
METHODS
published: 10 December 2019

doi: 10.3389/fnhum.2019.00430

Edited by:

Vasil Kolev,
Institute of Neurobiology (BAS),

Bulgaria

Reviewed by:
Vince D. Calhoun,

Georgia State University,
United States
Weidong Cai,

Stanford University, United States

*Correspondence:
Paul J. Laurienti

plaurien@wakehealth.edu

Specialty section:
This article was submitted to Brain

Imaging and Stimulation, a section of
the journal Frontiers in Human

Neuroscience

Received: 15 July 2019
Accepted: 21 November 2019
Published: 10 December 2019

Citation:
Bahrami M, Lyday RG, Casanova R,

Burdette JH, Simpson SL
and Laurienti PJ (2019) Using

Low-Dimensional Manifolds to Map
Relationships Between Dynamic

Brain Networks.
Front. Hum. Neurosci. 13:430.

doi: 10.3389/fnhum.2019.00430

Using Low-Dimensional Manifolds to
Map Relationships Between Dynamic
Brain Networks
Mohsen Bahrami1,2, Robert G. Lyday1,3, Ramon Casanova4, Jonathan H. Burdette1,3,
Sean L. Simpson1,4 and Paul J. Laurienti1,3*

1Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States, 2Department
of Biomedical Engineering, Virginia Tech—Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC,
United States, 3Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States, 4Department
of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States

As the field of dynamic brain networks continues to expand, new methods are needed
to allow for optimal handling and understanding of this explosion in data. We propose
here a novel approach that embeds dynamic brain networks onto a two-dimensional
(2D) manifold based on similarities and differences in network organization. Each
brain network is represented as a single point on the low dimensional manifold with
networks of similar topology being located in close proximity. The rich spatio-temporal
information has great potential for visualization, analysis, and interpretation of dynamic
brain networks. The fact that each network is represented by a single point makes it
possible to switch between the low-dimensional space and the full connectivity of any
given brain network. Thus, networks in a specific region of the low-dimensional space
can be examined to identify network features, such as the location of brain network hubs
or the interconnectivity between brain circuits. In this proof-of-concept manuscript, we
show that these low dimensional manifolds contain meaningful information, as they were
able to successfully discriminate between cognitive tasks and study populations. This
work provides evidence that embedding dynamic brain networks onto low dimensional
manifolds has the potential to help us better visualize and understand dynamic brain
networks with the hope of gaining a deeper understanding of normal and abnormal
brain dynamics.

Keywords: dynamic brain networks, fMRI, connectivity pattern, PCA, t-SNE, embedding

INTRODUCTION

Brain function emerges from interactions among a massive number of neuronal elements.
Although investigations of such complex interactions at a neuronal level still remain beyond the
reach of current methodologies, coordinated activities of larger-scale brain regions measured
using functional brain imaging methods such as functional magnetic resonance imaging
(fMRI) are actively being investigated. Analyses of functional connectivity, which represents the
quantified coordination of activity between brain regions, and functional networks generated
from thousands of such functional connections, have moved to the forefront of neuroimaging
research over the past two decades. There is a growing literature showing that network topology
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is associated with cognitive and behavioral outcomes (Bressler,
1995; Sporns, 2010; Park and Friston, 2013; Petersen and Sporns,
2015). More recently, it has been reported that functional brain
network connectivity patterns fluctuate over short periods of
time on the order of seconds (Handwerker et al., 2012; Hutchison
et al., 2013; Ma et al., 2014). These dynamic fluctuations
have been associated with consciousness (Barttfeld et al., 2015;
Godwin et al., 2015), learning (Bassett et al., 2011), behavioral
responses, and cognitive functions (Cole et al., 2014; Shine
et al., 2016), as well as neurodegenerative disorders (Rashid
et al., 2016; Zhang et al., 2016). For instance, the integration
between specific communities (or modules) of the brain has
been shown to increase during a cognitive task (Braun et al.,
2015; Finc et al., 2017), and dynamic changes of brain network
modular organization have been associated with learning success
(Bassett et al., 2011).

Brain dynamics can be conceptualized as transitions between
different brain states in response to internal processing and
external stimuli (Rabinovich et al., 2012; Nakagawa et al.,
2013; Vidaurre et al., 2017). Network neuroscience attempts
to model these brain states using whole-brain connectivity
patterns. Although each brain state is surely more complex
than the connectivity of a given network model, brain network
models do effectively capture various normal and abnormal
brain processes, as described above. Exceptional challenges
facing those interested in dynamic brain networks are generating
meaningful visualizations, performing quantitative analyses, and
interpreting the vast amounts of data. For instance, for a
given study participant, a dynamic network analysis typically
yields >100 networks, each with 30,000 or more network
connections. To deal with such data, most studies of brain
network dynamics have reduced the data to commonly used
graph measures, such as node degree and/or modularity (Jones
et al., 2012; Shine et al., 2016; Fukushima et al., 2018;
Sizemore and Bassett, 2018). Other studies have focused on
fluctuations of individual network connections rather than
whole-brain dynamics (Elton and Gao, 2015; Hansen et al., 2015;
Simony et al., 2016).

Reducing complex brain network dynamics to single graph
variables or focusing on individual connections does not take
advantage of the wealth of information present in the fluctuations
of connectivity across the entire brain network. Representing
the whole-brain networks in a low dimensional space that
captures similarities and differences in network connectivity
would provide a powerful methodology to study network
dynamics within and between individual subjects. Ideally, such
an embedding procedure would yield a mapping that can be
visualized, capitalize on the inherent complexity of the entire
brain network, and allow for direct linkages between high
dimensional brain networks and low dimensional mapping.
Networks with similar topology would be mapped to similar
locations in space, and as network topology becomes more
and more distinct, the distance between two networks would
increase. In such a low dimensional embedding, clusters of
similar networks may represent subtle variations in a given brain
state, and dynamic transitions between varying connectivity
patterns could be examined in time.

There is a growing interest in studying and visualizing brain
dynamics in low-dimensional space, but most studies have
directly examined the fMRI time series, rather than dynamic
networks. Principal components analysis (PCA) has been used
to reduce the dimensionality of the raw fMRI data (Shine et al.,
2019), and reservoir computing (Venkatesh et al., 2019) has been
used to examine temporal state transitions in the raw fMRI data.
Both of these studies demonstrated that the patterns of dynamic
transitions were unique for distinct task conditions. Taghia et al.
(2018) applied a Bayesian switching dynamical systems (BSDS)
model to ROI time series from raw fMRI data to identify hidden
brain states and state transitions during a working memory task.
They showed that the presence/absence of specific (dominant)
brain states during the task could predict performance accuracy.
They also identified an association between cognition and
flexibility in transitioning between hidden brain states.

