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Abstract: Given the impact of pandemics due to viruses of bat origin, there is increasing inter-
est in comparative investigation into the differences between bat and human immune responses.
The practice of comparative biology can be enhanced by computational methods used for dynamic
knowledge representation to visualize and interrogate the putative differences between the two
systems. We present an agent based model that encompasses and bridges differences between
bat and human responses to viral infection: the comparative biology immune agent based model,
or CBIABM. The CBIABM examines differences in innate immune mechanisms between bats and
humans, specifically regarding inflammasome activity and type 1 interferon dynamics, in terms
of tolerance to viral infection. Simulation experiments with the CBIABM demonstrate the efficacy
of bat-related features in conferring viral tolerance and also suggest a crucial role for endothelial
inflammasome activity as a mechanism for bat systemic viral tolerance and affecting the severity
of disease in human viral infections. We hope that this initial study will inspire additional com-
parative modeling projects to link, compare, and contrast immunological functions shared across
different species, and in so doing, provide insight and aid in preparation for future viral pandemics of
zoonotic origin.

Keywords: comparative biology; computational biology; mathematical modeling; innate immunity;
bats; viral tolerance; agent based model; inflammasome; zoonotic transfer; viral pandemic; COVID-19

1. Introduction

The potential for zoonotic transfer of viruses from bat populations to humans is
highly significant in terms of viral pandemics. Bats have been implicated as zoonotic
reservoirs/precursors for Ebola [1], Middle East respiratory syndrome coronavirus (MERS-
CoV) [2], severe acute respiratory syndrome coronavirus 1 (SARS-CoV1) [2] and, most
recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) [3]. The public
health impact of these pandemics has prompted a great deal of interest in examining
specific aspects of bat physiology and immunology to gain insights into why bat-borne
viruses might be particularly pathogenic when they adapt to cause human disease [2–5].
One of the unique aspects of bats among mammals is their ability to engage in active
flight, and therefore there has been an interest in examining the evolutionary adapta-
tions that have arisen in bats to accommodate the increased metabolic demands asso-
ciated with active flight, particularly with respect to the configuration of their immune
systems [3–5]. Specifically, the increased metabolic demands associated with flight suggest
the need to adapt to increases in oxidative stress and associated cellular damage [3–5], but
at the potential cost of impairing their response to certain types of microbial infections.
This, in turn, would suggest adaptations of other means of controlling infectious insults.
The combination of these two seemingly required features, (1) increased resistance to
cellular damage and oxidative stress and (2) parallel augmented anti-infection capabilities,
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has led to targeted investigation and characterization into two biological modules that
address these features: (1) differences in bat inflammasome activation, and (2) constitutive
production of type 1 interferons, a notable antiviral mediator.

The inflammasome is an intracellular multi-protein complex that processes danger sig-
nals (either microbial products or evidence of cellular damage) into a series of inflammatory
response processes, including the production and release of proinflammatory cytokines
(notably interleukin-1 (IL-1) and interleukin-18 (IL-18)), the induction of nuclear factor
kappa-b (NF-κB), a transcription factor responsible for inducing a series of inflammation-
related mediators, and promoting pyroptosis, a form of programmed cellular death that is
itself an inflammation-promoting process [6–8]. As such, the inflammasome is a critical
component of an organism’s response to effectively deal with infection or tissue damage
but, if dysregulated, can contribute to the pathophysiological manifestation of a host of
diseases [6–8]. Specifically, aberrant inflammasome activation has been invoked as a major
source of disease severity in viruses of bat origin, where the “cytokine storm” resulting
from extensive systemic inflammation produces collateral tissue damage and organ dys-
function [6]. Alternatively, bats have been demonstrated to have significantly suppressed
inflammasome activation and activity, perhaps because of their need to deal with periodic
episodes of high metabolic stress that can produce the exact mediators that would lead
to priming and activation of the inflammasome. These adaptations include resistance to
inflammasome priming from extracellular danger signals, such as reactive oxygen species,
pathogen/damage-associated molecular patterns (P/DAMPs) and proinflammatory cy-
tokines, and decreased transduction of subsequent inflammasome activation leading to the
release of IL-1/IL-18 and induction of pyroptosis [3,4].

In concert with decreased inflammasome activity, bats have enhanced antiviral capabil-
ities in terms of their production of type 1 interferons (T1IFNs). T1IFNs are associated with
intracellular compounds that inhibit viral replication and assembly, as well as serving an
extracellular role in terms of recruiting immune cells, notably natural killer cells (NK cells)
and antigen-presenting cells (macrophages and dendritic cells) to eliminate infected cells.
In contrast to most mammals, where the production of T1IFNs is primarily initiated by
evidence of infection, some bat species constitutively produce T1IFNs [3,4]. This provides
these bats with an enhanced baseline level of antiviral capability, which, in conjunction
with their dampening of inflammatory reactivity, allows them to have improved tolerance
to viral insults.

While there are other mechanisms for viral resistance in bats, the presence of features
of disordered inflammation manifesting in human disease represents a natural focus on the
difference in inflammasome activity between humans and bats, and such investigations
should take into account the antiviral compensatory mechanisms of differential T1IFN
behavior between humans and bats. The work represented in the above series of references
demonstrates beneficial insights from the traditional approach to comparative biology, but
we believe that this comparative process can be enhanced by dynamically representing
the putative hypothesized mechanisms such that the consequences of those mechanisms
can be seen. We have termed this use of computational modeling as dynamic knowledge
representation [9,10] as a useful label to describe the difference between a dynamic computa-
tional model and a static picture/diagram. This process, which is common to virtually all
types of dynamic computational/mathematical modeling, takes as its starting point the
standard diagram ubiquitous in biomedical literature that depicts a series of biological en-
tities connected by arrows that suggest their causal relationships. While useful for gaining
an overview of the components and their interactions for a particular biological system,
these diagrams are static representations of knowledge. Dynamic knowledge representa-
tion via mechanism-based mathematical/computational modeling takes those diagrams
and “brings them to life.” The components and interactions present in the diagram are
converted to equations/computer code, and as the model executes those, the dynamics of
those interactions are visualized via simulations. There are several benefits of this use of
computational modeling:
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1. It can be difficult to intuit the overall effects of a complex set of interactions, and
therefore a dynamic representation of this knowledge can uncover unanticipated or
paradoxical dynamic effects, particularly when positive and negative feedback are
present [9].

2. While these models may be complex, they are necessarily selective abstractions of
the real world (as are the diagrams they are based on). Since the model will only
exhibit behaviors possible from the interactions they embody, they can be used to
determine the sufficiency of a particular hypothesis/theory in terms of explaining
observations from the real world. While they cannot falsify a particular hypothesis,
they can suggest where additional features of the biology need to be added to achieve
a particular desired behavior.

3. Toward this end, computational models of this type can be used for examining new
hypotheses, be they components or interactions within the system itself or putative
interventions [9]. Examining the plausibility of such modifications can suggest new
experiments or observations that might need to be performed.

4. These types of computational models can be used as experimental objects, where
simulation experiments can be performed that evaluate the new hypotheses noted in
#3. Since simulation experiments are not subject to the cost and logistical constraints
that apply to wet-lab experiments and can often be run at a considerably greater
scale (in terms of number of individuals examined), they can be a useful adjunct to
pre-testing and design of subsequent real-world experiments [9].

5. As computational embodiments of knowledge/hypothesis structures, these models
can serve as “bridging” knowledge structures that can represent what is conserved
from one individual or zoological context to another. Rather than relying on a list of
components and features, a computational model for dynamic knowledge represen-
tation can encapsulate what is functionally “similar” from one species/organism/
individual and note what the effect might be for what is explicitly “different.” [11].

