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Abstract: In-scanner head motion often leads to degradation in MRI scans and is a major source of
error in diagnosing brain abnormalities. Researchers have explored various approaches, including
blind and nonblind deconvolutions, to correct the motion artifacts in MRI scans. Inspired by the
recent success of deep learning models in medical image analysis, we investigate the efficacy of
employing generative adversarial networks (GANs) to address motion blurs in brain MRI scans. We
cast the problem as a blind deconvolution task where a neural network is trained to guess a blurring
kernel that produced the observed corruption. Specifically, our study explores a new approach
under the sparse coding paradigm where every ground truth corrupting kernel is assumed to be
a “combination” of a relatively small universe of “basis” kernels. This assumption is based on the
intuition that, on small distance scales, patients’ moves follow simple curves and that complex
motions can be obtained by combining a number of simple ones. We show that, with a suitably
dense basis, a neural network can effectively guess the degrading kernel and reverse some of the
damage in the motion-affected real-world scans. To this end, we generated 10,000 continuous and
curvilinear kernels in random positions and directions that are likely to uniformly populate the space
of corrupting kernels in real-world scans. We further generated a large dataset of 225,000 pairs of
sharp and blurred MR images to facilitate training effective deep learning models. Our experimental
results demonstrate the viability of the proposed approach evaluated using synthetic and real-world
MRI scans. Our study further suggests there is merit in exploring separate models for the sagittal,
axial, and coronal planes.

Keywords: MRI; motion blur; deep learning; generative adversarial network (GAN)

1. Introduction

Brain magnetic resonance imaging (MRI) is one of the most important imaging modal-
ities in detecting structural abnormalities of the brain. Nevertheless, it is very sensitive to
subject motion and in-scanner head motion is a fundamental source of error in brain MRI
due to the procedure’s intrinsically slow and sequential process. Specifically, the raw MRI
signals are first encoded in k-space [1] and then converted into the human-recognizable MRI
scan using an inverse Fourier transform. Any movement during this process will disrupt
the encoded signals and result in blurring and ghosting [2,3], causing misinterpretation
and reduced reliability in detecting clinically relevant abnormalities [4].

In the past few years, deep learning [5] (DL) has attracted a great amount of interest
due to its remarkable progress in computer vision. In medical image analysis, deep
neural networks have been extensively applied to various imaging modalities, including X-
rays [6,7], B-scans [8,9], and MRIs [10,11], to help provide greater diagnostic and treatment
capabilities. Unsurprisingly, many efforts have been made to address MRI motion artifacts
using deep learning-based approaches. We provide a brief survey of these related studies
in Section 2.
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In this study, we investigate the efficacy of employing a generative adversarial network
(GAN) approach to address motion blurs in brain MRI scans. Since GANs are generative
models trained to generate realistic synthetic images based on the learned distribution of
the ground truth images, our models can improve to a limited extent additional motion
artifacts (e.g., rings and salt-and-pepper noise) associated with motions besides blurs.
Thus, we denote our model MC-GAN (MC for Motion-artifact Correction) and evaluate
the overall image quality improvement achieved by applying MC-GAN to degraded MR
Images. Methodology-wise, we cast the problem as a blind deconvolution task where a
neural network is trained to guess a blurring kernel that produced the observed corruption.
Typically, motion blurs are modeled by a convolution kernel K. Formally,

IB = IS � K + N (1)

where IB, IS, and N denote blurred image, ground-truth sharp image, and random noise,
respectively. � denotes the convolution operation. In the blind deconvolution problem
one attempts to estimate IS without knowing K. In general, such problems are severely
under-determined, making finding the corrupting kernel largely intractable. However, in a
narrow image domain such as brain MRI scans, existing research has shown that a neural
network can learn the properties of the domain sufficiently well to infer a region in the
kernel space that hosts the damaging kernel [12–14].

Inspired by these findings, our study explores a new blind deconvolution approach
under the sparse coding paradigm [15] where every ground truth corrupting kernel is
assumed to be a “combination” of a relatively small universe of “basis” kernels. This
assumption is based on the intuition that, on small distance scales, patients’ moves follow
simple curves and that complex motions can be obtained by combining a number of simple
ones. Thus, in our approach, we generated a family of 10,000 small curvilinear kernels with
random positions and directions to uniformly populate the space of kernels that corrupt
real-world scans. A neural network N was trained to reconstruct images corrupted by these
“basis” kernels. Consequently, the output image reconstructed by N could be thought of as
accompanied by an implicit kernel that is a function of the “basis” kernels. We interpret
training N as learning the basis kernels and applying N to unseen images as computing a
non-linear combination of the basis that the network deems the most likely cause of the
degradation. On the conceptual level, we believe that with a suitably dense basis, a neural
network will effectively guess the degrading kernel and reverse some of the damage in the
motion-affected real-world scans. Our study explores these concepts, and we are unaware
of similar reports in the literature. Based on the promise shown by our experiments, the
framework presented here merits further investigation.