Several recent studies have mapped brain dynamics
on low-dimensional manifolds using methods other than
embedding raw fMRI time series. In (Billings et al., 2017),
fMRI data were processed with independent components
analysis (ICA), and the dynamic brain states were plotted in
2-dimensional (2D) space using the t-distributed stochastic
neighbor embedding (t-SNE) algorithm (van der Maaten
and Hinton, 2008). Although this study did not directly map
individual network dynamics, density maps were created
to visualize the portions of this 2D space most commonly
occupied under various task conditions. Maps were also
created to examine the likelihood of transitioning away from
a given point in the 2D space. The data showed that these
maps were distinct for different task conditions. Using a
maximum entropy model, brain states have been defined
as attractors or local minima in the energy landscapes
of the brain networks (Watanabe et al., 2014; Ashourvan
et al., 2017; Kang et al., 2017). Allen et al. (2014) used a
clustering approach to identify functional connectivity patterns
which they defined as reoccurring short-term connectivity
patterns. Using group ICA components, they first produced
a stationary functional network for each subject. Dynamic
networks were then generated, and k-means clustering was
used to identify the reoccurring connectivity patterns. They
demonstrated flexible connections between specific brain
regions and identified unexpected functional connectivity
patterns involving interactions between large-scale networks.
While each of these studies provides interesting insights into
brain network dynamics, none of the studies examine dynamic
network transitions at the level of the individual subject. In
addition, none of the methods used allow for a one-to-one
mapping between high-and low-dimensional spaces. In other
words, the individual points embedded in low-dimensional
space do not represent individual networks in high-dimensional
space. If one wants to examine the regional brain circuits and
the topology of brain networks occupying particular portions of
the low-dimensional space, it is necessary to be able to transition
directly from points in low-dimensional space to the actual
high-dimensional networks.

In the current study, we propose directly embedding dynamic
brain networks into low dimensional space as a means to
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study network dynamics within and across study participants.
This space can be simply generated using various linear
and nonlinear embedding techniques, can accommodate large
datasets, and can be used for multiple analytical purposes.
Dynamic networks embedded into this low-dimensional space
maintain their natural temporal sequence. In addition, the
similarities or differences between each network and every
other network are captured by the spatial locations of the
embedded points. Importantly, one can readily examine the
original high-dimensional brain network representation for any
low dimensional point mapped to this space. Thus, is space
preserves information present in high dimensional networks
while allowing for visualization, analyses, and interpretation
of dynamic connectivity patterns in low dimensional space.
In addition, other high dimensional network features, such
as modularity or node degree maps, could be added as an
additional dimension or even directly integrated into the 2D
space (McInnes et al., 2018). We show maps of dynamic brain
networks projected into low-dimensional space using linear
(PCA) and nonlinear (t-SNE) embedding techniques. As a proof
of concept that this low dimensional space contains meaningful
information, we classify embedded dynamic networks for
different cognitive tasks (rest, 1-back, and 2-back working
memory tasks) and different study populations (younger and
older adults). We also assessed the spatial clustering of the
embedded dynamic networks by condition, population, and
individual study participants. We postulate that dynamic brain
networks embedded in low dimensional space have the potential
to be used for visualization, analyses, and interpretation across
different studies.

MATERIALS AND METHODS

Study Participants and Image Collection
Data in this study was collected as part of a prior study
examining the effect of the interaction between age and alcohol
consumption on brain networks (Mayhugh et al., 2016) in
community-dwelling participants. The dataset is comprised of
41 older adults (65–80 years old, sex (M/F) = 22/19) and
22 younger adults (24–35 years old, sex (M/F) = 10/12)
that consumed alcohol across a range of consumption levels.
This dataset was selected as it contained valuable groups
and conditions to assess two types of studies common in
the human neuroimaging literature: (1) studies identifying
different neural mechanisms underlying various cognitive tasks;
and (2) identifying differences between distinct populations or
groups. This data set contained multiple study conditions (rest
and working memory) as well as two distinct study populations
(younger and older adults).

All participants had brain imaging completed on a 3T Siemens
Skyra scanner in a single visit. T1-weighted structural data were
acquired in the sagittal plane using a single-shot 3D MPRAGE
GRAPPA2 sequence (resolution = 0.98 × 0.98 × 1.0 mm,
acquisition time: 5 min and 30 s, TR = 2.3 s, TE = 2.99 ms,
192 slices). Resting-state as well as 1-back and 2-back working
memory fMRI data (resolution = 3.75 × 3.75 × 5.0 mm) were
acquired for each participant using BOLD-contrast images in an

echo-planar imaging sequence (acquisition time = 6 min and
20 s, TR = 2.0 s, TE = 25 ms, flip angle = 75◦, volumes = 187,
slices per volume = 35). Participants were asked to look at a
fixation cross during the resting-state scan. For the working
memory task, a white letter was presented one at a time on a
black background. Participants were asked to respond with either
a right (yes) or left (no) finger press to indicate if the letter they
were viewing was the same letter that was presented just before
(1-back) or two letters before (2-back). Formore study details, see
Mayhugh et al. (2016).

Image Preprocessing and Functional
Network Generation
Standard image preprocessing was conducted using SPM121.
Structural images were segmented into six tissue probability
maps: gray matter, white matter, cerebrospinal fluid, bone, soft
tissue, and air/background. Gray matter and white matter maps
were combined to create a brain tissue map. This image was
warped using Advanced Normalization Tools (ANTs; Avants
et al., 2011) to Colin space2 to match a functional atlas (Shen
et al., 2013). The inverse transform produced by ANTs was
applied to the functional atlas in order to put the atlas into each
subject’s native space. Structural images were then co-registered
to each functional image. Resulting transforms were applied
to segmentation maps as well as the native space atlas. Other
preprocessing of the functional data included: discarding the first
10 volumes to ensure that fMRI signals had achieved equilibrium,
slice time correction, realignment to the first volume, band-pass
filtering (0.009–0.08 Hz, Power et al., 2012; Yamashita et al.,
2018), and regressing six rigid-body transformation parameters
that were generated during the alignment process along
with average brain tissue signals (gray matter, white matter,
cerebrospinal fluid). Functional data were motion-corrected by
removing volumes with excessive movement and signal change
according to the method in Power et al. (2012).