Although all computational models employ some degree of necessary abstraction (e.g.,
it is not possible to incorporate every possible aspect of knowledge into a model), we assert
that there are investigatory benefits for constructing and using complex computational rep-
resentations of biological knowledge, if for no other reason that such models embody what
biological researchers consider important enough to expend their energies investigating.
The ubiquitous diagrams of biological processes express their level of detail for a reason:
those details are of interest to biological researchers. We do not separate the modeling
endeavor from the overall scientific process and therefore tailor the representational level
of our models to what members of the research community are interested in, as reflected by
the content of the diagrams they choose to use in their publications. Furthermore, given the
necessary abstractions present in these types of models, there is no supposition that they
represent ontological truth. They are expected to be insufficient at some level, but ideally
transparently so, thereby helping guide further scientific investigations. To paraphrase the
famous quote from George Box that “All models are wrong, some models are useful” [12],
useful models are those that are invalid in such a way that convinces a wet-lab researcher
to perform a new experiment.

It is also very common to use computational-mathematical models to link data
acquired in one species to provide insights into behaviors present in others (e.g., hu-
mans). This is an extension of the standard experimental process of using model organ-
isms (i.e., yeast, worms, mice, non-human primates) to investigate mechanistic hypothe-
ses/knowledge in a more controlled fashion and extrapolating those findings to human
biology. However, since this standard process focuses on being able to translate functions
that are presumed to be conserved from one species to another, this workflow necessarily
focuses on what is presumed to be similar across these systems. It is far less common
to explicitly target with computational models what is mechanistically different between
different species, with the motivation that there may be some insight into how those differ-
ences manifest, and thereby can guide the development of new therapies. In our review of
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the literature, we have not been able to find other examples of dynamic mechanism-based
modeling used in this fashion, and certainly not with respect to bats and humans.

Toward this end, we present an agent based model of the innate immune response that
encompasses and bridges the differences between bat and human response to viral infection;
we term this model the comparative biology immune agent-based model, or CBIABM.
To our knowledge, this is the first dynamic mechanism-based computational model that
seeks to directly compare bat and human immune mechanisms and the consequences of
those mechanistic differences, namely inflammasome activity and differences in T1IFN
dynamics, in terms of manifesting disease.

2. Materials and Methods
2.1. Overview and Abstraction Level

The CBIABM is an agent based model (ABM). Agent based modeling is a discrete-
event, rule-based, spatially explicit, computational modeling method that represents
dynamical systems as populations of stochastically interacting, rule-based components,
termed agents [13]. The structure of ABMs is well suited to representing multi-cellular
biological systems, with cell types represented by classes of agents, where the cellular
agents are governed by rules extracted from basic science literature regarding the causal
mechanisms (that arise from natural laws) that govern cellular behavior. As such, agent
based modeling has become extensively used in computational biology for examining a
wide range of biomedical processes, such as sepsis [14–16], infectious disease [17], wound
healing [18,19], vascular biology [20], and cancer (for an overview, see [21]). Specifically, we
contend that ABMs are well suited for the task of dynamic knowledge representation, with
the added benefit of modularity in terms of agent classes and hierarchical aggregation (i.e.,
ABMs of specific tissues can be combined to represent more complex organ structures) [9].

As noted previously, the selection of the level of abstraction is a key component of
model development and should be guided by the intended purpose of the model. The CBI-
ABM is intended to evaluate the system-level consequences of differences between humans
and bats among several functional modules in the immune response to viral infection.
The functional modules involved are not represented with high levels of molecular detail
but rather treated as aggregated input-output processes; thus, we avoid the need to incor-
porate specific molecular kinetic rate constants and instead focus on being able to represent
the general time-courses of the outputs of these processes. For example, we recognize that
the inflammasome is a complex aggregation of various proteins, signaling molecules, and
transcription factors; however, functionally, these details can be reduced to representing a
set of cellular inputs that trigger priming and activation of this complex, and a series of
defined cellular behaviors that result from its activation.

Similarly, for the current set of simulation experiments on the CBIABM, we do not rep-
resent a specific type of virus; the intent is to evaluate the differing immune configurations
between bats and humans in a virus-agnostic fashion. Therefore, the abstracted virus has a
probabilistic ability to invade a cell, a specified replication rate, and viral release modeled
as an abstracted exocytosis function that will eventually cause cellular death unless the cell
dies by apoptosis beforehand. These abstracted viral functions have been implemented to
allow for future modification to specific virus types, but for this initial study, we model
them generically. This type of structure also allows for the future implementation of more
detailed viral properties, such as receptor-specific binding, apoptosis inhibition, and other
immune-evading capabilities.

Also, given the goal of examining the immune differences between bats and humans,
we focus on the innate aspects of the immune response in the current development of the
CBIABM. This is because the high metabolic rate in bats has been identified as a main
driver for what makes them immunologically different, and the ability to deal with intrinsic
cellular damage and byproducts of increased oxidative/metabolic stress is primarily carried
out by the innate immune response [3,4]. While we recognize the importance of adaptive
immunity in human disease, particularly regarding the development of cytokine storm in
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severe clinical illness, in terms of comparing the role of the inflammasome and baseline
antiviral capabilities we make the modeling decision that focusing on the innate response
is sufficient for this initial examination of the transition from bat viral tolerance to human
viral pathophysiology.

2.2. Model Implementation

The CBIABM is implemented in NetLogo [22], a freeware software package used
for a range of agent based modeling tasks ranging from K-12 education to modeling of
complex real-world systems. One of the primary benefits of NetLogo is that the models
are written in a human-friendly readable coding language. For interested readers, the
entire CBIABM (with internal documentation) can be downloaded as a NetLogo executable
file from http://www.github.com/An-Cockrell/Comparative-Biology-Immune-ABM (ac-
cessed on 13 August 2021). This folder includes the NetLogo executable file for the
CBIABM, which includes documentation of the code and, through the Behavior Space
function, the parameter and experimental settings used for the data presented in this
paper. The Github folder includes instructions on how to use the CBIABM in a file named
“Supplementary Material Text S1-published”, and this information is also included as a
supplement to this paper, “Supplementary Materials Text S1: Instructions for running
the CBIABM”. The topology of the CBIABM is a two-dimensional square grid composed
of 51 × 51 “patches” (to use NetLogo terminology) where the edges of the grid wrap
such that a cell moving off one edge appears on the opposite edge (right-left, top-bottom).
Each patch represents a spatial container for extracellular entities (mediators, extracellular
viral particles) and cellular agents that can occupy that area of space. NetLogo incorporates
several core commands (“primitives” in NetLogo terminology) that are readily employed
for constructing cell-level ABMs. Two of these merit specific mention here, as they relate to
how rules for cellular behavior are implemented and may aid understanding in the rule
descriptions to follow:

1. “Diffuse”: This primitive simulates diffusion of a patch variable to its surrounding
8 patches. The argument for the primitive is the percentage of the value of the center
patch that is removed and then evenly distributed among the surrounding 8 patches.

2. “Uphill”: This primitive is essentially a chemotactic function, where an agent surveys
the surrounding 8 patches and moves toward the patch with the highest target
variable. Note that within the CBIABM, this primitive is decomposed into several
lines of code to allow chemotaxis to be driven by combinations of mediators. In the
CBIABM, all mobile cells share the same movement rate.

The CBIABM runs in a step-wise fashion during which all the functions of the model
are executed, where each step represents approximately 10 min of real-world time; the
parameters and rules for the CBIABM are thus fitted to generate behaviors in realistic time
courses based on this step interval. Note that the “virus” reflected in this current version of
the CBIABM is a generic virus and not calibrated to any particular viral species; however,
the modular rule and parameter structure of the CBIABM is such that specific types of
viruses can and will be implemented in the future. Each simulation run represents an
infected simulated patient/animal. The high-level sequence of events are as follows:

1. The simulation is initialized;
2. A specified amount of extracellular virus is placed in a random pattern onto the

epithelial cell grid;
3. The rules for the cells are executed. The implementation of NetLogo shuffles the order

of execution within each class of agent but runs each class of agents in a specified
sequence. Once the specified set of instructions for each step are completed, the
process starts again until the stopping conditions are met;

