening interventions 
is needed.

FINAL CONCLUSION

In conclusion, strategies that positively affect longitudinal 
muscle growth include activities at long muscle lengths (either 
during a stretching maneuver, immobilization, or active 
contraction) at high intensities for a longer period of time 
(> 8 weeks). While concentric and isometric strength training 
potentially increase muscle length due to increased fCSA in 
pennate muscles, eccentric strength training seems to increase 
fascicle length and therefore may result in longitudinal muscle 
growth. However, with regard to the different strategies and 
their effects on muscle-tendon properties, several research 
gaps exist that have to be  filled in order to find the most 
efficient strategy.
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