The brain was parcellated into 268 functional regions (Shen
et al., 2013), and whole-brain networks were generated based
on these regions. Dynamic networks were created using the
sliding window technique. A rectangular window was used that
contained 60 volumes (120 s), and a shift size of 1 volume
(2 s) was used to generate sequential networks. The shift size of
2 s (one TR) was chosen to maintain the maximum temporal
resolution for brain network dynamics. For more detail on the
window and shift size choices see Leonardi and Van De Ville
(2015) and Mokhtari et al. (2018). We moved the window across
the times series, and at each shift, the Pearson’s correlation
was computed between the time-series of all ROI pairs. This
provided a correlation matrix that represents the functional
network at each point (each shift). Weighted, fully connected
networks containing positive and negative edges were used for
all analyses. Given that there were 187 functional volumes and a
window size of 60 volumes, there was amaximumof 127 dynamic
networks for any given person/condition. On average, there were
115 networks per person/condition with the number of networks

1www.fil.ion.ucl.ac.uk/spm/
2http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
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differing across participants due to volumes being removed by
the motion correction procedure described above.

Embedding Dynamic Networks in Low
Dimensional Space
After the dynamic functional network generation, the networks
were reformatted into a combined data structure. Given that the
Pearson’s correlation matrices (268 × 268 cells) are symmetric
about the diagonal, values above the diagonal were extracted
and reshaped into a 1-dimensional vector (35,778 elements) for
each network in the dynamic network time series. The vectors
were stacked across all time points (115 on average) for a given
participant with each row containing the 35,778 correlation
values of a single time point. The subjects were then further
stacked by adding all rows for each subject to the end of
the matrix (Figure 1). The resulting 2D matrix contained
35,778 columns and a row for each and every dynamic network
(number of subjects × number of dynamic networks) in
the particular analysis. PCA was then used to reduce the
dimensionality of this data, yielding a series of components
with associated weights. The results of the PCA analysis were
specific to the conditions or groups that were included in
each comparison. Thus, the individual components, number
of components, and the variance captured by each component
differed for each analysis. Supplementary Figure S1 contains
variance plots for each of the PCA analyses. These figures
indicate the number of components needed to capture 99%
of the total variance as well as the percent of the variance
captured by the first two components. Note that it is vital to
ensure that information from test data are not leaked into the
training model for the classification portion of this study. It has
been demonstrated that dimension reduction using unsupervised
learning (as performed here) prior to partitioning the data into
training-testing does not result in information leaking from
training to testing samples (Hastie et al., 2009). Following the
dimension reduction step, the resulting weights were embedded
onto a 2D manifold using either linear (PCA) or nonlinear
(t-SNE) methods (Figure 1). These 2D representations were used
for visualization, classification of study populations and cognitive
tasks, and spatial clustering statistics at the group and individual
levels. The individual embedded networks were color-coded
to indicate study conditions or populations (Figures 2, 3 for
example) or to identify individual participants (Supplementary
Figures S2–S4).

For linear embedding, the weights for the first two
components from PCA, i.e., the two components that captured
the most variance, were used for the embedding procedure. This
linear embedding method is simply a mapping of the weight of
the first PCA component on the X-axis vs. the weight of the
second component on the Y-axis. Thus, embedding the data in
2D space limits the analysis to the first two components.

For nonlinear embedding, t-SNE was used (van der Maaten
and Hinton, 2008). However, there is no restriction on the
method to be used and other methods such as Isomap
(Tenenbaum et al., 2000) or UMAP (McInnes et al., 2018)
could be used. Two different sets of embedded mappings
were created with t-SNE using either the weights from all

components needed to capture 99% of the variance or the weights
from the first two components. This latter set of mappings
was created for direct comparison to the linear embedding.
t-SNE is a non-linear machine learning algorithm developed
for the reduction and visualization of high-dimensional data.
It is an unsupervised algorithm that projects high-dimensional
data into a lower space in two main steps. First, a probability
distribution over high-dimensional point pairs (fMRI networks
in our case) is constructed such that similar (high-dimensional)
points get higher probabilities. Then, a probability distribution
over low-dimensional data (initially generated randomly or
through other data reduction methods) is constructed. The
Kullback-Leibler divergence between the two distributions is
minimized with respect to the locations of the low-dimensional
data to obtain the final low-dimensional points after sufficient
number of optimization iterations. The distribution in the
high-dimensional space is defined as a standard Gaussian
Kernel, while the low-dimensional distribution is defined as
a t-distribution. More detail about t-SNE is provided in the
Supplementary Material. A MATLAB (2016b) implementation
of t-SNE was used for the embedding3.

To examine how our network and image analysis parameters
affected the embedding results, we investigated additional
window sizes, shift sizes, window shapes, and motion correction
algorithms on the embedded mappings. Specifically, we
embedded dynamic networks generated using 90 and 120 volume
windows, 2 and 5 volume shift sizes, and a weighted window
(Hamming function). The mappings were all qualitatively
similar across the different parameter settings. In addition,
we re-processed the raw imaging data and used Automatic
Removal of Motion Artifacts (AROMA) methodology to correct
for motion artifacts (Pruim et al., 2015) as this method does
not delete aberrant image volumes (i.e., volume censoring)
and has recently been shown to perform as well as volume
censoring (Parkes et al., 2018). The mappings were similar
between the two motion correction methodologies. Figures
showing the additional embedded networks are all presented in
the Supplementary Figures S5–S8.

Classification Using Low Dimensional
Networks
Machine Learning Approach
For each classification, we used a support vector machine (SVM)
to discriminate between classes of dynamic networks using the
spatial coordinates of the dynamic networks in low dimensional
space. SVM is a widely-used classifier that finds a maximum-
margin hyperplane between the two classes during the training
phase (Burges, 1998). A non-linear SVM classifier with a radial
basis function (RBF) kernel as implemented in the LIBSVM
toolbox for MATLAB (Chang and Lin, 2011) was used to classify
the points in 2D space.