4. The total time course simulated in the experiments below is 14 days (though this can
be modified).

http://www.github.com/An-Cockrell/Comparative-Biology-Immune-ABM
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There are stochastic processes incorporated into the rules of the CBIABM: (1) they
manifest in the initial distribution of cells and extracellular virus, (2) to provide some
noise in terms of the rate of viral infection and replication, and (3) to provide noise
for incorporated thresholds for cellular rules related to the activation status of the cells.
These stochastic components result in each run being unique and distinct, mimicking the
heterogeneity seen across a population of organisms, be they bat or human. Therefore, the
evaluation of the output of the CBIABM is performed at the population level, with evalua-
tion metrics reported as a distribution of a particular model output across a population of
simulation runs. The primary output metric for an individual run is “%System-Health”,
which represents the health of the system as the percentage of healthy epithelial cells
among the total possible number of 2601 (51 grid spaces × 51 grid spaces). Note that this
output metric does not distinguish between epithelial cell agents that are eliminated by
apoptosis or necrosis; the supposition is that the viability of a tissue is a function of the
number of healthy cells present. This view of tissue damage/health also assumes that
the different tissue-level consequences of the various forms of cellular death: apoptosis,
pyroptosis, and necrosis, are due to their relative ability to induce and propagate inflam-
mation, which reduces the total number of healthy epithelial cells (as opposed to a view
that cells that die via necrosis are somehow “more dead” than those that die by apoptosis).
In addition, note that in the current version of the CBIABM, we elected to not represent the
dynamic turnover of macrophages, NK cells, and dendritic cells, with the result that popu-
lation levels of these cell types are held constant for the duration of the simulation runs.
While we recognize that recruitment and depletion are present in these cell populations
in the real world, we believe that the goal of the current modeling project, which is to
demonstrate significant and qualitative differences between bat and human resistance to
viral infection, is not substantively affected by this abstraction. The rationale for this choice
of modeling abstraction are as follows:

1. While the initial recruitment of immune response cells may enhance the initial con-
tainment of the viral inoculum, these cells accomplish that effect by the generation
of proinflammatory mediators, which are the exact processes invoked in disease
manifestation that bats are thought to avoid. Therefore, while the addition of this
feature might alter the specific potential transition zone in the difference between bat
and human disease manifestation is should not qualitatively alter the existence of
such a zone, which is what these simulation experiments are intended to show.

2. Similarly, while depletion and exhaustion of inflammatory cells are known to occur
in severe human disease, these processes only occur after the inflammatory response
to the viral inoculum has substantially progressed. Since the hypothesis underlying
bat resistance to viral infection emphasizes early attenuation of the inflammatory
response, this phenomenon does not affect those early dynamics and the sought-after
qualitative difference between bat and human disease manifestation

3. Alternatively, polymorphonuclear neutrophil (PMN) populations do dynamically
change in the CBIABM. This is because there are no baseline PMNs in non-inflamed
tissue, and therefore their recruitment must be explicitly represented (in contrast,
macrophages, NK cells, and dendritic cells, though augmented by circulating precur-
sors, are already present in tissue at baseline).

Therefore, our decision to hold macrophage, NK cell, and dendritic cell populations
steady represents an abstraction of the trade-off between recruitment and depletion that
we do not believe will affect the intended goal of this modeling project. See the text on
calibration in Section 2.3 for an example of how we would have reassessed this modeling
decision during development had this decision impacted our ability to achieve the desired
behavior of the CBIABM.

The CBIABM represents the following cell types listed below. Their behaviors and
properties are described in plain language for clarity; interested readers are encouraged
to download the actual model to see how these properties have been implemented into
NetLogo code.
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1. Epithelial cells. These are generic epithelial cells that represent the cells initially
exposed and susceptible to viral infection. The epithelial cells also abstractly represent
generic “tissue”, as the current CBIABM does not explicitly represent muscle or
specific organs. One epithelial cell agent occupies a single grid space for a total of 2601
possible healthy epithelial cells in the system, and they do not move. The total health
of the system is reflected by the percentage of healthy epithelial cells out of 2601,
the variable called “%System-Health”. The epithelial cell agents have the following
variables and functions:

a. Susceptibility to infection: this variable represents how readily the epithelial
cell can be infected by extracellular virus and abstracts its expression of po-
tential receptors that can be targeted by various viruses. This is a constant
in the current version of the CBIABM and is used to probabilistically (in rela-
tion to the number of extracellular viral particles on that specific gride space)
determine whether an individual epithelial cell agent becomes infected.

b. Susceptibility to reactive oxygen species/cytotoxic compounds: this variable
represents how much damage the epithelial cell can sustain before it undergoes
necrosis, a proinflammatory form of death that results in the production of
additional danger signals (P/DAMPs).

c. Metabolic Byproduct (Met-By): this variable represents the amount of ox-
idative byproducts produced from baseline metabolism and are sensed as
P/DAMPs. This value is 10-fold higher in bats versus humans, representing
the increased metabolism in bats needed for flight [3]. This value is added to
the P/DAMPSs present on a particular patch.

d. Total cell membrane: this variable represents how much cell membrane the cell
has that can be consumed by viral exocytosis before the cell dies by necrosis
(proinflammatory death) and release of danger signals (P/DAMPS).

e. Apoptosis: This function is initiated by sensing of viral infection and represents
programmed cell death to shorten the time (and therefore total amount) of
viral production by an infected epithelial cell. This function is also accelerated
by interactions with NK cells as a representation of NK cells’ antiviral effect.
As a result of apoptosis, almost no epithelial cells progress to membrane
consumption death (1c above), though may be altered in future versions where
for simulations of viruses known to interrupt apoptosis. Notably, cells that die
by apoptosis do not propagate inflammation; this is distinct from cells that
die via necrosis (1d above), which release P/DAMPs until they are cleared by
phagocytosis by macrophages.

f. Production of type 1 interferons (T1IFN): primary inflammatory and antiviral
mediator produced by infected epithelial cells in humans and at baseline in
bats.

g. Regeneration: This is an abstracted healing function that allows the regrowth
of new epithelial cells into empty patches from where dead epithelial cells
(either apoptotic or necrosed) have been cleared by phagocytosis. This process
is simulated to take 3 days.

2. Natural killer cells (NK cells): These are mobile immune cells that are a major com-
ponent of innate antiviral activity. They migrate toward infected epithelial cells and
accelerate their apoptosis. Their functions and properties include:

a. Chemotaxis to T1IFN. This means they move up a gradient of T1IFN.
b. Production of interferon-gamma (IFNg) in the presence of T1IFNs, interleukin-

12 (IL-12) and interleukin-18 (IL-18).
c. Accelerate apoptosis in infected epithelial cells via abstraction of perforin and

granzyme function.
d. NK cell populations are held constant for the duration of the simulation (see

discussion/rationale in the preceding text).
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3. Macrophages: These are mobile immune cells that respond to signals produced by
infected epithelial cells and immune cells (NK cells, dendritic cells, polymorphonu-
clear neutrophils, and other macrophages). These cells are central regulators of the
innate immune response; they also phagocytose extracellular virus and cellular debris
from dead epithelial cells, clearing space for new epithelial cells to regenerate into.
Their functions and variables include:

a. Chemotaxis to T1IFNs and P/DAMPS;
b. Have a differential activation level representing the ability to perform proin-

flammatory functions (M1 phenotype) or anti-inflammatory functions (M2
phenotype). The activation level is determined by a balance between proinflam-
matory signals: T1IFN, P/DAMPs, IFNg, and IL-1 versus anti-inflammatory
signals: Interleukin-10 (IL-10);

i. M1 Macrophages produce interleukin-8 (IL-8) and Il-12, and if their
inflammasome is activated, tumor necrosis factor (TNF), interleukin-6
(IL-6), IL-10 and IL-1 and IL-18;

ii. M2 macrophages produce IL-10.

c. Have an abstracted inflammasome that becomes activated through two steps:

i. Priming: Occurs when exposed to P/DAMPs or TNF;
ii. Activation: If already primed, if sufficient extracellular virus is phago-

cytosed, this triggers the production of precursors for IL-1 and IL-18,
allows M1 production of TNF, IL-6, and IL-10, and initiates the py-
roptosis pathway. Both priming and activation have defined thresh-
olds; these are set at different levels between humans (lower) and bats
(higher).

d. Can undergo pyroptosis: as discussed above, pyroptosis is an inflammogenic
form of cell death. The precursors to IL-1 and IL-18 are released as active
cytokines upon pyroptosis, as well as the production of P/DAMPs represent-
ing the release of extracellular DNA at cell death. Pyroptosis occurs ~2 h
after inflammasome activation [8,23–25]. Note that we have elected to keep
macrophage populations steady for the duration of the simulation; therefore,
when a macrophage undergoes pyroptosis, it is immediately replaced by the
creation of a naïve macrophage placed randomly in the world grid. This is
a modeling decision that abstracts but qualitatively reproduces steady-state
depletion/recruitment dynamics.

e. Perform phagocytosis: this is the endocytosis of extracellular viruses and
cellular debris, clearing away damaged cells to allow for epithelial regrowth.
However, it is recognized that there is a limit to the amount of material a
macrophage can phagocytose; therefore, there is a variable that determines
the upper limit of this amount: when this limit is reached, the macrophage is
considered “exhausted” and is unable to clear any more material [26].