Data scarcity is another issue we addressed in training our models. Typically, deep
learning approaches require big data to avoid overfitting [16]. To this end, we adopted the
data augmentation technique introduced in [11] and generated 225,000 synthetic artifact-
free (sharp) MR images. Leveraging our large collection of random convolutional kernels
described above, we further generated a blurred counterpart for each of the 225,000 im-
ages. Consequently, our deep learners were trained to perform blind deconvolution on
pairs of corrupted and sharp images, which served as the model input and ground truth,
respectively. We illustrate our kernel and synthetic data generation process in Section 4.2.2.

Lastly, this study further evaluates customized models built exclusively for individual
MRI planes (i.e., sagittal, axial, and coronal) compared to an omnibus model accommo-
dating input from all three directions. We believe this is an area under-studied in the
existing literature, possibly due to the limited availability of labeled data which prevents
further partition from building effective sub-models. Capitalizing on our data augmenta-
tion techniques, we mitigated the data scarcity issue and exploited the structure similarity
in the input data. Indeed, our experimental results indicate that the customized models
consistently outperform the general model in all plane directions.

Our study leverages two open-access real-world datasets. First, we generate our
synthetic data based on the high-quality MRI scans provided by the open-access OASIS
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platform [17]. Second, we evaluate the efficacy of our models using held-out synthetic data
and motion-affected real-world MRI scans from the ABIDE study [18]. Both quantitative
and qualitative model assessments are presented in Section 5.

2. Related Work

The existing image blur correction algorithms can be classified into two categories:
non-blind deblurring and blind deblurring. The non-blind approaches assume the blurring
kernel K in Equation (1) is known. Thus, a deblur algorithm performs the deconvolution
operation to recover the sharp image IS by treating the randomness of the noise term N.
Classical algorithms in this domain include Lucy–Richardson deconvolution, an iterative
procedure for recovering an underlying image that has been blurred by a known point
spread function [19], and Wiener filter-based algorithms [20,21]. In the medical domain,
non-blind deconvolution has been applied successfully to remove the noise and blur in the
CT image [22], MRI super-resolution [23], and deblurring X-Ray Digital Image [24].

Blind deconvolution, on the other hand, is the recovery of a sharp version of a blurred
image when the blur kernel K is unknown. It is the most common scenario in real-world
applications. Many efforts have been devoted to discovering effective blind deblurring
algorithms, which estimate the sharp image (IS) and the blur function (K) simultaneously.
In some early work, Fergus et al. introduced a method to remove the effects of camera shake
from seriously blurred images [25]. Xu et al. presented a new framework for both uniform
and non-uniform motion deblurring, leveraging an unnatural L0 sparse representation
to benefit kernel estimation and large-scale optimization [26]. Babacan et al. provided a
systematic formulation of blind deconvolution using general sparse image priors [27].

In the past few years, deep learning-based algorithms have delivered promising results
in improving the quality of medical images. Sun et al. proposed an effective CNN for
estimating motion kernels from local patches [28]. Motion blur is removed by a non-uniform
deblurring model using patch-level image prior. Noroozi et al. introduced DeblurNet [29],
a novel CNN architecture designed to restore blurry images under challenging conditions,
such as occlusions, motion parallax and camera rotations. Gong et al. proposed a flexible
and efficient deep learning-based method for estimating and removing the heterogeneous
pixel-wise motion blurs. Their model directly estimates the motion flow from the blurred
image through a fully-convolutional deep neural network (FCN) and recovers the unblurred
image from the estimated motion flow [30].

Although deep learning approaches have been effective in many computer vision
tasks, sufficient training data are essential in the success of these models. However, access
to medical image data is often limited. To this end, researchers have explored various data
augmentation techniques to enhance the size and quality of training datasets [16]. The
choice of techniques is highly dependent on the task under investigation. For instance,
Eaten-Rosen et al. proposed a novel approach to generate new medical images based on
the linear combination of training data [31] in their image segmentation task. He et al.
applied flipping and rotation to increase the robustness in abnormality detection in muscu-
loskeletal radiographs [6]. Data augmentation is also utilized to simulate artifacts for the
task of correcting degraded medical images. For example, Duffy et al. simulated motion
artifacts on MR images to produce synthetic motion-affected data to correct motion artifacts
in structural MRI images [32]. Specifically, they simulated the translational motions as
multiplications in k-space by random linear phase shifts. Zhao et al. simulated “ringing”
artifacts via controlled perturbations in the k-space representations of MRI scans in their
effort to remove the “rings” induced by head motions [11].