Evaluation of Classification Performance
To evaluate classification performance a repeated random
subsampling (training-testing 68%–32%) was used to ensure that

3https://lvdmaaten.github.io/tsne/code/tSNE_matlab.zip
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FIGURE 1 | Methods for creating embedded dynamic networks. Pre-processed fMRI scans are converted into time series data representing n ROIs and divided
into T overlapping windows of equal length. Each window is shifted by a step of one time volume from the previous window. For each window, the data is correlated
between ROIs to create T dynamic networks (Pearson’s correlation matrices) that are symmetric and unthresholded. The process is repeated for N subjects. The
resulting networks are vectorized retaining only the data above the diagonal and stacked across time and subjects into a single matrix sized (N × T) × m, where
(N × T) is the number of dynamic networks and m is the number of edges in each vectorized network (n × (n − 1)/2). The orange bars denote data for individual
subjects. The data is reduced using principal components analysis (PCA) and component weights are formed into a new data matrix. A specified number of
component weights are then embedded into 2D space.

the obtained results can be generalized. The hyper-parameters
(c: cost, and g: gamma) were selected using the average across
a 5-fold cross-validation procedure (Hastie et al., 2009) with a
grid search on hyperplane parameters during training at each
subsampling permutation. Due to stochastic components in
the t-SNE algorithm, different embedding runs can result in
slightly different maps for the same input data. To account for
this variability of the t-SNE maps, the t-SNE algorithm was
run 50 times, which resulted in 50 datasets for classification.
Thus, each classification analysis was repeated 50 times, and
the final performance measures were obtained by averaging
across these 50 classifications. We used the accuracy, sensitivity,
and specificity of the test data set for model performance
evaluation. The same evaluation procedure was used for the
single PCA datasets obtained from the first two components for
each analysis.

Analysis
We performed several classification analyses using 2D
representations (i.e., 2D points) generated with t-SNE and
PCA. Dynamic networks from younger adults were used to
classify: (i) rest/2-back working memory task; (ii) rest/1-back
working memory task; and (iii) 1-back/2-back working memory
tasks. Dynamic networks from the 1-back working memory task
were used to classify populations of younger and older adults.

Classification of Embedded Task-Based Dynamic Networks
Each dataset was split into training (68%) and test (32%)
subsets ensuring that the entire 2D embedding from each
participant was either in the training or the test subset. Using
the parameters (SVM hyperplane) obtained from the training

phase, the label (i.e., −1 or +1) for each data point in the test
subset was predicted. In order to classify the dynamic network
time series for each participant, the predicted labels for each
of the data points from the participant’s embedded dynamic
network time series were used. The label with the majority
(more than half of the dynamic networks) was used as the label
for that participant’s entire dynamic network time series. The
predicted and the actual classes of embedded dynamic networks
were then used to obtain the accuracy, sensitivity, and the
specificity. This process was repeated with 100 permutations of
splitting the dataset into the training and test subsets, and the
average values across the 100 permutations were used as the
performance measures for that classification. This classification
procedure was repeated for the 50 t-SNE replications, and the
average values of accuracy, sensitivity, and specificity across
the 50 classifications were reported as the final classification
performance measures. This same approach was used for
classifications of PCA datasets (note that for PCA embedding
replications are not necessary so a single dataset was used and
the average accuracy, sensitivity, and specificity were computed
across 100 permutations).

Classification of Embedded Population-Based Dynamic
Networks
Each dataset was split into training (68%) and test (32%) subsets.
To address the unbalanced data with 41 older and 22 younger
participants, the same proportion of groups was used in training
and test subsets to avoid any potential bias. The similarity
between the sensitivity and specificity results indicates that there
was no major effect of the population imbalance. Additionally,
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FIGURE 2 | Embedded dynamic brain networks across tasks. Embedded networks are shown for younger adults to contrast 2-back working memory task and rest
(top row), 1-back working memory task and rest (middle row), and 2-back and 1-back working memory tasks (bottom row). Each column shows a different 2D
embedding method. Although patterns differ between embedding methods, the same trend is apparent across methods: 2-back and rest have the greatest
separation, 1-back and rest are less distinct, and 2-back and 1-back have the least separation. The embedded networks are colored by task: 2-back—blue,
rest—green, 1-back orange. For both t-distributed stochastic neighbor embedding (t-SNE) datasets, the embedding was repeated 50 times, but only one
representative map is shown here.

the class (i.e., group) weights in the SVM optimization process
were modified to account for the unbalanced data by choosing a
larger weight for the class with smaller number of observations.
All data points representing the embedding of each participant
were grouped together either in the training or the test subset.
We used the same majority vote procedure as the one described
above to obtain the predicted class of each embedding. This
process was repeated with 100 permutations of splitting the

dataset into the training and test subsets, and the average values
across the 100 permutations were used as the performance
measures for that classification. This classification procedure was
repeated for the 50 t-SNE replications, and the average values of
accuracy, sensitivity, and specificity across the 50 classifications
were reported as the final classification performance measures.
This same approach was used for classifications of PCA datasets
but with a single embedding.
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FIGURE 3 | Embedded dynamic brain networks across groups. Embedded networks are shown for younger and older adults during the 1-back working memory
task. As with the task-based mapping, the group maps made with t-SNE using 99% of the variance is distinct from the other two mappings. However, the two
populations are visibly distinct for all embedding methods. The embedded networks are colored by group: younger—blue and older—red. For both t-SNE datasets,
the embedding was repeated 50 times, but only one representative map is shown here.

RESULTS

Summary of Methods
In ‘‘Visualization of Embedded Dynamic Networks’’ section,
networks projected into the 2D space are described. ‘‘Task-
Based Dynamic Networks’’ section details embedded task-based
dynamic networks and ‘‘Population-Based Dynamic Networks’’
section details the embedded population-based dynamic
networks. The ‘‘Mapping Between High and Low Dimensional
Networks’’ section describes the one-to-one mapping of low
and high dimensional data. The ‘‘Classifying Embedded
Dynamic Networks’’ section describes the classification
analyses for both embedded task-based and population-
based dynamic networks. Finally, in ‘‘Spatial Clustering
of Embedded Dynamic Networks’’ section, we describe
the clustering of groups and individuals in the embedded
dynamic networks.

Visualization of Embedded Dynamic
Networks
Task-Based Dynamic Networks
Figure 2 shows dynamic networks embedded in low dimensional
space for the population of young adults with comparisons of
2-back to rest, 1-back to rest, and 2-back to 1- back. The first
column in the image shows networks embedded with t-SNE
using 99% of the data variance. There is a clear separation
between the embedded dynamic networks for the 2-back working
memory tasks and rest conditions. This separation is not evident
between 1-back working memory task and rest or between
2-back and 1-back working memory tasks. Dynamic networks
embedded using the first two PCA components are shown in
the middle column of Figure 2. Although the spatial pattern
of the networks embedded using PCA is visibly different from
networks embedded with t-SNE using 99% of the variance, the
overarching pattern across the three task comparisons is quite

similar. The separation between the 2-back working memory
task and rest is quite clear, but there is extensive overlap
between the 1-back and rest as well as between the 2-back
and 1-back comparisons. Given that the PCA embedding was
based on only a small portion of the total variance, t-SNE
was also used to embed networks based only on the first
two-component weights for a more direct comparison. The
last column of Figure 2 shows these results. It is visually
apparent that the shape and spatial distribution of these
embedded networks closely resemble those embedded with
linear PCA.