4. Dendritic Cells: These are antigen-presenting cells that have similar functions to
macrophages but are a key component in the transition from innate to adaptive
immunity: they are primarily responsible for presenting antigen to naïve T-cell
subtypes and inducing antigen-specific differentiation of various T-cell subtypes.
However, in the current version of the CBIABM, their role in inducing adaptive
immunity is not represented, and rather they serve primarily to chemotax in response
to T1IFN and produce IL-6, IL-12, and IFNg. As with macrophages and NK cells,
dendritic cell populations are held stable for the duration of the simulation.

5. Endothelium: The majority of the initial viral response is considered to take place
in the epithelial tissue at risk, though the vascular supply to that tissue means that
there is close proximity with the endothelial cells lining those vessels. The activation
of the endothelium is a key step in the transition from what would otherwise be an
inflammatory process restricted in local tissue to an expansion toward systemic effects.
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As such, endothelial activation is a critical tipping point that affects the manifestation
of the disease [27]. The inflammatory role of the endothelium is represented in the
CBIABM by projecting a layer of endothelial cells “on top of” each epithelial cell and
having those cells being able to be activated by signals generated on the patch on
which it sits. Endothelial cells are activated by a combination of inflammatory signals:
IL-1 and TNF. This activation involves the function of the endothelial inflammasome,
which in humans activates a series of signaling and adhesion functions that even-
tually lead to the recruitment of polymorphonuclear neutrophils (PMNs) from the
bloodstream to the area of inflammation. We hypothesize that, similar to their immune
cell inflammasomes, bats have a reduced degree of responsiveness in their endothelial
inflammasomes; this decreased function is reflected in the different values assigned to
the endothelial activation threshold between human and bat simulations. In addition
to the simulated induction of adhesion molecules, activated endothelium produces
platelet-activating factor (PAF), which is a chemotaxis signal for polymorphonuclear
neutrophils (PMNs) [28].

6. Polymorphonuclear neutrophils (PMNs): these are the primary circulating immune/
white blood cells. They serve a central role in response to bacterial infections, but
in general, their role in containing viral infections is less pronounced. However,
they can be recruited to sites of viral infection if the endothelium in the region
of the infection becomes activated and initiates the sequence of PMN adhesion and
migration through the blood vessel walls into the tissue. The process of PMN adhesion
and migration is abstracted in the CBIABM and is modeled to take about 6–12 h
from initial endothelial activation through the production of endothelial adhesion
molecules, the adhesion of PMNs to those molecules through to the migration of
PMNs into the tissue. Once in the tissue, they will chemotax toward IL-8 and PAF
and subsequently undergo a respiratory burst that produces proteolytic and cytotoxic
compounds that induce epithelial cell necrosis (a proinflammatory cell death) [29].
Respiratory burst is associated with the death of the PMN. As noted above, PMN
populations are dynamically shifting via recruitment via activated endothelium and
therefore depleted by the respiratory burst process.

Mediators are generated and modified by the cellular agents based on their pro-
grammed rules and are represented as variables present on each grid space; therefore, the
total system-level amount of a particular mediator is the sum of all the individual values for
each patch. Mediators diffuse from patch-to-patch using the NetLogo “diffuse” function,
where a defined percentage of the variable is evenly distributed to the surrounding 8
patches. Mediators are reduced by three processes:

1. They are consumed by binding to receptors on the cellular agents.
2. There is a percentage degradation of the value of each mediator per step.
3. There is an arbitrary lower threshold of the value of each mediator, at which point the

value is set to 0.

The mediators included in the CBIABM, their represented functions, and associate
references can be seen in Appendix A Table A1. Mediator levels are updated using cellular
rules that arithmetically increment or decrement their value each step per patch; the
numerical values that are used to update the mediators are the “parameters” in the CBIABM.
We also note that the same mediator can be manipulated by multiple cell types (as can
be seen in Appendices A and B Table A2). Details as to how this model rule structure
undergoes calibration are relayed in Section 2.3 Simulation Experiments. As with the
cellular rules, interested readers are encouraged to download the actual model to see their
exact implementation in NetLogo code. Appendix B Table A2 is a grid that links mediators
to the cells that produce them.

Initialization of the CBIABM involves generating epithelial cell agents that populate
each grid space of the 51 × 51 square grid. Set populations of NK cells, dendritic cells,
and macrophages are randomly distributed across the space. A viral inoculum (that can
be varied) is applied by setting the value for extracellular virus to 100 +/− Random 20
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(to introduce noise) for a random number of grid spaces equal to the initial inoculum
variable; this is the variable that represents the perturbation to the system. During sim-
ulation runs, the cells and mediators listed above will interact with each other based
on their programmed rules but acting upon different local conditions arising from the
heterogeneous spatial distributions of the initial configuration of the model’s world (i.e.,
inflammatory cell and extracellular virus locations). Figure 1 depicts the set of interac-
tions between the various cellular agent types, the simulated mediators (production and
effects), and functions represented by the model rules. As noted previously, the entire
CBIABM version that was used to generate the data for this paper is available for download;
this includes descriptions of the specific parameters used for the simulation experiments
described below.

Figure 1. Schematic of the main cell types, mediators, interactions, and functions represented in the CBIABM. Blue ovals
represent immune cell types; yellow ovals represent non-mobile cells; green circles represent virus; red ovals are molecular
species; beige rectangles represent non/anti-inflammatory processes; orange rectangles represent proinflammatory processes.
Green arrows represent positive or stimulatory interactions; red connectors represent negative or inhibitory interactions;
black arrows represent cellular functions facilitated by the connected cell types. Note that the primary means of suppressing
viral infection is through the death of infected epithelial cells, either by apoptosis or necrosis; both pathways lead to
decreased numbers of healthy epithelial cells (%System-Health). In addition, note that the differences in bat and human
parameterization are seen at: B1 = increased P/DAMPS by the addition of higher metabolic byproduct (Met-By) reflecting
increased metabolism in bats, B2 = baseline production of type 1 interferons (T1IFN), B3 = enhanced antiviral effect of
T1IFNs and B4 = decreased inflammasome activity. T1IFN = type 1 interferons, P/DAMPS = pathogen/damage-associated
molecular patterns, Met-By = metabolic byproduct, PAF = platelet-activating factor, IL1 = interleukin 1, IL2 = interleukin 2,
IL6 = interleukin 6, IL10 = interleukin 10, IL12 = interleukin 12, TNF = tumor necrosis factor, IFNg = interferon-gamma,
PMN = polymorphonuclear neutrophil, NK cell = natural killer cell.

2.3. Simulation Experiments

Given the goal of examining fundamental differences between bat and human re-
sponses to a viral infection (e.g., not resistance to specific viruses), parameters related to
viral invasiveness and viral replication rate were kept constant between simulations in
the bat and the human. This choice was made to remove virus-specific properties, such as
exploitation of specific cellular receptors as a means of producing differential virulence, as
this would confound the evaluation of more general and conserved differences between
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bats and humans. The time course for the viral replication was set to generate peaking or
at least plateauing mediator levels between 3 and 7 days simulated time, corresponding to
the onset of symptoms ~3–7 days after inoculation. We make the modeling assumption
that the basic interaction map (seen in Figure 1) is conserved between bats and humans,
albeit with the notable differences listed here:

1. Bats have higher baseline production of P/DAMPS to simulate the enhanced metabolic
rate needed for flight (reflected by the difference in “metabolic byproduct” value)

2. Bats have baseline production of type 1 interferons
3. Bats have enhanced intracellular antiviral effect of type 1 interferons
4. Bats have reduced inflammasome priming and activation (reflected by higher values

for the variables “inflammasome-priming-threshold”, “inflammasome-activation-
threshold”, and “bat endothelial activation” versus “human-endothelial activation”).

