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Objective. To better understand the immune-related heterogeneity of tumor microenvironment (TME) and establish a prognostic
model for breast cancer in clinical practice. Methods. For the 2620 breast cancer cases obtained from The Cancer Genome Atlas and
the Molecular Taxonomy of Breast Cancer International Consortium, the CIBERSORT algorithm was performed to identify the
immunological pattern, which underwent consensus clustering to curate TME subtypes, and biological profiles were explored by
enrichment analysis. Random forest analysis, least absolute shrinkage, and selection operator analysis, in addition to uni- and
multivariate COX regression analyses, were successively employed to precisely select the significant genes with prediction values
for the introduction of the prognostic model. Results. Three TME subtypes with distinct molecular and clinical features were
identified by an unsupervised clustering approach, of which the molecular heterogeneity could be the result of cell cycle
dysfunction and the variation of cytotoxic T lymphocyte activity. A total of 15 significant genes were proposed to construct the
prognostic immune-related score system, and a predictive model was established in combination with clinicopathological
characteristics for the survival of breast cancer patients. For immunological signatures, proactivity of CD8 T lymphocytes and
hyperangiogenesis could be attributed to heterogeneous survival profiles. Conclusions. We developed and validated a prognostic
model based on immune-related signatures for breast cancer. This promising model is justified for validation and optimized in
future clinical practice.

1. Introduction

Currently, the landscape of the tumor microenvironment
(TME) has been generally portrayed, of which the components
are considered an essential composition of cancer immunity,
with counterpart activities across the “immunoediting” process
[1]. In this tumor-related contexture, the density, activity, and
organization of immunological infiltration is crucial and
regarded as a promising indicator for both clinical response
and prognosis of cancer patients [2]. In the advancing era of
immunotherapy, several malignancies have been rendered
with unprecedented benefits and durable response for the
specific tailing effect of novel mechanisms [3]. However, the
clinical response provided by immunotherapy was inconsistent
among populations or even in the changing stage of an individ-

ual, which could be the result of heterogeneities existing in this
complicated interactive contexture.

Breast cancer is a worldwide leading newly diagnosed
cancer in the female and a heterogeneous disease with the
possibility of distinct clinical outcomes [4]. Recent studies
using bioinformatics tools have provided insight into the
deep mining on the dissection of the TME [5]. However, to
turther achieve the prediction for the prognosis of patients
from clinical practice, taking clinical characteristics into con-
sideration is essential to this implementation. Accordingly, it
is critical to integrate comprehensive factors including both
data on multiomics and clinical parameters to create a precise
system for breast cancer. In this study, we used the tran-
scriptome mixture and clinicopathological information of
2620 individuals which were publicly retrieved on databases,
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analyzed the potential immune-related mechanisms for diver-
gent TME phenotypes, and constructed a prognostic model
with good performance for patients with breast cancer.

2. Materials and Methods

2.1. Breast Cancer Datasets and Preprocessing. The breast
cancer gene expression dataset, as a training cohort, was
searched on The Cancer Genome Atlas (TCGA), and the
RNA-seq by Expectation-Maximization (RSEM) counts with
full clinical information of breast cancer patients (N = 1095)
was obtained from the University of California, Santa Cruz
(UCSC) Xena browser (http://xena.ucsc.edu/). For a supple-
ment, gene expression profile and curated clinical data
(N =1525), as the validation dataset, were retrieved from the
Molecular Taxonomy of Breast Cancer International Consor-
tium (METABRIC) database which was downloaded from
cBioPortal for the Cancer Genomics database (https://
cbioportal.org). The process of cohort selection was presented
in Supplementary Figure 1, in which the detailed information
of included datasets was provided in Supplementary Table 1.

2.2. Infiltrating Abundances and TME Subtypes. On the basis
of gene expression mixture, we applied the Cell Type Identi-
fication by Estimation Relative Subsets of RNA Transcripts
(CIBERSORT) approach to infer the relative proportions of
infiltrating components, and the algorithms were performed
using LM22 signatures with 1000 permutations (http://
cibersort.standford.edu/) [6]. The number of TME subtypes
was successively determined by the consensus clustering
algorithm on the basis of hierarchical agglomerative cluster-
ing methods, using ConsensusClusterPlus package of R
software [7], based on the quantitatively immunological infil-
trating patterns of cases from TCGA-BRCA and METAB-
RIC, respectively, and validated by survival analysis by the
Kaplan-Meier (KM) method using the log-rank test.