Population-Based Dynamic Networks
Embedded dynamic networks for younger and older adults
performing the 1-back task are shown in Figure 3. The networks
embedded using t-SNE with 99% of the variance show clear
separation between the younger and older adults. There are
notable exceptions with several of the younger adults having
networks that overlap with the older adults. It is also evident
that the embedded networks from older adults have greater
variability in the spatial distribution compared to those from
the younger adults. The dynamic networks from individual
subjects embedded using the first two PCA components (both
PCA and t-SNE embedding) have spatial patterns distinct from
those embedded using t-SNE with 99% of the variance. These
spatial patterns are comparable to those seen for the between-task
comparisons. Despite differences in the appearance of dynamic
series from individual subjects, there is a clear separation between
the younger and older populations for both embedding methods.
The older adults also have greater variability in the spatial
distribution of the embedded networks compared to younger
adults. All quantitative analyses described below comparing
younger and older adults were performed using the 1-back
task. However, to be complete, the embedded networks for the
2-back and rest conditions are presented in Supplementary
Figure S9.
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FIGURE 4 | One-to-One mapping of low and high dimensional data. High dimensional networks associated with four sample low dimensional 2D points in the
t-SNE embedding (created with 99% of variance) are shown here. Three networks associated with a younger individual (A, B, and C) and one network associated
with an older individual (D) are shown. Interestingly, although in the series of dynamic brain networks, network B (85th network) is closer to network A (72th network)
in time when compared to network C (117th network), the connectivity of network B is more similar to network C when compared to network A, resulting in closer
locations in 2D space. Also, as shown in this figure, all three networks associated with the younger individual are substantially different from the network associated
with the older individual. This is clearly captured by the large separating in the low-dimensional space. For visualization purposes, all four networks were thresholded
to maintain the strongest 1.5% of connections. Network images were generated using the actual Pearson’s correlation matrices in BrainNet viewer software (Xia
et al., 2013).

Mapping Between High and Low Dimensional
Networks
As pointed out earlier in the introduction, unlike most current
methods, the method introduced here allows for a one-to-one
mapping between a given network or cluster of networks in
low dimensional space and the associated network(s) in high
dimensional space. To demonstrate this capability, in Figure 4
we show the mapping between the low and high dimensional
data for networks from two of the participants included in
Figure 3. This figure shows three networks (A, B, and C) from
a younger participant and a single network (D) from an older
participant. The figure highlights the low dimensional spatial
representation and the high dimensional connectivity of each
network. Networks A, B, and C are the 72nd (2:24, min:s),
85th (2:50), and 117th (3:54) networks in the time series of
dynamic networks for the younger participant. Network D is
the first network of the dynamic network time series for the
older participant. As this figure shows, the close proximity in
low dimensional space of the three networks from the young
individual (A–C) is associated with similar connectivity patterns
relative to the network from the older adult (D). For example, the
highly connected hub nodes in the motor cortex and cerebellum
(red and orange nodes) are present in the older adult, but these
nodes have substantially lower degrees in all three networks of

the younger adult. Interestingly, the connectivity of network B is
more similar to network C than it is to network A (e.g., higher
degree hub nodes present in the frontal lobe in network A (green
nodes) are not present in network B and C), despite the fact that
A and B are closer in time. The pattern is depicted in the low
dimensional mapping with B and C being closer together in space
than A and B. Graph variables that are frequently used to evaluate
brain networks (Bullmore and Sporns, 2009) were computed for
each of the individual networks as well as average across the
entire dynamic time series for both participants (Table 1). The
large spatial separation between the younger and older adult
in the low dimensional embedding is supported by consistent
differences in the network variables in single networks as well
as in the average across the time series. However, the limitation
of comparing brain networks using the summary variables is
highlighted by the fact that the summary variables did not
exhibit consistent patterns between three networks from the
younger adult.

Classifying Embedded Dynamic Networks
Task-Based Dynamic Networks
The spatial patterns that are visibly evident in the embedded
networks parallel the results obtained when using the embedded
networks to classify the task conditions with an SVM (Table 2).
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TABLE 1 | Graph summary variables for networks highlighted in Figure 4.

Global efficiency Local efficiency Assortativity

Younger Adult
Network A 0.259 0.463 0.707
Network B 0.342 0.442 0.735
Network C 0.274 0.434 0.731
Series Average 0.342 0.450 0.720

Older Adult
Network D 0.311 0.373 0.691
Series Average 0.315 0.427 0.693

Note that the “Series Average” is the variable computed and averaged over all networks
in that dynamic time series.

For the networks embedded using t-SNE with 99% of the
variance, the 2-back/rest conditions were classified with 87.6%
accuracy. The classification accuracy fell to 58.8% for the
1-back/rest comparison and classification totally failed for the
2-back/1-back comparison (44.5%). The classification sensitivity
and specificity followed similar patterns and are shown in
Table 2. Classification accuracy, sensitivity, and specificity of the
networks embedded using PCA and t-SNE with two components
exhibit the same trends as those for the t-SNE using 99% of the
variance. It is notable that the networks embedded using two
components tended to have higher classification accuracy than
those embedded with t-SNE using 99% of the variance. The first
two components capturing the greatest variability happened to
contribute the most to discriminating between conditions in our
case. The addition of the remaining components to reach 99% of
the variance added individual-level variability, and thus, reduced
classification performance.

The classification boundaries are visualized in Figure 5. This
image shows the average boundary across the 100 training/testing
permutations for each classification. The darker shading is
associated with a higher consistency of boundary location.
In areas where there is clear separation between networks
for the two conditions, the boundary is more discrete and
darker. In areas where the separation between conditions
is less clear, the boundary thickens and lightens, indicating
that the dynamic networks were variably classified across the
100 permutations. Note that for the 2-back/rest maps, the
primary boundary was fairly discrete and was located between

the task-specific networks. The majority of the remaining
space was lightly shaded, indicating that it is unlikely that a
boundary would be found in those areas. There were some
areas where networks from both conditions co-existed and
boundaries were present on some of the permutations, but the
likelihood was relatively low as indicated by the light shading
(for example, middle left region for the tSNE99 map). For the
other classifications with relatively lower accuracy, the boundary
becomes less discrete.