Our goal is to evaluate a minimally sufficient set of differences that have been em-
phasized in recent reviews concerning the comparative immunology between bats and
humans regarding their respective responses to viral infection [3,4]; future expansion of
the CBIABM can incorporate additional differences between the species.

The initial calibration of the model focused on matching behavior to the general
dynamics of human infection. The reason the human behavior was targeted at first is
because it is the human response to viral infection that exhibits the full dynamic range of
system outcome, i.e., from no or minimal disease severity to considerable disease severity.
Since bats are noted to not manifest disease from infection, there is no range of system-
level bat phenotypes for the model to reproduce if the calibration was attempted for them
first. Therefore, we proceeded with calibration to general human dynamics, then held
model parameters constant except for those features explicitly noted to be different in bats.
As noted above, the rule structure of the CBIABM consists primarily of arithmetic incre-
ments or decrements of mediator values by some constant value (“parameter”) that occur
per step. Given this model rule structure, there is not a single equation that governs the
dynamics of a particular mediator; rather, the mediator’s dynamics arise from the sum of
the interactions present in the entire model. As such, this is not a modeling approach that
needs to use aggregated kinetic rate constant parameters (of the type primarily reported
in wet-lab experimental results) as calibration targets since there are no kinetic equations
present. Additionally, since the goal of this modeling project is to compare the overall
dynamic characteristics of the various simulations, which depend on the relative relation-
ships between the rules and their respective parameters, and not specific experimental
values, the variable outputs of the CBIABM are unitless. We have designed the CBIABM so
that future work that aims to represent specific viral infections and/or reproduce specific
experimental conditions can be readily performed using our established strategy for large
scale parameter space fitting/characterization to specific data sets [30], but that is not the
goal of the current work. Therefore, calibration involved modification of parameters by
hand-fitting to expected general time courses of viremia, viral eradication, initiation of
inflammatory responses and general trajectories of cytokine time courses with the model-
ing assumption that symptoms arising from proinflammatory cytokines would manifest
~3–7 days post-inoculation. Hand-fitting is a standard practice that involves observing the
behaviors of the CBIABM given a particular set of parameter values. Then, the modeler
determines if the desired behavior is acceptable. If it is not, then the modeler determines
which parameter they what to adjust to move the model toward a more desirable behavior.
Since the behavior of the CBIABM is dependent on the relationship between the variables
in the model, it is necessary to make several initial choices to serve as reference points for
further adjustment. The three used in this case were:

1. The world size was chosen to consist of a 51 × 51 grid. This was arbitrary and made
for computational efficiency based on our experience constructing this type of model.

2. The time frame was selected such that one step of the CBIABM represents 10 min;
this provided a frame of reference for how the various cellular rules manifested
their dynamics.
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3. The initial populations of macrophages, NK cells, and dendritic cells were set at
50, 25, and 50, respectively. Again, arbitrary and chosen based on our experience
constructing this type of model.

We note that as the CBIABM is focused on properties of innate immunity and does
not include expansion of the immune response to T-cell functions and other aspects of the
adaptive response, it is incorrect to try and fit mediator trajectories to clinical time points
much beyond 10–14 days (the time-period before cytotoxic T-cell populations peak and
is associated with potential cytokine storm [31]). However, since the induction of T-cell
responses is itself a function of the ability to either contain or propagate initial inflammatory
signals and/or contain the degree of viral replication, we believe that the conclusions we
can draw about the differential tolerance between bat and human immune properties
are valid.

Following calibration, simulation experiments were carried out for both human pa-
rameterizations and bat parameterizations. The first set of experiments were a sweep
of the initial viral inoculum from a value of 25 to 150 (arbitrary units) in increments of
25 and evaluating CBIABM behavior and outcome after 14 simulated days (n = 1000
stochastic replicates per initial inoculum value). These simulations were used to establish
dose-dependent population outcome curves reflecting end-state %System-Health.

The calibration process nearly always uncovers insufficiencies in the model; this is
an expected part of model development. Sometimes this can lead to insights that can
guide further model development. An example of this occurred during the development
of the CBIABM, where we noted that when the CBIABM only incorporated the differences
between bat and human [2–4] within epithelial tissue and immune cells (specifically,
incorporation of inflammasome functions in macrophages), there were not significant
differences in bat versus human responses to viral infection in terms of final system health.
Specifically, just increasing the “metabolic-byproduct” slightly beyond a two-fold increase
in the bat parameterization resulted in similar final %System-Health levels compared
to human parameterizations. This was substantially less difference between the two
systems than expected, where in the real world, the > ten-fold increase in bat metabolic
rate (represented by our “metabolic byproduct” variable) results in negligible effects from
viral infection on bat health. Our analysis of these simulations suggested that the impaired
inflammasome activation and increased antiviral effect of type 1 interferons in the bat
parameterization of the CBIABM appeared to be offset by the enhanced eradication of
infected epi-cells in the human parameterization of the CBIABM, resulting in a greater
similarity of the total dead epi-cell agents generated than anticipated. This could be
explained by the fact that the primary means of controlling viral infections is through the
eradication of infected cells and that both the primarily apoptotic mechanisms in the bat
and the inflammasome-affected processes in the human had similar efficacy in depleting
the infected epithelial population with minimal excess “collateral damage” due to the
increased proinflammatory processes in the human. It was only when the process of
differential endothelial activation was added, which is related to inflammasome activation
and for which we assumed would similarly be reduced in bats, that noticeable differences in
bat resistance to viral load became evident. In order to characterize this effect, a parameter
sweep was run across progressing thresholds of endothelial activation (from the human
threshold = 5 to the bat threshold = 10; all arbitrary units) in the human parameterization
of the CBIABM, using the highest tested viral initial inoculum (= 150) to visualize the
greatest effect.

Finally, one of the proposed mechanisms for zoonotic transfer from bat populations to
humans is viral spillover as a result of increased stress in bat populations (either due to
environmental changes or the introduction of other types of infections, such as white-nose
syndrome [5]). We simulated this effect by varying the parameter value of metabolic
stress (“metabolic byproduct”) in the bat parameterization of the CBIABM and evaluated
trends in population %System-Health (n = 1000 stochastic replicates per initial condition)
associated with those changes.
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3. Results
3.1. Initial Calibration

Initial calibration of the human parameterization of the CBIABM was able to generate
the following plausible behaviors: viral dynamics that resulted in peaks at 3–7 days,
decreases in %System-Health consistent with the onset of symptoms at ~3 days, and
elevated mediators at 3–7 days consistent with the development of symptoms attributable
to the presence of those mediators. Examples showing time course data for 10 stochastic
replicates each at simulated moderate (initial inoculum = 75) and severe (initial inoculum
= 150) infection are displayed in Figure 2, below and in Appendix C Figure A1. Figure 2
shows trajectories in terms of %System-Health (Panel A) and Extracellular Virus (Panel B).
%System-Health is a proxy for disease severity and symptoms, with the onset of symptoms
occurring around day 3. In Panel A %System-Health decreases thereafter due primarily
to antiviral cell-killing until a nadir is reached at ~7 days before recovery starts. We note
that since the simulation is never “killed”, the capacity to recover is always present as
long as a single epithelial cell is still alive. However, for purposes of showing differential
consequences to simulated viral infection, the inability of the CBIABM to “die” is not
relevant. Figure 2B shows the additional calibration data that were generated with respect
to mediator time course data. The same representative runs of n = 10 stochastic replicates for
each moderate disease severity and severe disease severity provide the mediator trajectories
shown in Appendix C. All these trajectories show plausible dynamics, rising with immune
sensing of virus and infected epithelial cells and plateauing with/if containment of the
infection. The values are unitless, which does not affect the qualitative shape of these
trajectories, which is the relevant behavior being evaluated for plausibility. Note also that
with the lack of T cells in the current version of the CBIABM, their absence results in the
lack of their contribution in terms of generating inflammation-related mediators in the >7
day period of simulated time.