Our study likewise employed data augmentation techniques to facilitate training
effective deep networks. For the motion-free images, we resorted to the sharp image
generation technique introduced in [11]. For the motion-affected images, we augmented
the sharp images by applying random curvilinear kernels produced using a probabilistic
approach (Section 4.2.2). Our method is in contrast to some existing approaches that
simulated the motion artifacts via k-space manipulations. We believe that our method is
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feasible in narrow image domains (e.g., brain MRI scans), and our experimental results
endorse this view.

3. Methods

In this section, we briefly introduce the generative adversarial network (GAN) frame-
work and illustrate the structure of our MC-GAN model.

3.1. Generative Adversarial Network

A generative adversarial network (GAN) is a class of machine learning approaches
introduced by Ian Goodfellow et al. [33]. The core idea of a GAN is to frame a supervised
learning problem using two sub-models: a generator (G) that generates new instances in
the study domain, and a discriminator (D) that tries to classify instances as either real (from
the domain) or fake (generated). The goal of the generator is to fool the discriminator by
generating realistic samples. The two models are trained simultaneously as adversaries in a
zero-sum game until the discriminator model is fooled about 50% of the time, which implies
the generator is generating realistic examples. Figure 1a illustrates the above adversarial
game. Formally, the loss function of a GAN model can be formulated as:

min
G

max
D

Ex[log(D(x))] +Ez[log(1− D(G(z)))] (2)

where E denotes expectation. x is a random variable representing observed real-world
images in the study domain. G(z) denotes the generated images by G using latent random
variable z. D(x) and D(G(z)) are D’s classification probability of the real and simulated
images, respectively. Consequently, the overarching goal of D is to maximize the total loss
defined in Equation (2), while the goal of G is to minimize the second term.
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Figure 1. Architecture of MC-GAN Model. (a) Overall GAN structure. (b) MC-GAN generator.
(c) MC-GAN discriminator.
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3.2. Our Approach

Our MC-GAN was inspired by the successful DeblurGAN model [34], in which the
authors presented a conditional GAN (cGAN) [35] approach to recover a sharp image (IS)
given a single blurred image (IB). Unlike traditional GANs, cGAN models provide the
generator with additional information to control the scope of the generated images. In the
DeblurGAN architecture, the generator learns a mapping from the original image x and
the latent vector z to the output image y, i.e., G : x, z → y. Thus, it is natural to employ
the ResNet [36] structure where the neural networks strive to learn the difference between
the original and target images. Our study followed a similar design but experimentally
adjusted the model structure and loss function to overcome issues such as overfitting and
model convergence.

3.3. MC-GAN Generator

Figure 1b illustrates the structure of MC-GAN’s generator component, which consists
of five convolutional blocks to encode and extract spatial features of the input image. Each
block contains a convolutional layer, followed by batch normalization and ReLU activation.
All kernels are of size 3 × 3 except for the first one, which is 7 × 7.

A total of 16 residual blocks follow the four convolutional blocks. Each residual block
contains two 3 × 3 convolutional layers, each followed by a normalization layer and ReLU
activation. The architecture ends with four transposed convolutional blocks upscaling the
images to the original size. The output after the tanh activation function is in the residual
form and, thus, the generator’s output is the original image plus the residual.

3.4. MC-GAN Discriminator

The discriminator is a classification model whose input is an image and the output is
a probability score indicating if the image is from a real-world domain or generated. We
apply the threshold of 0.5 to classify real or fake images.

Figure 1c illustrates the CNN structure of the discriminator component. It consists
of seven convolutional blocks. Each block consists of a convolutional layer followed by a
normalization layer and an activation function. All kernels are of size 4× 4 and the number
of filters increases from 64 to 512. All blocks use ReLU as the activation function except for
the last block, which employs the sigmoid function to produce a probability score for the
classification task. As illustrated in Equation (2), the discriminator aims to maximize the
total loss, which is equivalent to maximizing the difference between D(x) and D(G(z)).