Population-Based Dynamic Networks
Given the visibly clear separation between the embedded
networks for younger and older adults, it is not surprising that
classification accuracy was quite high for the group embedding
maps. Classification accuracy was 88.2% for networks embedded
using t-SNE with 99% of the variance, 88.5% for the networks
embedded with PCA, and 88.9% for networks embedded using
t-SNE with two components. Table 3 presents the average
classification accuracy, sensitivity, and specificity across all
three embedding methods. The classification boundaries are
visualized in Figure 6. As with Figure 5, the image shows the
average boundary across the 100 training/testing permutations
with darker shading being associated with higher boundary
location consistency. The figure shows clear boundaries between
younger and older adults for all three embedding methods. The
classification boundaries for embedded networks of the younger
and older participants during the rest and 2-back conditions are
shown in Supplementary Figure S10.

Spatial Clustering of Embedded Dynamic
Networks
The classification results presented above indicate that there is
distinct spatial clustering for many of the dynamic embedding
maps, but the classification methodology is not intended
for quantifying the spatial clustering. To determine how
well the data clustered by task, group or by individual
participant, the average distance between embedded dynamic
networks was assessed. The distance between each pair
of dynamic networks was computed as the average of
Euclidean distance between all pairs of 2D points from one
embedding and all 2D points from the other embedding.

TABLE 2 | Classification accuracy for embedded task-based networks.

Accuracy Std Dev Sensitivity Std Dev Specificity Std Dev

t-SNE with 99% of the variance
2-Back vs. Rest 87.6 6.8 86.4 11.3 88.8 8.5
1-Back vs. Rest 58.8 7.6 67.2 12.7 50.5 12.9
2-Back vs. 1-Back 44.5 8.8 51.8 22.1 37.1 19.6

PCA with top 2 components
2-Back vs. Rest 90.1 7.9 88.6 12.1 91.4 8.8
1-Back vs. Rest 65.6 11.1 62.2 15.7 69.0 16.2
2-Back vs. 1-Back 52.4 12.4 56.9 18.9 47.9 18.3

t-SNE with top 2 components
2-Back vs. Rest 90.0 7.8 88.9 11.8 91.1 9.0
1-Back vs. Rest 64.8 10.6 57.9 16.4 71.7 14.5
2-Back vs. 1-Back 50.3 11.9 56.1 22.7 44.4 21.7

Each measure is an average of over 100 permutations of the SVM training. The same permutations were used for all embedding methods. For both t-SNE classifications, each
permutation is averaged across the 50 embedding replications as well.
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FIGURE 5 | Classification boundaries for embedded task-based networks. Boundaries for younger adults comparing 2-back working memory task and rest (top
row), 1-back working memory and rest (middle row), and 2-back and 1-back working memory tasks (bottom row). The dynamic networks are overlaid on the
classification boundaries for visualization purposes. Each column shows a different 2D embedding method. The decision boundaries generated from
100 permutations of classifier training/testing were averaged to produce these maps. The darker the background shading the more likely a boundary was present in
that location across the 100 permutations. Dark-light interfaces separate networks from different conditions. The probability of being consistently classified across
permutations is higher for networks located in the lighter regions. For the 2-back/rest comparisons the boundary makes a fairly clear separation between networks
from the two conditions for all embedding methods. For the 1-back/rest comparison, the conditions are not as well separated and the boundaries are less distinct.
For the 2-back/1-back comparisons the boundaries are much less distinct and are widely spread across the space. The classification accuracy closely parallels the
distinctness of the boundaries. For both t-SNE datasets, only one representative map of the decision boundary (from the 50) is shown here.

The distance within tasks/groups was compared to the
distance between tasks/groups to determine how tightly the
participants clustered together based on the task or their
study population. A permutation test was used to determine
if the clustering was significantly greater than expected by
random chance.

Clustering at the individual level indicates that the dynamic
embedding for that person is distinct from other people,
even if they are part of a cluster based on task or group.
In order for an embedding method to simultaneous capture

population and individual level clustering, it must maintain
multiscale properties in the reduced dimensional space. To
evaluate the clustering at the individual level, the distance within
the individual participants’ embedded dynamic networks was
compared to the distance between individuals, and a permutation
statistic was used to assess significance. Here, the distance within
each participant’s embedding was computed as the average of
Euclidean distance among all pairs of 2D points of that same
embedding, and the distance between two series of dynamic
networks was computed as the average of Euclidean distance
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TABLE 3 | Classification accuracy for embedded group-based networks.

Accuracy Std Dev Sensitivity Std Dev Specificity Std Dev

t-SNE with 99% of the variance
Younger vs. Older 88.2 5.3 85.6 11.0 89.6 7.2

PCA with top 2 components
Younger vs. Older 88.5 6.7 81.9 13.7 92.0 8.1

t-SNE with top 2 components
Younger vs. Older 88.9 6.6 83.1 13.7 92.0 8.1

Each measure is an average of over 100 permutations of the SVM training. The same permutations were used for all embedding methods. For both t-SNE classifications, each
permutation is averaged across the 50 embedding replications as well.

FIGURE 6 | Classification boundaries for embedded group-based networks. Boundaries for classifying younger vs. older adults during the 1-back working memory
task. Embedding methods are labeled above each mapping. For all embedding methods, the boundary is fairly distinct and clearly separates the study groups. The
dynamic networks are overlaid on the classification boundaries for visualization purposes. See Figure 5 for more details concerning figure interpretation. For both
t-SNE datasets, only one representative map of the decision boundary (from the 50) is shown here.

between all pairs of 2D points from one embedded series and all
2D points from the other embedded series.

Task/Group Clustering
Tables 4, 5 show the ratio of the within task/group to the
between task/group spatial distances, and statistics for each of
the task/group comparisons based on the embedding method.
Smaller ratios indicate that the clustering within tasks/groups
was higher than between tasks/groups. As the within task/group
clustering decreases, the ratio approaches one (1). As expected
based on the visualization and the classification results, clustering
of the task-based networks was greatest for the 2-back/rest
comparison for all methods. Clustering was highly significant
for all embedding methods. For the 1-back/rest comparison
clustering was substantially lower than for the 2-back/rest
comparison but all methods exhibited significant clustering. The
2-back/1-back comparison did not show significant clustering for
any of the embedding methods, consistent with the visualization
and classification results.

For the comparison of younger vs. older adults, all three
embedding methods showed significant clustering by group.

Statistical comparisons were made between the embedding
methods to identify differences in clustering. Two-sample t-tests
were used to compare the two t-SNE embedding methods.
One-sample tests were used to compare PCA to the t-SNE
methods. All comparisons were significant with p < 0.001 after
correcting for multiple comparisons. The networks embedded
using t-SNE with two components always exhibiting the highest
clustering, followed by PCA, and then t-SNE with 99% of
the variance.