Identification for differentially expressed genes (DEGs)
among TME clusters was accomplished with limma R pack-
age [8], in which the absolute of fold change (FC) more than
1 and P value adjusted by the Benjamini-Hochberg method
less than 0.05 were considered the criteria for significant
DEGs with annotations searched from the GeneCardsSuite
database (http://genecards.org/). Enrichment analyses,
including Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG), were conducted to describe
the molecular function and biological profiles of DEGs,
while Gene Set Enrichment Analysis (GSEA) was performed
to successively explore the potential mechanisms by virtue of
the gene sets of h: hallmarks (h.all.v7.1.symbols) and c7:
immunologic signatures (c7.all.v7.1.symbols) rendered by
the Molecular Signatures Database (http://gsea-msigdb.org/)
using the ClusterProfiler R package [9, 10]. Through the
STRING database (http://string.db.org/), the functional
analysis of protein-protein interaction (PPI) networks was
established and further visualized by Cytoscape software
(version 3.8.0) [11].

2.3. Prognostic Immune-Related Score (pIRS) and Prognostic
Model. Survival analyses concerning the expression of each
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DEG for overall survival (OS) were performed using the
KM method by survival and survminer R packages [12],
and variables with statistical significance were determined
with random forest analysis and least absolute shrinkage
and selection operator (LASSO) analysis, using the random-
Forest package and glmnet package of R software [13], for
dimensional reduction and identification of the overlapping
DEGs significant for prognosis. Next, a univariate COX
proportional hazard model was utilized to differentiate the
foremost groups of DEGs, and the prognostic immune-
related score (pIRS) was defined as

piRS = Z exprs;coef; + Z exprs;coef;, (1)

k=1 i=1

where 7 is the number of genes. exprs, and coef; were the
gene expression and regression coefficient for DEGs of
which the hazard ratio (HR) is more than 1, while exprs;
and coef; were for the genes of which HR is less than 1.
The pIRS of each patient was calculated and recorded for
the following analysis.

In combination with clinicopathological characteristics,
pIRS was included in the multivariate COX regression analysis
to construct a nomogram with the rms package of R software,
of which predictive power for prognosis in terms of sensitivity
and specificity was assessed by the time-dependent receiver
characteristic curve (ROC) using timeROC R package [14].
The discriminative power of the prognostic model was quan-
titatively measured by Harrell’s concordance index (C-index).
The flow diagram of data processing and analysis is presented
in Supplementary Figure 2.

2.4. Statistical Analysis. In this study, correlation analysis was
carried out and demonstrated with Spearman’s coeflicients
and the corresponding P values. Paired comparative analysis
was performed for continuous variables with the indepen-
dent t-test for normal distribution and the Mann-Whitney
U test for abnormal distribution, respectively, which was
visualized using the ggplot2 R package. A P value less than
0.05 was regarded as statistically significant. The missing data
were excluded against analyses to weaken heterogeneity. All
the statistical analyses were 2-sided and conducted by R soft-
ware (version 3.6.4).

3. Results

3.1. Identification of TME Subtypes. The infiltration patterns
were analyzed with CIBERSORT deconvolution algorithms
by quantifying the fractions of 22 immune cell types in TME
of 1095 TCGA-BRCA patients. The landscape of immunolog-
ical infiltration is exhibited in Figure 1, Supplementary
Figure 3, and Supplementary Table 2. Data on the estimated
proportions of infiltrating cells indicated an evident
heterogeneity, considering that an unsupervised clustering
analysis was performed to determine the potential TME
subtypes. On the basis of the consensus clustering method,
three robust TME clusters were retrieved, and the prognosis
of patients from these curated subtypes was different with
statistical significance (P =0.023) (Figures 2(a) and 2(b)).
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F1GURE 1: The landscape of immunologic infiltrations in the TME of breast cancer. The relative proportions of 22 lymphocytes infiltrating in
the TME of TCGA-BRCA patients were portrayed, which demonstrated an evident heterogeneity among individuals.

With the aim of validation, the bulk tissue gene expression
profiles of 1525 patients from the METABRIC database were
also estimated for immune infiltrations and underwent a
clustering analysis (Supplementary Table 3), from which
three clusters were obtained with a statistical difference in
OS (P <0.001) (Figures 2(c) and 2(d)), indicating that this
partition was stable for TME subtypes in terms of
immunological infiltrations.