Figure 2. Representative trajectories of 14 days simulated time produced by the human parameteri-
zation of the CBIABM with 10 stochastic replicates at moderate disease severity (initial inoculum
= 75 shown in blue lines) and severe disease severity (initial inoculum = 150 shown in red lines).
Panel (A) shows %System-Health over time, with decrements starting just before day 3 and nadiring
at ~day 7 before some recovery occurs. Panel (B) shows levels of extracellular virus over time.
High initial values represent initial inoculum, of which only a percentage will lead to cellular
invasion (see Epithelial Cell Rule 1a), which accounts for the rapid drop. Viral levels rise during incu-
bation, which peak and then are suppressed in the moderate disease severity and sometimes not so in
the severe disease severity. The values for extracellular virus on the Y-axis do not have units, as they
are not relevant to depict the range of trajectories shown. These simulations demonstrate the effect of
stochastic processes in variation in the trajectories, consistent with the heterogeneity present within
biological data.
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3.2. Parameter Sweep of Initial Viral Inoculum

The sweep of viral initial inoculum is seen in Figure 3A,B. The results from these and
subsequent sweeps are presented in such a fashion to better visualize and compare the
population-level outcomes for a particular set of initial conditions. Because of the stochas-
ticity of the CBIABM (which mimics the heterogeneity seen in biological and clinical data
sets), different individual runs will produce different results resulting in the population
distribution of the outcome. In order to aid in the visual comparison of these popula-
tion distributions, we plot the results of individual runs in ranked in terms of their end
%System-Health on the X-axis (with each value on the X-axis representing an individual
run) from the highest values of the output metric to the left and then by decreasing order
moving rightwards along the X-axis: we term this a “ranked-order population distribution.”
Figure 3A depicts the comparison between the human parameterization and the bat pa-
rameterization of the CBIABM. There is an expected dose-dependent relationship between
the initial inoculum and the degree of reduced %System-Health. There is a considerably
greater degree of impaired %System-Health seen in the human parameterizations such
that bat parameterizations show minimal tissue damage (surrogate for the manifestation
of disease and disease severity) for levels of initial inoculum that produce considerably
reduced %System-Health in the human parameterizations. The resistance of the bat param-
eterizations is so marked that the dose-dependent differences to the varied initialinoculum
can only be appreciated in the magnified view seen in Figure 3B.

Figure 3. Sweeps of virus initial inoculum for bat and human parameterizations with 1000 stochastic replicates per condition. Panel (A) shows both bat
(blue) and human (red) rank-ordered population distributions at initial inoculums from 25 to 150 in 25 increments. The rank-ordered population distributions
reflect the stochastic replicates ranked by their end #System-Health at the end of 14 days simulated time; while these lines are technically 1000 individual
columns, for visualization purposes, they are shown as curves. The decreasing curves seen with increasing initial inoculum are consistent with a dose-
dependent worsening of outcomes across a population of runs. Note that the bat parameterizations essentially demonstrate no disease severity (in terms
of reduced %System-Health) for the corresponding IIs that generate significantly reduced %System-Health in human parameterizations. Panel (B) is a
magnification of the results for the bat parameterizations, which shows a similar dose-dependency but with considerably reduced tissue damage (note
Y = axis for Panel B starts at 96).
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3.3. Parameter Sweep of Endothelial Activation Threshold

The parameter sweep of the endothelial activation threshold (a proxy for the ability to
activate the endothelial inflammasome) can be seen in Figure 4; these simulations were all
carried out with an initial inoculum = 150 in order to depict the greatest impact of varying
this parameter. Figure 4 demonstrates that progressively increasing the threshold for en-
dothelial activation toward levels seen in the bat (= 10) in otherwise human-parameterized
versions of the CBIABM shows increased resistance to viruses. However, while the human-
parameterized version with bat-level endothelial activation threshold is substantially more
resistant, it still does not match the resistance level in the bat parameterization. While this
suggests that the other features of increased bat tolerance to viral infection do play a
role in reducing the manifestation of disease in bats (e.g., differences in T1IFN proper-
ties), the considerable reduction in population disease severity seen only by reducing
endothelial inflammasome activity points to it as a potentially impactful mechanism for bat
viral tolerance.

Figure 4. Parameter sweep of endothelial activation threshold level from baseline human param-
eterization (= 5) to baseline bat parameterization level (= 10) with initial inoculum = 150, 14 days
of simulated time. The endothelial activation threshold reflects the ability to activate the endothe-
lial inflammasome, with subsequent effects (adhesion activation and PAF production) that recruit
circulating PMNs to the area of activation. There is a progressive reduction in the degree of tissue
damage/disease severity across simulated populations (stochastic replicates n = 250) with increasing
endothelium activation thresholds (simulating decreasing endothelial inflammasome activation),
though even when the endothelium activation threshold is at the same level (= 10) between the bat-
and human parameterizations, there is still an increased tolerance of the bat versions to viral insult.

3.4. Investigation into Effect of Metabolic Stress on Potential Viral Spillover

The last set of simulation experiments are intended to investigate the potential stress-
related causes of viral spillover in bat populations, a presumed process involved in the
zoonotic transfer that can lead to pandemics [5]. We translate the more general concept
of “stress” into a representation in metabolic terms, and therefore represent increased
stress level by increasing the metabolic byproduct (Met-By) variable in the CBIABM.
We performed a parameter sweep of Met-By, starting from the value in the baseline bat
parameterization (= 2.0, itself a 10× increase over the human parameterization) and increas-
ing it by increments of 1; as with the parameter sweep for endothelial activation, all these
simulations were run with an initial inoculum = 150. The results of this parameter sweep
can be seen in Figure 5, with progressively worse %System-Health population distributions
with increasing values of metabolic byproduct (e.g., increasing stress).
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Figure 5. Parameter sweep of metabolic byproduct (Met-By), a proxy variable for stress in the
CBIABM. All these simulations were carried out with an initial inoculum = 150 and run for 14 days of
simulated time. The value for Met-By in the baseline bat parameterization is itself a 10× increase in
the same term in the human parameterization, reflecting the increased metabolic stress from powered
flight. Increasing Met-By demonstrates a progressive worsening of the population distribution of
%System-Health, which we consider a pre-condition for increase viral shedding. Interestingly, the
decreasing %System-Health seen with increasing Met-By appears to converge monotonically.

We believe that increased manifestation of disease/disease severity for equivalent
degrees of viral exposure would lead to increased viral shedding and lead to viral spillover
and increase the chance for the viral spillover that could lead to zoonotic transfer.

4. Discussion

The recent viral pandemics involving Ebola, SARS, MERS, and, most recently and
dramatically, SARS-COV2/COVID-19 have placed focus on bats as a zoonotic reservoir
for viruses that are candidates to drive the next pandemic. In particular, the unique
physiological adaptations for flight seen in bats has led to interest in the intersection of
the ability of bats to deal with the metabolic consequences of flight and their noted viral
tolerance, with resulting insights into how those adaptations have manifested in differences
in their innate immune response and dampened inflammatory response to cellular injury.
This finding is of particular importance in understanding the potential pathophysiological
manifestations should bat-borne viruses acquire the ability to infect human tissues, as
there is compelling evidence that clinical disease severity in viral infections is heavily
driven by the human host’s inflammatory response (e.g., “cytokine storm”) [6,32–36].
This has led to a great deal of interest in studying particular molecular components (the
inflammasome [6]) and cellular functions (pyroptosis [23]) that can lead to increased
inflammation and more severe disease. While most recent work has understandably
focused on COVID-19/SARS-COV2, the role of inflammation-induced collateral tissue
damage is a shared feature of many viral infections [6,32–36]. We pose that developing
response capabilities to future pandemics should identify countermeasures focused on
conserved mechanisms that drive viral disease severity. Such therapeutic countermeasures
aimed at disease mitigation would fill a gap between public health non-pharmacological
interventions (i.e., contact/transmission limiting strategies) and virus-specific modalities
such as vaccines or new therapeutics that target virus-specific mechanisms of infectivity.
Despite the impressive and unprecedented success and rapidity of COVID-19 vaccine
development, it is difficult to imagine how such modalities could be made available in less
than a year. More generic pandemic countermeasures would target shared mechanisms
of viral pathophysiology, of which inflammation-propagating mechanisms represent a
particularly attractive target for disease severity mitigation. Toward that end, we would
pose that understanding how viral tolerance evolved and manifests in bats can produce
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insights into the design of targeted therapeutic immunomodulators to mitigate the severity
of viral infection in humans.