Individual Participant Clustering
Tables 6, 7 show the ratio of the spatial distances within
individuals relative to between individuals across tasks and
groups, respectively. Smaller ratios indicate higher clustering of
embedded dynamic networks at the individual level, i.e., the
embedded series of dynamic networks for each individual
is spatially distinct from other individuals. The embedded
dynamic networks were significantly clustered by individual
across all tasks/conditions for all embedding methods. All
comparisons between the embedding methods were highly
significant (p < 0.001) after correcting for multiple comparisons.
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TABLE 4 | Clustering of embedded task-based networks.

Within/Between Std Dev p-value

t-SNE with 99% of the variance
2-Back vs. Rest 0.7263 0.0178 0.0009
1-Back vs. Rest 0.9662 0.0210 0.0186
2-Back vs. 1-Back 1.0055 0.0110 0.1613

PCA with top 2 components
2-Back vs. Rest 0.6728 - 0.0043
1-Back vs. Rest 0.9361 - 0.0068
2-Back vs. 1-Back 1.0011 - 0.0992

t-SNE with top 2 components
2-Back vs. Rest 0.6117 <0.0001 0.0043
1-Back vs. Rest 0.9266 0.0032 0.0072
2-Back vs. 1-Back 0.9937 <0.0001 0.0829

The ratio of the embedding distance within tasks vs. the embedding distance between
tasks. For the t-SNE embedding, each measure is an average of over 50 unique
replications. For PCA there is only one possible embedding so there is no variance
associated with the measures. Significant clustering was identified using P-values that
were determined for each embedding using a permutation test. The average p-values
over the 50 embedding replications are shown for t-SNE.

TABLE 5 | Clustering of embedded group-based networks.

Within/Between Std Dev p-value

t-SNE with 99% of the variance
Younger vs. Older 0.6931 0.0165 <0.0001

PCA with top 2 components
Younger vs. Older 0.6545 - <0.0001

t-SNE with top 2 components
Younger vs. Older 0.6238 0.0002 <0.0001

The ratio of the embedding distance within groups vs. the embedding distance between
groups. For the t-SNE embedding, each measure is an average of over 50 unique
replications. For PCA there is only one possible embedding so there is no variance
associated with the measures. Significant clustering was identified using P-values that
were determined for each embedding using a permutation test. The average p-values
over the 50 embedding replications are shown for t-SNE.

Unlike the task/group level clustering, individual clustering was
always highest for the networks embedded using t-SNE with
99% of the variance, followed by PCA, and then t-SNE with
two components. Two-sample t-tests were used to compare the
two t-SNE embedding methods. One-sample tests were used to
compare PCA to the t-SNE methods.

DISCUSSION

The current study was designed to determine if embedding
dynamic functional brain networks on low-dimensional
manifolds can help resolve current challenges associated with
visualizing, analyzing and interpreting these networks. As a
proof-of-concept we utilized linear plots of PCA components
and nonlinear transformations using t-SNE to embed dynamic
functional brain networks onto a 2D manifold. This method
facilitated visualization and maintained a one-to-one mapping
between networks in low- and high-dimensional space.
Representations of the networks in the low dimensional
space were used to examine the spatial patterns associated with
various task conditions (rest, 1-back, and 2-back) and study
populations (younger and older adults). We demonstrated
that the low-dimensional network representations contained

TABLE 6 | Clustering of embedded individual participant networks across tasks.

Within/Between Std Dev p-value

t-SNE with 99% of the variance
2-Back vs. Rest 0.1738 0.0027 <0.0001
1-Back vs. Rest 0.1897 0.0032 <0.0001
2-Back vs. 1-Back 0.1835 0.0022 <0.0001

PCA with top 2 components
2-Back vs. Rest 0.2371 - <0.0001
1-Back vs. Rest 0.2862 - <0.0001
2-Back vs. 1-Back 0.2234 - <0.0001

t-SNE with top 2 components
2-Back vs. Rest 0.2386 <0.0001 <0.0001
1-Back vs. Rest 0.2962 0.0004 <0.0001
2-Back vs. 1-Back 0.2217 <0.0001 <0.0001

The ratio of the embedding distance within participants vs. the embedding distance
between participants. For the t-SNE embedding, each measure is an average of over
50 unique replications. For PCA there is only one possible embedding so there is
no variance associated with the measures. Significant clustering was identified using
P-values that were determined for each embedding using a permutation test. The
average p-values over the 50 embedding replications are shown for t-SNE.

TABLE 7 | Clustering of embedded individual participant networks across
groups.

Within/Between Std Dev p-value

t-SNE with 99% of variance
Younger vs. Older 0.1932 0.0032 <0.0001

PCA with top 2 components
Younger vs. Older 0.2331 - <0.0001

t-SNE with top 2 components
Younger vs. Older 0.2248 0.0018 <0.0001

The ratio of the embedding distance within participants vs. the embedding distance
between participants. For the t-SNE embedding, each measure is an average of over
50 unique replications. For PCA there is only one possible embedding so there is
no variance associated with the measures. Significant clustering was identified using
P-values that were determined for each embedding using a permutation test. The
average p-values over the 50 embedding replications are shown for t-SNE.

meaningful information sufficient to discriminate between these
different task conditions and study populations.

Our analyses in the low dimensional space showed that the
separation between dynamic networks across task conditions
was greatest for the most distinct task conditions (2-back
vs. rest) and for the population comparisons (younger vs.
older adults). For conditions that were less distinct (1-back
vs. rest and 2-back vs. 1-back), the separation between
groups of embedded networks decreased. This was visually
apparent and confirmed by quantitative analyses. As the task
conditions became more similar and the low dimensional
representations merged, the individual participant variability
began to dominate. This is demonstrated in Supplementary
Figures S2–S4 where the mapped dynamic networks are
colored by the individual subject. These figures show that
the dynamic networks for an individual subject tend to
be furthest apart for the 2-back/rest mapping, regardless of
the embedding method. The pair of dynamic networks for
individual subjects is closer together for the 1-back/rest. For
the 2-back/1-back mapping, the dynamic networks for most
subjects are either adjacent to each other or are actually
overlapping. The average distance between the low dimensional
representations (Supplementary Table S1) showed that the 2-
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back/rest separation was significantly larger than separation
between for the 1-back/rest or the 2-back/1-back mappings
for all methods. Although the 1-back/rest separation tended
to be greater than the 2-back/1-back separation, this was only
significant for t-SNE using two components. Results of the
multivariate analysis of variance (MANOVA) used to compare
the distances are in Supplementary Table S2.