3.5. Loss Function

In the DeblurGan [34] model, the authors formulated the loss function as a combination
of adversarial loss from the cGAN model and a perceptual content loss [37] defined as the
L2 distance between the generated and target image CNN feature maps. The authors further
pointed out that DeblurGAN trained without perceptual loss or with simple MSE loss on
pixels did not converge to a meaningful state. We believe this is related to the limitation in
training GANs, that is, seeking the Nash equilibrium can be very unstable and algorithms
may fail to converge [38]. A common technique to encourage model convergence is to
augment the adversarial loss with additional loss(es), such as contextual loss [34], or L1
loss [32]. In our experiments, we found it was necessary to include additional pixel-wise
mean squared error (MSE) in the loss function for our model to converge properly. As a
result, following the same notation as in [34], we defined the loss function for our MC-GAN
model as a combination of three components:

L = LGAN + λLX + βLMSE (3)

where LGAN is the adversarial loss defined in Equation (2), LX is the content perceptual
perceptual loss, and LMSE is the pixel-wise content loss. λ and β are trade-off parameters
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for the three loss components. In our study, they were experimentally set to 100 and
50, respectively.

4. Data and Preprocessing
4.1. Real-World Datasets

We based our study on two real-world datasets. The first one was the OASIS-1 dataset
provided by the Open Access Series of Imaging Studies (OASIS) platform [17]. OASIS-1
contains 436 T1-weighted MRI scans of 416 subjects (Age: 52.7 ± 25.1; Female: 61.5%);
20 subjects had two MRI sessions. All scans were selected through a per-slice screening
process along each principal axis to ensure their quality. Each slice is a pixel image of size
256 × 256. Of these, 375 scans from 355 subjects were used to generate our training data,
and the remaining 61 scans from 61 subjects were held out for model testing.

Our models were further applied to 55 motion-affected T1-weighted MRI scans se-
lected from the ABIDE study [18]. Of these, we extracted the middle 100 slices along each
of the three anatomical planes of each scan, resulting in a test set of 16,500 images. The
ABIDE scans were selected from a larger dataset that had been visually evaluated as low
quality in a previous study [39]. The size of these test images are the same as the training
data (i.e., 256 × 256).

All experiments were performed in accordance with the relevant guidelines and
regulations of OASIS-1 and ABIDE studies.

4.2. Synthetic Datasets

We address the data scarcity issue in training deep learning models by generating
synthetic brain MRI images. To this end, we first generated sharp (i.e., artifact-free) images
based on the high-quality OASIS dataset. We then simulated motion blurs on the sharp
images using random convolutional kernels.

4.2.1. Generating Synthetic Artifact-Free Data

We generated artifact-free images using the techniques introduced in [11] by model-
ing the inter-subject brain morphological variability. Specifically, localized deformations
were generated on a given sharp image using radial stretches within a randomly selected
circular region. The stretches were performed with a smoothly changing ratio to ensure no
discontinuity between the modified and unaffected regions. Following the same notation
as in [11], the stretching ratio changes according to the following formula:

IMGnew(P) = IMGold(C + u(1+ε)(P− C)) (4)

where IMGnew(P) is the new pixel intensity at a given point P in a circle with the center C
and radius R, and u = distance(P, C)/R. The parameter ε was experimentally set to 0.2,
and a sample sequence of morphed images can be viewed in succession as shown in this
animation [40].

In our study, 50 slices were randomly sampled along each of the sagittal, axial, and
coronal directions from each of the 375 scans, resulting in a total of 56,525 images. For
each of these images, multiple local spatial distortions were applied to simulate natural
inter-subject variability in brain morphology. A total of 225,000 artifact-free images were
generated to serve as the ground truth in our training data.

4.2.2. Generate Synthetic Artifact-Affected Data

To model real-world motion kernels, we focused on kernel shapes of short continuous
random curves that could result from in-scanner head motion, including rotation, shaking,
or nodding. To this end, we generated continuous, non-intersecting random walks of a
prescribed length k, which started at a random location on a 16 × 16 grid. To achieve
the effect of continuity, we limited the walks’ next moves to those that did not arrive in
close vicinity of visited points. In other words, the grid-walking agent remembered a

https://storm.cis.fordham.edu/~yzhao/100_distortions_BW.mp4
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configured number of its previous locations and made sure that it did not approach them
too closely. While implementing such behavior efficiently could pose challenges, we took a
trial-and-error approach. In particular, the agent walked randomly and aborted its entire
path to embark on a new attempt when a violation occurred. Since the kernels lengths we
worked with were relatively short, we generated a sufficient number of kernels by setting
the number of attempts to 256 for each kernel.