3.2. Signatures of TME Phenotypes. To explore the contribut-
ing mechanisms for versatile TME phenotypes, we systemat-
ically conducted the differential analysis to identify the DEGs
and enrichment analyses to elucidate the biological profiles.
A total of 20530 DEGs were identified through differential
analysis, of which 664 genes significantly expressed heteroge-
neity among three immune-related TME subtypes, with 233
genes upregulated and 431 genes downregulated (Figures 3(a)
and 3(b), Supplementary Table 4). Among the identified
DEGs, MMP9, SLC16A3, CDT1, CA9, and CDC20 were
revealed to be the leading upregulated, while P2RY12,
GPR34, ABCBI, IGF1, and CX3CR1 were estimated to
express downregulation with the foremost significance.
Enrichment analyses, including GO, KEGG, and GSEA,
were carried out to portray the landscape of biological pro-
files of DEGs and illustrate the mechanism contributing to
the differential phenotypes. GO analysis demonstrated that
the significant DEGs intensively mapped to the GO terms
concerning cellular localizations include the collagen-
containing extracellular matrix, condensed chromosome,
centromeric region, and spindle (Figure 3(c)). Downstream
analysis from KEGG suggested that DEGs were significantly
involved in the enriched pathways comprising neuroactive
ligand-receptor interaction, PI3K-Akt signaling pathways,
and cell cycle (Figure 3(d)). GSEA results showed that the
DEGs, in terms of cancer hallmarks, were an ensemble of cell
cycle dysfunction, including E2F targets and G2M check-
points, which were significantly muted in metabolisms such

as adipogenesis and myogenesis. Regarding immune-related
signatures, the improved effectiveness of CD8 T lymphocyte
was expected to facilitate the genesis of TME phenotypes
(Figure 3(e)). Built on cluster analysis, PPI networks were
built to clarify the interactive functions of significant DEGs,
and the corresponding relationships were shown with a
ranked degree (Figure 3(f)).

3.3. Prognostic Value of Signature Genes. Survival analysis
was carried out using the KM method to identify the signif-
icant genes with predictive values for survival. The whole
20530 DEGs were successively assessed based on the corre-
sponding expression from each patient, and a total of 2274
genes exhibited a statistical significance for OS. Then, ran-
dom forest analysis and LASSO analysis were synchronously
performed to further recognize the significant genes for
prognosis, which discriminated 411 and 269 genes, respec-
tively, and the intersected 44 genes were prepared for the
following analysis (Figures 4(a)-4(c)). Next, we carried out
univariate COX regression analysis for identification of the
most significant variables for survival, and the panel with a
total of 15 genes was finally determined (Figures 5(a) and
5(b), Supplementary Table 5).

Subsequently, the pIRS was constructed based on the
expression of 15 genes in combination with the correspond-
ing coeflicient for each patient, and all cases were stratified
into the high pIRS group and the low pIRS group. Survival
analysis suggested that patients from these two groups exhib-
ited a divergent clinical prognosis with statistical significance
(P < 0.0001), which was in accordance with the result of the
validation cohort (P < 0.0001) (Figures 5(c) and 5(d)).

Comparative analysis for immunological phenotypes
was performed, of which the results indicated that the
abundance of B lymphocytes and CD8 T cells was notably
higher in the low pIRS group (Figure 6(a)). Distributions
of leukocyte infiltration among groups with diverse clinico-
pathological factors are shown in Supplementary Figure 4.
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F1GURE 2: The curated TME subtypes with distinct prognostic outcomes. Three TME phenotypes of TCGA-BRCA patients (N = 1095) were
retrieved by a consensus clustering method (a) with a significant difference in overall survival (P = 0.023) (b). Consistent results were obtained
in patients from the METABRIC database (N =1525) (c) with distinction in prognosis (P =0.00012) (d). The survival analyses were

performed with the Kaplan-Meier method using the log-rank test.

The expression levels of immunologic modulators were also
evaluated between two groups with a total of 73 signature
genes included [15] (Supplementary Figure 5). Interactive
correlations are shown in Figure 6(b), and the genes, in
particular, associated with the immune checkpoint
underwent comparative analyses (Figure 6(c)). Results from
paired analyses showed that the expression of PDCD1 (PD-
1) and ICAMI1 was significantly higher in the low pIRS
group, while VEGFA presented an increasing trend of
expression in the high pIRS group.