The low-dimensional visualizations generated using 99% of
the data variance exhibited a somewhat ‘‘star burst’’ appearance
while those using just two components were more globular.
There is currently no a priori information to help explain their
distinct visual appearance. These networks embedded using 99%
of the variance had lower clustering at the task/group level,
and classification tended to have lower accuracy, sensitivity, and
specificity compared to the maps based on two-components.
However, the networks embedded using 99% of the data
variance had higher spatial clustering at the individual level
compared to those based on two PCA components. Thus,
limiting the transformations to these components enhanced
differences between the task/group. When the networks are
embedded using components that captured 99% of the variance,
the low dimensional representations are more likely to be
influenced by individual variability captured by the additional
components. It is possible that embedding networks to
specifically target group, condition, or individual differences
could be enhanced if other variables such as population
labels, task performance, or individual phenotypic variables
(e.g., sex, IQ, age, etc.) are included. This may be achieved
by using regression techniques (e.g., by modifying regression
tools provided in Bahrami et al., 2019a) for dynamic network
analyses) or by capitalizing on new developments in the field
of manifold learning, such as Uniform Manifold Approximation
and Projection—UMAP (McInnes et al., 2018) which extends
the capabilities already available in t-SNE. Future studies can
investigate these possibilities.

In addition to using embedded dynamic networks for
discriminating between various conditions or populations, the
low-dimensional embedding has the potential to be used in
mechanistic studies of brain dynamics. The growing interest
in studies of brain dynamics is built around the premise that
brain states can be modeled using patterns of brain activity or
brain connectivity (Hutchison et al., 2013; Khambhati et al.,
2018). As noted in the introduction, there is no ideal model
of brain states. Measures of brain activity based on fMRI
have suggested that specific regions of the brain play crucial
roles in brain state transitions (Gu et al., 2017, 2018). Using
a graph-based analysis of fMRI signal amplitude, it has been
shown that higher flexibility of transitioning between brain
states was associated with learning progress (Reddy et al., 2018)
and with executive performance differences between children
and young adults (Medaglia et al., 2018). Compared to direct
measures of fMRI signal amplitudes, brain networks contain
a wealth of complex information that may better represent
brain states (Bullmore and Sporns, 2009; Ashourvan et al.,
2017). Unfortunately, the dynamic brain networks are large and
complex making it difficult to identify and interpret meaningful
dynamic patterns.

The current study was designed to address this challenge by
embedding dynamic networks on a low-dimensional manifold.
In a comparable study, Billings et al. (2017) defined brain
states using networks obtained from computing the correlation
between pairwise state vectors generated with ICA. These states
were mapped into a 2D t-SNE space for all study subjects,
and density plots were generated to map the probability
of existing in specific brain states. However, the individual
participant and temporal aspects of the data were not captured,
and it was not possible to directly transition from the
low-dimensional space back to individual brain networks.
Much work remains to be done in order to determine the
full potential of using low-dimensional manifolds to study
dynamic functional brain networks. The major contributions
of the current study are that dynamic network series were
embedded, visualized, and analyzed for individual study
participants. Our work demonstrates that it is possible to
deal with large amounts of information contained in dynamic
networks by representing them in a low dimensional space.
The representation in this space made it possible to visualize
and quantitatively compare the similarities and differences of
dynamic networks within and between individuals. Since there is
a one-to-one mapping between the low- and high-dimensional
spaces, key networks can be mapped back to brain space
for mechanistic studies. Cognitive processes may map to
specific portions of this space such that the location of the
embedded network is indicative of the underlying cognitive
process and critical brain circuits can be discovered from the
associated high-dimensional brain networks. Another potential
use for this embedding method in cognitive neuroscience is
real-time fMRI, where visual inspection of results can be very
important. It is also possible that embedded dynamic networks
could be used in understanding brain disorders or to assess
the effectiveness of treatments. For example, low-dimensional
network representations could be examined in alcohol or
substance use disorder to determine if the cue-induced craving
is associated with specific portions of the embedding space.
The brain circuits that are mapped to the dysfunctional
portions of the space can be examined to identify underlying
neural mechanisms.

The current study is not without weaknesses. First, the total
number of subjects used (22 in the paired task comparisons and
63 population comparisons) was relatively small. The slightly
high standard deviation of classification results is most likely
due to this small sample size. We chose to use a dataset that
we had in house because our prior work (Mayhugh et al., 2016;
Bahrami et al., 2019b) had demonstrated network differences
for both the task and group, albeit for static networks. This
smaller dataset also avoided the growth in the computational
intensity of this methodology associated with increasing the
number of networks. While it is possible to deal with very large
datasets with algorithm optimization and cluster computing,
that was beyond the scope for this proof-of-concept study.
We recognize that this methodology will need to be replicated
in larger study populations—a goal for future work. Another
weakness of this study is that we did not directly compare
our approach to other representations created from fMRI time
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series. For example, representations generated from the fMRI
time series using reservoir computing have been shown to
discriminate between 2-back and 0-back task conditions with
77–81% accuracy (Venkatesh et al., 2019). Nevertheless, we feel
that the brain networks reveal important neural processes that
are captured only by examining the relationships between brain
regions. Finally, we used motion scrubbing to address head
motion artifacts. This method results in removing some volumes,
and, thus, participants had different numbers of fMRI scans that
went into the analysis. This does not create large temporal gaps
in the dynamic network time series as each dynamic network
was made from a 120 s window. However, we acknowledge
that this procedure likely induces temporal smoothing, and
future work is needed to examine how various motion
correction methods such as AROMA (Pruim et al., 2015) affect
the results.

To our knowledge, this is the first study to demonstrate
the promise of embedding dynamic functional brain networks
into 2D space to visualize and analyze these complex datasets
at the individual and group level. Both linear and nonlinear
embedding methods proved useful with each method having its
own strengths and weaknesses. The potential utility of examining
the spatial location of embedded dynamic networks include,
but are not limited to: comparing connectivity patterns from
various conditions or study populations, identifying a hierarchy
in transitioning between connectivity patterns, determining if
disorders are associated with transitioning (or not transitioning)
between specific connectivity patterns, classification or
prediction in different treatment or disease populations,
and relating various phenotypic characteristics (e.g., IQ, BMI,
etc.) to unique network dynamics. Our approach has the
potential to serve as a cross-study method for representing,
analyzing, and interpreting dynamic brain networks. This
could ultimately provide a standard space for projecting
brain networks where the 1:1 mapping between high and low
dimensional spaces is maintained. Thus, quantitative analyses
and visualization may be performed on the low dimensional
data, and mechanistic hypotheses focused on critical brain
regions or circuits can still be assessed in the high dimensional
brain networks.
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