Figure 2 presents sample synthetic blurred images generated using our random walk
algorithm. Column 1 presents the original sharp images. Columns 2–7 demonstrate
simulated motion-affected images with selective kernel lengths l = 5, 7, 9, 11, 13, and 15,
respectively. The corresponding convolutional kernel is shown on top of each MR image.
In our study, We generated kernels with all sizes up to a maximum length of 15. This limit
was experimentally selected as we observed that longer settings led to over-blurred images
that were unrealistic in simulating motion artifacts resulting from in-scanner head moves.

 

                      𝑙 = 5                  𝑙 = 7                 𝑙 = 9                 𝑙 = 11               𝑙 = 13               𝑙 = 15              

Figure 2. Sample Synthetic Images. Column 1 presents the original sharp images. Columns 2–7
demonstrate generated motion-affected images with kernel length = 5, 7, 9, 11, 13, 15, respectively.
The respective convolutional kernel is shown on top of each synthetic image. Images better viewed
when zoomed in.

Because a 2D convolution may cause positional shifts from the original image, which
may hinder its role as the ground-truth for the degraded (i.e., input) image. To address
this issue, we resorted to OpenCV2’s ORB algorithm [41] to detect landmarks in a given
image. The algorithm aligns two images by computing the landmark descriptors belonging
to both images and matching the landmarks using a brute force algorithm (Figure 3). We
further adjusted the intensity histogram of the aligned image to match that of the original
image to prevent pixel intensity shifts.
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Figure 3. Alignment of Input and Target Images Using Matching Landmarks. (Left): image with
synthetic blur after applying a random kernel. (Right): target image.

5. Results

We trained our models on a PowerEdge R740 Linux machine with two Xeon 2.60 GHz
CPUs (12 cores), 192 GB of memory, and a 32 GB NVIDIA Tesla V100 GPU. The training
time is approximately 96 h for each model. Each model was trained using a 4:1 training
and validation split on the synthetic datasets. We trained our models for 250 epochs with a
batch size of 16. The training converged utilizing the Adam optimizer and a learning rate
of 0.0001, minimizing the loss function defined in Equation (3).

5.1. Quantitative Evaluation Metrics

We evaluated the performance of our models using the following three quantitative
metrics. The first two metrics were employed to assess the efficacy of the models for
synthetic images in which the ground-truths (i.e., target images) are available. The third
one was used to evaluate real-world images without ground truth. Furthermore, each
output image was histogram-matched with the original image before these measures
were calculated.

• Root Mean Square Error (RMSE): RMSE measures pixel-wise root mean square error
between a pair of images. A smaller RMSE indicates a higher similarity between the
images. We compare the RMSEs of the original blurred image and corrected model
output against the ground-truth motion-free image.

• Peak Signal to Noise Ratio (PSNR) [42]: PSNR is the ratio between the maximum
possible power of a signal and the power of corrupting noise that affects the fidelity
of its representation. Thus, a higher PSNR indicates a higher quality of an image.
We calculated the PSNRs after scaling pixel intensities of the images to the interval
[0, 255].

• Perception-based Image Quality Evaluator (PIQE) [43]: PIQE evaluates the image
quality using two psychovisually-based fidelity estimates: block-wise distortion and
similarity. The two estimates are combined into a single PIQE score to assess quality.
The smaller the value of PIQE, the better the image quality.

5.2. Model Performance
Evaluation on Synthetic Images

Table 1 presents the quantitative evaluation of our MC-GAN models on a synthetic
dataset with ground truth. We further examined our MC-GAN model with data from
individual anatomical planes, conjecturing that the structural similarity of the data could
potentially mitigate the challenge and lead to improved model performance. The three
directional models, denoted as MC-GAN(x), MC-GAN(y), and MC-GAN(z), represent
models trained with data exclusively from the sagittal, axial, and coronal planes, respec-
tively. The MC-GAN(xyz) denotes the model trained with images from all three directions.
We further examine the breakdown performance of MC-GAN(xyz) along each anatomical
plane indicated by the x-, y-, and z- directions in each MC-GAN(xyz) block.
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Table 1. Quantitative Evaluation on Synthetic Data Across Different Degradation Levels.