3.4. Prediction Model for Prognosis of Breast Cancer. A total
of 677 breast cancer patients with complete clinicopatholog-
ical characteristics including age, pathological TNM stage
(pTNM), molecular features, PAM50 subtypes, and pIRS
group were adopted into the COX proportional model for
quantitative estimation of survival. Results from multivariate
regression analysis demonstrated that the age, pTNM, and
pIRS group were independent factors for the prognosis of
breast cancer, which were utilized to construct a nomogram

for the prediction of 3-year, 5-year, and 10-year survival
probability (Figure 7(a), Supplementary Table 6). Time-
dependent ROC suggested that the time-dependent under
curve area was ranging from 0.77 to 0.78, indicating that the
curated prognostic model was well performed (Figure 7(b)),
and the quantified C-index was 0.823 obtained from the
training cohort and 0.776 from the validation cohort,
respectively, which were generally higher than those
computed from the TNM staging system, revealing the
robustness in addition to better accuracy of this prediction
model (Supplementary Table 7).

4. Discussion

In this study, we performed an overall analysis of TME
immunological profiles based on transcriptome data of breast
cancer, discussing the heterogeneity of the stromal contex-
ture in terms of the immune-related subtypes and potential
contributing mechanisms, in addition to giving a quantitative
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Ficure 3: Contributing mechanisms of differential TME phenotypes. A total of 664 significant differentially expressed genes (DEGs)
identified through differential analysis with 233 genes upregulated (red) and 431 genes downregulated (blue), respectively (a). DEGs were
distributed evenly among three TME subtypes (b). GO analysis (c), KEGG pathways analysis (d), and GSEA (e) were successively carried

out, and PPI networks were constructed to explore the interactions (f).

estimation of the associations between immune-related
parameters and the prognosis of breast cancer.

To quantitatively ascertain the stromal infiltration of
TME, the CIBERSORT approach was adopted for computa-
tional proportions of immunological cell types of interest
[6]. The landscape of immunologic infiltration exhibited a
varying tendency among patients, prompting us to perform
an analysis for the potential subtypes of TME. Three TME
clusters were determined based on consensus clustering algo-
rithms and proven to be stable in the validation cohort.
Moreover, results from survival analysis, as the exploratory
mining, demonstrated that an apparent difference of survival
was detected among the patients from corresponding TME
subtypes, indicating that the immunologic heterogeneity of
TME could be a promising predictor for the survival of breast
cancer. Previous studies have managed to correlate molecular
features to the prognosis of breast cancer patients. However,
multiomic angles have to be focused which primarily
included genomics, epigenetics, and transcriptomic profiles.
On the basis of the dataset, Shen and colleagues established
an IncRNA panel associated with immunological signatures
to stably predict the prognosis of breast cancer [16], which
is consistent with several studies [17, 18], and supported that
the phenotypes could be the results of molecular heterogene-
ity. From the immunologic perspective, we indicated that
inherent heterogeneity could lead to divergent prognosis
and curated three robust TME subtypes for breast cancer,
of which the potential mechanisms leading to this kind of
differentiation remained to be explored.

Focusing on the illustration of this mechanism, then, we
performed systematic analyses for the differential genetic

expressions, of which the versatile phenotypes tended to be
the product. Differential analysis among three TME clusters
recognized the genes with divergent transcriptome profiles,
while the enrichment analyses demonstrated that mapping
molecular positions lied in the extracellular matrix and
nuclear components, and the ensemble pathways were signif-
icantly enriched in the cellular signaling transduction
involved in cancer proliferation, migration, and invasion.
Results from enrichment analysis with specific genetic refer-
ences suggested that the differential phenotypes could be the
concerted result of cell cycle dysfunction, the variety in CD8
T lymphocyte activity, and the repression of metabolite
homeostasis, which could be a potential target for novel ther-
apeutics toward the breast cancer population. PPI analysis
identified the core protein consisting of TOP2A, MKI67,
and CDK]1, which was supposed to function at the process
for immunological heterogeneity. Based on the tissue-based
research, Zheng et al. suggested that TOP2A expression
could independently predict the survival of triple-negative
breast cancer [19], which was further confirmed by Xu and
colleagues [20]. MKI67 has been regarded as a contributing
component for molecular heterogeneity of breast cancer val-
idated by previous studies [21, 22]. As an essential regulator
for the cell cycle, the activity of CDK1 has long been consid-
ered a potential target, which is associated with cell cycle
dysfunction and corresponding distinct molecular profiles
of breast cancer [23]. These findings were in accordance with
the current researches of TTK [24], CDC20 [25], PLK1 [26],
and AURKA [27], which were considered the leading
contributors for molecular heterogeneity genesis in the
current study.
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performed for the dimensional reduction and selection of variables, with 411 and 269 genes identified, respectively. The intersected

proportion of 44 genes underwent the following analysis (c).