We further contend that there is a potentially significant role for mathematical and com-
putational modeling in the execution of comparative molecular biology.
Currently, comparison from species to species is primarily descriptive; while there may
be some intuitive impression about differences in molecular or cellular functions may
manifest, there is a lack of formalized functional representations that allow for rigorous
interrogation of highly complex dynamic systems. From one perspective, “compara-
tive biology” is intrinsic to modern experimental biomedical research, in which animal
models are used as surrogate systems to investigate human biology. However, the gen-
eral goal here is not to emphasize the differences between animal models and humans.
Instead, the focus is on similarities that allow findings from in vivo experimental sys-
tems to be extrapolated to human systems. Likewise, biomedical mathematical and com-
putational models often rely on hypothesized similarities between laboratory/animal
models and humans to inform their structure, suggest parameters, and offer validation.
However, sometimes comparative biology instead focuses on characterizing the differences
between an animal species and humans, most notably when a particular species might
have a particular phenotype that could suggest a potential solution to a human disease
process. One example is the resistance of elephants to cancer, despite their large size and
long lifespan, which led to the finding of their increased DNA repair capacity due to their
multiple copies of the p53 DNA repair/tumor suppression system [37,38]. The motivation
of this current paper is another example of a zoonotically advantageous phenotype: the
resistance of bats to viruses that cause significant disease in humans. Computational model-
ing projects that focus on these differences, especially those that seek to identify differences
that might be targeted for therapeutic development, are much less common. While there
has been interest in developing mathematical models of bat in-host viral dynamics (see [39]
for a recent review noting specific papers modeling in-host bat viral dynamics [40–43]), to
our knowledge, the CBIABM is the first computational model that explicitly represents the
molecular processes that distinguish between bat and human responses to viral infections.
Detailed models, such as the CBIABM, can explicitly represent both imputed differences
between species and what is conserved from one context (be it a species or an individ-
ual) to the next. This capability also addresses a critical gap in the practice of biology,
because as with the descriptive nature of differences between organisms/species, what
is similar between organisms/species is often informally assumed (e.g., the justification
for using wet-lab experimental models) but not rigorously and formally represented or
evaluated [11].

The current version and associated experiments with the CBIABM represent how
such a process might work. We make no claim that the CIABM is a comprehensive
representation of either the bat or human immune system, nor even that it completely
describes all the known features associated with bat viral tolerance. Rather, the CIABM is an
explicit representation of a specific set of hypotheses related to a specific set of mechanisms
proposed as being important in characterizing the difference between viral tolerance in
bats and humans. As such, the CBIABM is not expected to be able to model a clinical
disease course; it does not contain features, such as the adaptive immune system, that are
known to play an important role in human disease, nor is it able to generate higher-order
phenomena, such as vital signs or organ function, normally used to characterize disease.
However, despite its abstraction, the CBIABM is a complex model (see Figure 1) and
does represent a large list of known mechanisms identified through experimental biology.
As such, the CBIABM can address questions about the role of those specific mechanisms it
incorporates, a capability that is not present in more “theoretical” mathematical models
that abstract away such detail so they may be more analytically tractable.

One example of an insight gained from this type of complex mechanism-based
modeling is the potential role of the endothelial inflammasome: both as a feature that
distinguishes between bat and human viral tolerance and as a potential therapeutic
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target in treating viral diseases. Most interest in the inflammasome has been under-
standably focused on its manifestation in immune cells [6–8,23,32,44]; this is reason-
able since immune cells are the cellular effectors of the immune/inflammatory response.
However, our simulations with the CBIABM show that in order to reflect the differences
between bat and human responses to viral infection, it is insufficient to only focus on the
immune cells. Comparison between bat and human parameterizations using only differ-
ences in immune cell inflammasome activity were able to generate some differences in viral
tolerance, but not to the degree of the known differences between bat and human metabolic
rates (>10-fold more in bats); see Figure 4. Alternatively, the endothelium is well recognized
as playing a role in the acceleration of local tissue inflammation to systemic disease [27],
but without a more “complicated” modeling context that parses the mechanism-based
components of the immune response the impact of this feature on how bats maintain viral
tolerance would not be appreciated. In our review of the literature, we were not able
to find any studies examining bat endothelial inflammasomes but given the ubiquity of
inflammatory cell adhesion and trafficking, we make the assumption that such molecu-
lar endothelial-mediated mechanisms do exist. We also reason that given the reduced
inflammatory cell inflammasome activity seen in bats, such reduced activity would also be
present in the inflammasome in other cell types. The results of these simulations with the
CBIABM present a testable hypothesis that, if true, could guide a new approach to a single
treatment applicable to a range of viral infections. In terms of potential therapeutic targets,
while the endothelium in COVID-19 has received considerable attention, given that the
receptor target for the SARS-COV2 spike protein is present in vascular tissue and given the
clinically reported hypercoagulable complications (e.g., inappropriate clot formation) seen
in COVID-19, many proposed non-vaccine therapies target the down-stream process of
coagulation [45]. Alternatively, our comparative biology simulations suggest that a specific
molecular mechanism/module, the endothelial inflammasome, could be a more general
functional reason for why local viral infections become systemic and could potentially
provide an area for investigating and developing more generalizable therapeutic agents.
If future wet-lab experiments can be performed to support (or refute) the simulation
findings from the CBIABM, then a significant advance in treating viral disease is possible.

We accept that there are limitations to the current version of the CBIABM. The CBI-
ABM lacks representation of the adaptive immune response, which does not allow the
CBIABM to replicate clinical disease dynamics and associated meditator time-series data
much beyond 7–10 days post initial infection, at which time lymphocyte populations con-
tribute heavily to the host response. This, in turn, limits the ability to use the CBIABM as
a test platform for discovering new multi-modal and adaptive control strategies, which
is one of the most potentially impactful roles for complex mechanism-based simulation
models [46–48]. We further recognize that the current set of simulation experiments do not
fully explore the different parameter combinations that might lead to the differences be-
tween viral tolerance phenotypes, with implications on the relative roles and contributions
for cell-specific inflammasome activity and T1IFN antiviral functions.

In the future, we will directly address the limitations noted above. Components of the
adaptive immune response will be added, first with attention to the cytotoxic acute phase
components, then later incorporating those components and functions having to do with
immune memory, both cellular and humoral. We will also incorporate more sophisticated
representations of “stress” in order to examine the role of emergence from hibernation and
the effect of co-infections on viral spillover. We will also perform a more comprehensive
examination of model parameter space to gain greater insight into the combinatorial aspects
that might generate different modes of viral tolerance. This will be done by adapting the
CBIABM to our developed pipeline for using machine learning and artificial intelligence
methods to refine model rules and parameter space while encompassing biological hetero-
geneity [30]. This approach, in concert with the modular structure of the CBIABM, will also
allow future developments that include the implementation of virus-specific properties and
functions related to invasiveness, replication and countermeasures to antiviral mechanisms,
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and the ability to represent differences in inflammasome suppression seen across various
bat species [49].

5. Conclusions

We believe that there is considerable benefit in the comparative biology study of the
differences between bats and humans with respect to viral tolerance and that these investi-
gations can provide invaluable insights that may help our preparations for the inevitable
“next pandemic.” We also believe that comparative computational models of sufficient
complexity and representation of biological mechanisms, such as the CBIABM, can serve
as important adjuncts to help inform and integrate more traditional experimental and
investigatory methods and help develop biological countermeasures that could mitigate
the health and societal impact of future pandemics.
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Appendix A

Table A1. Mediators Represented in the CBIABM, Their Functions in the Model, and Associated References.