PSNR Level Model
Pixel-Wise RMSE PSNR (dB)

Degraded vs. Target Corrected vs. Target Reduction (%) Degraded vs. Target Correctedvs. Target Gain

<17

MC-GAN (x) 0.162 (0.022) 0.115 (0.034) 29.45% 15.85 (1.04) 19.18 (2.50) 3.33
MC-GAN (y) 0.161 (0.025) 0.097 (0.035) 40.03% 15.93 (1.06) 20.82 (2.95) 4.89
MC-GAN (z) 0.167 (0.028) 0.101 (0.045) 39.45% 15.66 (1.22) 20.60 (3.30) 4.94

MC-GAN (xyz) 0.163 (0.024) 0.110 (0.035) 32.65% 15.81 (1.10) 19.56 (2.59) 3.76
x-direction 0.162 (0.022) 0.120 (0.032) 26.43% 15.85 (1.04) 18.75 (2.26) 2.90
y-direction 0.161 (0.025) 0.097 (0.031) 39.58% 15.93 (1.06) 20.61 (2.47) 4.67
z-direction 0.167 (0.028) 0.102 (0.039) 38.97% 15.66 (1.22) 20.33 (2.73) 4.67

[17, 18)

MC-GAN (x) 0.133 (0.004) 0.097 (0.023) 27.31% 17.53 (0.27) 20.53 (2.02) 3.00
MC-GAN (y) 0.132 (0.005) 0.086 (0.025) 35.37% 17.57 (0.30) 21.72 (2.50) 4.15
MC-GAN (z) 0.132 (0.004) 0.090 (0.028) 30.79% 17.56 (0.29) 21.17 (2.68) 3.60

MC-GAN (xyz) 0.133 (0.004) 0.095 (0.021) 28.39% 17.55 (0.28) 20.67 (1.96) 3.12
x-direction 0.133 (0.004) 0.100 (0.021) 24.45% 17.53 (0.27) 20.14 (1.74) 2.61
y-direction 0.132 (0.005) 0.089 (0.021) 32.37% 17.57 (0.30) 21.20 (2.01) 3.62
z-direction 0.132 (0.004) 0.090 (0.022) 30.74% 17.56 (0.29) 21.12 (2.05) 3.55

[18, 19)

MC-GAN (x) 0.120 (0.004) 0.085 (0.019) 28.50% 18.45 (0.28) 21.57 (1.89) 3.12
MC-GAN (y) 0.118 (0.004) 0.08 (0.022) 32.81% 18.54 (0.28) 22.3 (2.34) 3.77
MC-GAN (z) 0.119 (0.004) 0.079 (0.023) 33.15% 18.52 (0.28) 22.36 (2.45) 3.84

MC-GAN (xyz) 0.119 (0.004) 0.085 (0.019) 28.34% 18.50 (0.29) 21.60 (1.92) 3.10
x-direction 0.120 (0.004) 0.090 (0.017) 24.77% 18.45 (0.28) 21.07 (1.62) 2.62
y-direction 0.118 (0.004) 0.084 (0.019) 29.04% 18.54 (0.28) 21.73 (1.96) 3.20
z-direction 0.119 (0.004) 0.082 (0.020) 31.30% 18.52 (0.29) 22.02 (2.04) 3.50

[19, 20)

MC-GAN (x) 0.107 (0.003) 0.077 (0.016) 27.97% 19.43 (0.28) 22.45 (1.71) 3.02
MC-GAN (y) 0.106 (0.004) 0.071 (0.018) 33.31% 19.48 (0.29) 23.26 (2.14) 3.79
MC-GAN (z) 0.106 (0.004) 0.071 (0.019) 33.50% 19.48 (0.29) 23.31 (2.26) 3.84

MC-GAN (xyz) 0.106 (0.004) 0.076 (0.016) 28.60% 19.47 (0.29) 22.57 (1.76) 3.10
x-direction 0.107 (0.003) 0.083 (0.015) 22.79% 19.43 (0.28) 21.80 (1.49) 2.37
y-direction 0.106 (0.004) 0.075 (0.016) 29.66% 19.48 (0.29) 22.72 (1.80) 3.24
z-direction 0.106 (0.004) 0.073 (0.015) 31.05% 19.48 (0.29) 22.88 (1.73) 3.40

>20

MC-GAN (x) 0.089 (0.009) 0.067 (0.012) 24.49% 21.09 (0.97) 23.61 (1.53) 2.53
MC-GAN (y) 0.088 (0.010) 0.061 (0.014) 30.59% 21.19 (1.13) 24.50 (1.90) 3.32
MC-GAN (z) 0.089 (0.010) 0.064 (0.015) 27.60% 21.11 (1.06) 24.06 (1.89) 2.96

MC-GAN (xyz) 0.088 (0.010) 0.066 (0.013) 25.12% 21.14 (1.08) 23.76 (1.69) 2.62
x-direction 0.089 (0.009) 0.071 (0.012) 20.44% 21.09 (0.97) 23.14 (1.42) 2.05
y-direction 0.088 (0.010) 0.064 (0.013) 27.33% 21.19 (1.13) 24.06 (1.69) 2.87
z-direction 0.089 (0.010) 0.067 (0.014) 24.22% 21.11 (1.06) 23.62 (1.71) 2.52