The construction of a prognostic panel experienced
systematic analyses with gene shrinkage and selections. Sur-
vival analysis using the KM method was initially carried out
to identify the significant genes with prognostic values for
survival. As the criteria of the group established, the median
of gene expression was adopted to partition patients into two
groups, and a total of 20530 DEGs successively underwent
assessment for statistical significance. Then, the combination
of random forest analysis and LASSO analysis was performed
for variable shrinkage and selection based on the recognized
genes, and the intersection proportion was retrieved for
precision. The expression of this group of selected ones, as
the continuous variable, was further consecutively adopted
into a univariate COX proportional model and evaluated

the corresponding significance to survival, and the genetic
panel, comprising 15 genes, was finally determined. In com-
bination with regression coefficients, gene expression was
quantified as an indicator for OS of breast cancer, and the
PIRS system was accordingly constructed as the product.
Subsequently, individuals were classified into two pIRS
groups based on the immunological contexture. The clinico-
pathological characteristics and the pIRS group of eligible
patients were synchronously assessed by the application of
multivariate COX regression analysis to organize a prognos-
tic model, and the independent variables were utilized to
create the nomogram validated with good performance.

We also carried out comparative analyses to portray the
immune-related features contained in these patients from



P value
\
GRHPR —— |
POM121L1P — )
|
NUMAL1 —— 0.04
CCRY ! [
NDRG2 —_———
I
SNTN _— : 0.03
TNFRSF18 i —_———
CYP4F11 | —o—
I
FAMIC{ ———— : 0.02
ASAH2 :—0—
HES5 -
|
————
ARHGAP39 ! 0.01
ATP6VIH : —_——
LOC220729 ——
|
NUP43 ————
} 0.00
0.5 1.0 L5 2.0 25
Hazard ratios
()
1.00
0.75
z
-
=
I=}
5 0.50
3
E
Z
=1
w
0.25
P <0.0001
0.00
0 100 200 300
Time (months)
~ pIRS high
—+ pIRS low

(c)

Survival time (months)

Survival probability

Risk score
[
(=]

BioMed Research International

W
S o

o

o

Risk group
© High
Low
300 T
................... Lo
200 ° * i
................ P
100 LTy st 2t e Y e
<. « o 2 A dJ ;
0 © . o . :A L2 'x,.. i 'Q'.':f',"%
0 200 400 600
Event
® Death
Alive
I Il 1
i \IH r W\HII?M(HIH ‘HI H‘I‘HI H\'lm”HH]l‘\IIH" \‘H|“‘”\H‘W| ‘ Hl \‘ N\[{)P\:illl
HlllH]\lI HIl\H ‘H It SNT!I
‘ [l M 1l Hl\‘l [‘HHHHIII\I ]\IHF% 0.5
|“|II|H III\H’\I 1l \\Hl \ !H \ \ I ”\ LI \
LAt
\ (L1 / Il H\l\\ I H[\‘ IATPG\IH
‘I\[\I\IJI"i lM Il “\ H‘H\ “‘H ‘\‘ |]H‘|‘\‘\|H ) H | ‘H‘\ LI N([))R 0
HNH ’\ I’\H H \I UP HI \‘H \H‘ Il H\ CC!&C
I \ |] U IH HJ\ II\H Wl ‘ H IH H || Il \IJ J1 (1 ¥ ASAlgu -05
\‘IHH | IR } H “ L LLoczzmz‘;
\ (UL \IH i HH\II HII f‘lllHIl H\‘lll NUP43 1
(®)
1.00
0.75
0.50
0.25
P <0.0001
0.00
0 100 200 300 400
Time (months)
~+ pIRS high
-~ pIRS low

(d)

FiGure 5: Construction and validation of the prognostic panel. The univariate COX regression analysis was carried out to recognize the
variables with the utmost statistical significance with 15 genes determined (a). The correlations between gene expression and prognostic
outcomes were demonstrated (b). The partition system based on pIRS was validated with survival analysis using the Kaplan-Meier
method, which revealed a significant difference in survival of patients from both TCGA (P <0.0001) (c) and METABRIC database

(P <0.0001) (d).