Mediator Modeled Functions and References

Pathogen/Damage-Associated Molecular Patterns (P/DAMPS)

Produced when cells die by some other means than apoptosis (pyroptosis or necrosis). Persists in the presence of
non-apoptosis dead cells until phagocytosed by macrophages. Functions a chemoattractant for macrophages,
shifts macrophages to proinflammatory phenotype, primes inflammasomes [24,25]. Added to by “metabolic

byproduct” (“Met-By”) as simulated extracellular DNA from cellular damage from metabolic stress. Diffuse at
0.1, Evaporate at 0.90.

Reactive Oxygen Species (ROS) Produced during PMN respiratory burst, damages epithelial cells [29]. Diffuse at 0.1, Evaporate at 0.90.

Platelet-Activating Factor (PAF) Made by activated endothelial cells, functions as chemotaxis and adhesion activation/recruitment signal for
PMNs [28,29]. Diffuse at 0.1, Evaporate at 0.90.

Tumor Necrosis Factor (TNF) Produced by proinflammatory macrophages, functions to activate the inflammasome in macrophages, activates
endothelium, consumed by epithelial cells [6–8,29]. Diffuse at 0.2, Evaporate at 0.99.

Interleukin-1 (IL-1)

Produced by inflammasome priming and activation in macrophages, primarily released at pyroptosis, produced
by PMNs, functions to activate endothelium and shift macrophages to proinflammatory phenotype, along with
TNF stimulates infected epithelial cells to produce IL-6 [3,4,6,7,44]. Consumed by macrophages. Diffuses at 0.2,

Evaporates at 0.99.

Interleukin-18 (IL-18)
Produced by infected epithelial cells. Produced by inflammasome priming and activation in macrophages and

primarily released at pyroptosis, facilitate NK cells to produce IFNg (in conjunction with T1IFN and IL-12),
consumed by NK cells [3,4,6–8,50]. Diffuses at 0.2, Evaporates at 0.99.

Interleukin-6 (IL-6) Produced by proinflammatory macrophages, dendritic cells, and infected epithelial cells [51,52], diffuses at 0.2,
evaporates at 0.99.

Interleukin-8 (IL-8) Produced by proinflammatory macrophages, functions as chemotactic compound for PMNs [29]. Diffuses at 0.3,
evaporates at 0.99.

Interleukin-10 (IL-10)
Produced by both pro- and anti-inflammatory macrophages, function is to shift balance of macrophages from

proinflammatory to anti-inflammatory phenotypes [53,54]. Consumed by macrophages. Diffuses at 0.2,
evaporates at 0.99.

Interleukin-12 (IL-12) Produced by dendritic cells and proinflammatory macrophages, function to facilitate NK cell production of IFNg
(in conjunction with IL-18 and T1IFN) [55,56]. Consumed by NK cells. Diffuses at 0.2, Evaporates at 0.99.

Type 1 Interferons (T1IFN)

Produced by infected epithelial cells and NK cells, functions as chemotactic compound for NK cells, dendritic
cells, and macrophages, facilitates production of IFNg by NK cells (in conjunction with IL-12 and IL-18), induces
production of IL-12, IFNg, and (in conjunction with IL-1) IL6, has antiviral effect by reducing viral replication in

infected epithelial cells, constitutively produced in bats, only induced in humans, enhances apoptosis in response
to viral infection [3,4,57–59]. Consumed by macrophages and dendritic cells. Diffuses at 0.1, Evaporates at 0.99.

Interferon-gamma (IFNg) Produced by NK cells, proinflammatory macrophages, dendritic cells, functions to shift macrophages toward
proinflammatory phenotype [58,60,61]. Consumed by macrophages. Diffuses at 0.2, evaporates at 0.99.

Notes for Table A1:
The mediators in the CBIABM are modeled as extracellular entities and as “patch

variables” as per NetLogo syntax. They share the following features:

https://www.mdpi.com/article/10.3390/v13081620/s1
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1. They are produced by cellular agents based on those agents’ rules.
2. They all diffuse via the NetLogo primitive “diffuse.” This command takes a percentage

of the value of the variable on each patch and divides it among the surrounding
8 patches. For instance, “Diffuse mediator 0.1” takes 10% of the value of that mediator
and divides it among the surrounding 8 patches.

3. Mediators are qualitatively divided into those with more local effects (diffuse 0.1) and
those with slightly more diffuse effects (diffuse 0.2). The exception is IL-8, which has
a diffuse of 0.3; this was done because of how PMNs arrive on the screen in order to
make sure they were able to have a gradient to follow.

4. All mediators also undergo an “evaporation” function, where the mediator is de-
creased by a percentage amount; for example, set mediator × 0.9 decreases the media-
tor 10% each step. This is to simulate non-represented degradation of
the mediator.

5. Mediators are qualitatively divided into those with slightly longer lifespans (× 0.99)
and those with shorter (× 0.90).

6. Some mediators are actively consumed by binding to cellular receptors.
7. All the mediators have a lower limit of detection below which the value of that

mediator on a patch is set to 0. This is done because the Evaporation function is
a percent decrement, and therefore, these values will never reach 0. This is done
for two reasons: 1. Because the edges of the model wrap, there are artifacts in
mediator levels when non-zero mediators persistently diffuse across the edges, and 2.
For computational efficiency, so that all the patches do not need to compute minimal
values of mediators. This value is the same for all the mediators and is set at <0.1.

It should be noted that the choices made in these values are qualitative and semi-
arbitrary because reliable system-level data for most of these properties are not available.
For instance, time course data from an in vivo experiment cannot be directly used to inform
individual cell-based rules because the measurement is an aggregation of all the cellular
effects. In vitro or biochemical assays can provide some guidance to qualitative dynamics,
but since these are not performed in the tissue where these features would actually manifest,
attempts to use quantitative values can provide a false impression of precision and accuracy
that the model does not have. The absolute values associated with any of the features/rules
are meaningless since the CBIABM is not spatially quantitatively accurate. Rather, the
relative relationship between the values used for the CBIABM rules is what is important,
and even these are “hand-tuned” in order to generate plausible behaviors. Details of
the specific implementation of these rules can be seen in the downloadable NetLogo
executable file.

Appendix B

Table A2. Mediators vs. cell types that produce them.

Mediator vs.
Cell Types T1IFN TNF IL-

1
IL-
6

IL-
8 IL-10 IL-12 IL-18 IFNg ROS PAF P/DAMPS

Epithelial Cells + + + +

Macrophages + + + + + +

NK Cells +

Dendritic Cells + + +

PMNs + +

Endothelial
Cells +
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Appendix C

Figure A1. Trajectories for every represented mediator in the CBIABM, excepting PAF, ROS, and P/DAMPs; the reason
these are not displayed is that they are very local mediators not generally or reliably measured systemically. The values on
the Y-axes of these plots are unitless, with the rationale relayed in Appendix A. The blue lines are mediator trajectories
from n = 10 stochastic replicates at an initial inoculum = 75 corresponding to moderate disease severity, whereas the red
lines are mediator trajectories from n = 10 stochastic replicates at an initial inoculum = 150 corresponding to severe disease
severity. Given the representation of a generic virus in the CBIABM, these plots all demonstrate plausible trajectories
corresponding to the assumed onset of symptoms at ~3 days, with expected higher values and generally increased durations
with greater initial inoculum and disease severity. Note that the absence of T cells in the current version of the CBIABM
means their contributions to the levels of these mediators are not present and not reflected in these trajectories beyond
~day 7. These simulations also demonstrate the effect of stochastic processes in variation in the trajectories, consistent with
the heterogeneity present within experimental data and clinical populations. IL-1 = interleukin-1, TNF = tumor necrosis
factor, IL-10 = interleukin-10, IL-12 = interleukin-12, IFNg = interferon-gamma, IL-8 = interleukin-8, IL-6 = interleukin-6,
IL-18 = interleukin-18, T1IFN = type 1 interferons.
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