The “Degraded vs. Target” columns present the discrepancies (RMSE) and similarities (PSNR) between blurred scans and their artifact-free counterparts in each category. The “Corrected
vs. Target” columns show the discrepancies/similarities between model-corrected images and the targets. The values were computed after first scaling the images to the range [0, 255].
The numbers in parentheses are standard deviations. Bold numbers show each model’s overall RMSE reduction and PSNR gain. The x-, y-, z- directions present the breakdown
performance of MC-GAN(xyz) along the sagittal, axial, and coronal planes, respectively.
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We evaluated our models’ performance across a spectrum of five degradation levels
(Column 1), each of which contained 1000 motion-affected images whose PSNR scores with
respect to the ground truth were within the indicated intervals. The “Degraded vs. Target”
columns present the discrepancies (RMSE) and similarities (PSNR) between the blurred
scans and their artifact-free counterparts in each category. The “Corrected vs. Target”
columns present the discrepancies/similarities between the model-corrected images and
the targets. The numbers in parentheses are standard deviations. The “Reduction” and
“Gain” columns calculate the improvements of the model-corrected over the original images
measured against the ground truth in RMSE and PSNR, respectively. Figure 4 demonstrates
the efficacy of MC-GAN on a sample of synthetic test images.

 

       Model Input                    Model Output     Expected Output 
   

 
 
 
  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Visual Assessment of MC-GAN on Reducing Synthetic Motion Blurs. Left column: simu-
lated motion blurs using random kernels (Section 4.2.2). Middle column: model-corrected output.
Right column: ground truth images. From top to bottom rows are images from sagittal, coronal, and
axial planes, respectively.

We observe that the improvement made by the models decreases as the PSNR category
(column 1) increases. This is an expected outcome because a higher PSNR indicates closer
quality to the ground truth and, thus, less degradation. We view this as a desirable feature
in that the models refrained from making substantial changes when the input image quality
was high and intervened aggressively for those images with severe motion blurs.

Additionally, depending on the degradation level, MC-GAN(xyz) model achieved a
25.12% to 32.65% reduction in RMSE and a 2.62 to 3.76 dB gain in PSNR on a 5000-sample set
of synthetic test images. Diving further into the model’s performance along each anatomical
plane, we observe that MC-GAN(x) outperforms the x-direction of MC-GAN(xyz) in both
RMSE and PSNR across all degradation categories. This outcome is consistent with our
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conjecture, which suggests MC-GAN(x) is more desirable over MC-GAN(xyz) for sagittal
images. The same is true for the y- and z- directions in which MC-GAN(y) and MC-GAN(z)
outperformed MC-GAN(xyz) in the respective directions across all degradation categories.
Thus, we believe that it is more desirable to employ individual models trained using
exclusive images from each anatomical plane.

Figure 4 illustrates MC-GAN’s action on motion blur in sample synthetic test images.
The left column consists of degraded images (i.e., input to the models). The model’s output
is shown in the middle column. The right column displays the expected output (i.e., ground
truth images). Qualitatively, when presented with synthetically generated artifacts, the
model appears to be highly effective.

5.3. Evaluation on Real-World Scans

Because real-world scans have no ground-truth images, we resorted to the perception-
based image quality evaluator (PIQE) [43]. Table 2 presents the average PIQE scores for
each model over 16,500 real-world motion-affected images described in Section 4. The
results suggest that the outcome of the individual MC-GAN models (first three rows)
exhibit notable improvements compared to the original images. The gain is particularly
salient in the z direction with a 44.88% reduction in average PIQE scores. We also observe
that MC-GAN(xyz) is less effective than the individual models, which is consistent with
our findings in the synthetic data.

Table 2. Quantitative Evaluation on Real-world ABIDE data.

Models
PIQE

Degraded Corrected Reduction (%)

MC-GAN (x) 9.09 (3.77) 7.98 (5.23) 12.26%

MC-GAN (y) 12.17 (6.62) 9.01 (7.52) 26.01%

MC-GAN (z) 12.45 (10.65) 6.86 (5.05) 44.88%

MC-GAN (xyz) 11.24 (7.71) 9.11 (7.00) 18.97%

x-direction 9.09 (3.77) 8.38 (5.65) 7.84%

y-direction 12.17 (6.62) 9.75 (7.13) 19.92%

z-direction 12.45 (10.65) 9.19 (7.14) 26.18%
The “Degraded” column measures the PIQE between blurred scans and their artifact-free counterparts. The
“Corrected” column measures the PIQE between model-corrected images and the targets. The x-, y-, z- directions
present the breakdown performance of MC-GAN(xyz) along the sagittal, axial, and coronal planes, respectively.
The numbers in parentheses are standard deviations. Bold numbers indicate each model’s PIQE reduction. The
x-, y-, z- directions present the breakdown performance of MC-GAN(xyz) along the sagittal, axial, and coronal
planes, respectively.