two groups. Results of tumor-infiltrating cells showed that
the abundance of CD8 T lymphocyte, B cells, and monocytes
was greatly higher in the low IRS group, revealing that these
sorts of immunologic cells could presage improved survival
of breast cancer. Currently, the relation between the densities
of CD8 effector T cells and prognosis was reportedly contro-
versial [28-31]. These findings confirmed that the improved
survival was in positive associations with an enriched abun-
dance of CD8 T cells. On top of that, recent researches have
revealed that the spatially distinct distribution of CD8 T cells
constitutes the leading reference to classifying the patterns of
TME in the breast cancer subgroup [32]. This kind of associ-
ation between the heterogeneous patterns of CD8 T cells and
the clinical outcomes could be potentially correlated to the
heterogeneity of TME in breast cancer as well. To further elu-

cidate the inherent correlations between immunologic phe-
notypes and distinct prognostic outcomes, the curated gene
list of immune modulators was adopted [15], of which the
correlogram was suggestive of evident collections consisting
of these immune-related components. With the in-depth
illustration of immunoediting theory and evolution of immu-
notherapy, immune checkpoints have been considered with
cruciality in cancer immunity response, and the developed
inhibitors have been dramatically improving the prognosis
of several types of malignancies [33-35]. Herein, immune
checkpoints were selected to be evaluated between these
two pIRS groups. This part of results revealed that PDCD1
[36], ICAM1 [37], and GZMA [38], which were associated
with proactivity of cytotoxic T lymphocytes and cancer
immunity, were predictive of prolonged prognosis in the
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F1GURE 6: Immunologic profiles of the pIRS groups. Comparative analysis of the abundances of infiltrating immunologic cells from the high
pIRS group and the low pIRS group (a). The correlations among immune-related modulators in breast cancer tissue (b) and the difference in
immune checkpoint between two groups (c).
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FI1GURE 7: Prognostic model for survival probability of breast cancer. Nomogram constructed for the prediction of 3-year, 5-year, and 10-year
survival probability of patients in the training cohort (a). The time-dependent ROC validated the performance of this prognostic model (b).

low pIRS group, and VEGFA, as the leading molecule of
tumor-induced angiogenesis for tumor invasion [39], exhib-
ited an increased expression in breast cancer patients with
limited survival of patients from the high pIRS group.
Immune infiltration remains an intriguing focus in the
field of oncology research, which has been considered not
only an indicator for therapeutic effectiveness but also a
promising basis, as the essential step for “immunomonitor-
ing,” to drive treatment evolution [40]. The developing tech-
niques have been applied to dissect tumor-related contexture
which has shed novel light on the understanding of tumor
heterogeneity and cancer management. However, current
research could not fully interpret some clinical phenomenon
that was inconsistent with experimental results, for instance,
insufficient biomarkers with predictive values for response
and prognosis. It seems that the intricate interactions among
tumor-related complex systems, including tumor cells,
immune cells, and TME, should be elucidated by integrating
technologies and curate increasing findings for cancer ther-
apy followed by survival benefits for patients [41]. Indeed,
several genetic panels were constructed for the precise pre-

diction of survival in breast cancer cohorts, such as the Onco-
type DX assay [42] and MammaPrint panel [43], and have
been extensively validated in clinical practice. However, the
current panel tends to be developed and designed for a spec-
ified cohort and relatively limited in the general utilization
for the entire cohort. From this perspective, the curated panel
introduced by our research was promising for future practice
and promising benefits to breast cancer patients.

Some inevitable limitations should be stated here. Firstly,
the sample size and clinicopathological characteristics, for
instance, sequential treatment details and concomitant dis-
eases, stored in the publicly available database were limited,
which could attribute to the potential bias and weaken the
power of the prediction model. Secondly, the partition
method for the pIRS groups adopted the median as a cutoft
value, which might lead to the inappropriate division of the
cohort and the limited unearthing of promising findings.
Under this circumstance, the standard for population selec-
tion should be optimized in the upcoming research. Last,
the focus of TME phenotypes lay in the differential analysis
for mechanism; however, the absence of deep mining on
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the increasing factors that induced intratumor heterogeneity
or divergences from populations was obvious.

5. Conclusions

In conclusion, we systematically derived the three molecularly
and clinically distinct TME subtypes based on immunologic
infiltration and explored the potential mechanisms promoting
this kind of divergence. A predictive score system was built for
population selection, and a prognostic model was built with
the combinations with clinicopathological characteristics of
cohorts for prediction of survival. Future studies are warranted
to absorb increasing factors and optimize this model in favor
of clinical practice in the perspective.
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