Figure 5 presents the qualitative assessment of MC-GAN on a sample of real-world
images with motion artifacts. Images under the “Model Input” columns are original MR
images, and the model-corrected outcomes are displayed to the right of each image. Al-
though the improvements realized by the model on real-world scans are not as pronounced
as those achieved on the synthetic images, we are encouraged by some observations. First,
there is some transfer of the model’s strong performance in the synthetic domain to the real
one. Specifically, our model made a positive enhancement to the original corrupted image
in each case presented in Figure 5. Second, although the blind deconvolution problem is
discouragingly difficult due to its intractability, our experiments indicate that deep neural
networks can produce quality gains in real images by learning a collection of corrupting
kernels using synthetic images. Thus, enhancing our kernels to simulate more comprehen-
sive subject motions during MRI could lead to greater quality gains. Lastly, we observe
that in Figure 5c, the output image may not be as sharp as the input image, but has less
pixelated noise than the original image. The models further reduced the “ringing” artifacts
in Figure 5b,d. We attribute these gains to the generative nature of GAN-based models. In
particular, although our models were trained based on pairs of blurred and sharp images,
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they produced output images based on the learned distribution of the ground truth images
and, thus, could remove additional artifacts to a limited degree.

 
 

 
 
 

 
 

(a) 

(b) 

(c) 

(d) 

Model Input Model Output Zoomed Input Zoomed Output 

Figure 5. Visual Assessment of MC-GAN on Real-world Motion-affected Images. Images under the
“Model Input” columns are original MR images; model-corrected output is displayed to the right.
The two columns on the right show the zoomed-in regions indicated by the red boxes. Samples are
selected from the sagittal (a), coronal (b,d), and axial (c) directions.

6. Discussion

In this study, we proposed a technique to generate artificial motion blurs in brain
MRI scans to address the data limitation issue in training deep learning models. Our
method leveraged a collection of 10,000 random convolutional kernels designed to simulate
in-scanner head motions. We further evaluated the efficacy of a GAN-based deep learn
approach capitalizing on a large synthetic dataset generated using the proposed technique.

Our experimental results on synthetic and real-world MR images endorse our ap-
proach in that deconvolutions based on a large family of random kernels improved the
degraded images’ quality with quantitative and qualitative evaluations. Nevertheless,
we recognize that a more efficient process of densely populating the kernel space could
illuminate the nature of typical corruptions and produce more robust real-life results. In
particular, we assume that our constrained random walk process uniformly covers the
kernel space. Although we have not validated this assumption theoretically, we believe that
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our relatively large kernel set achieved a sufficient coverage to produce perceptible results
in practice. A potential enhancement could be to systematize the notion of kernel space
coverage and examine the dependence of our method’s performance on the level of such
coverage. Furthermore, the kernel generation process could be improved by introducing a
relation of similarity between them (e.g., translation produces indistinguishable kernels)
and producing kernel space coverings consisting of sufficiently dissimilar kernels.

It is worth noting that our study focused on reducing only motion blurs in degraded
MR images. In practice, a corrupted MRI scan may contain a complex mixture of differ-
ent types of motion artifacts, including rings, ghosting, signal dropouts, and unwanted
signal enhancements. Thus, a potential future direction for this research could be to de-
velop a more comprehensive process to simulate the heterogeneous nature of real-world
motion artifacts.

Lastly, our experimental results suggest merit in training individual models for the
respective anatomical planes. One explanation is that the input images’ structural similarity
narrowed the problem domain and contributed to the success of these customized models.
We believe this area has not been extensively studied due to the limited availability of
real-world labeled data. Our study fills this gap using data augmentation techniques that
simulate both sharp and degraded MRI scans. One limitation of our directional models is
that they are trained for the three orthogonal planes (i.e., sagittal, coronal, and axial). In
practice, MRI scans can be performed along oblique planes. We expect similar approaches
can be used to build effective models for other scan directions with corresponding sample
images. Our approach can also be applied to other medical imaging modalities, including
X-ray, B-scans, and computed tomography (CT) scans.

7. Conclusions

In this study, we investigated the viability of a new blind deconvolution approach to
address motion blurs in brain MRI scans. In particular, a conditional adversarial network
was trained to guess the deblurring kernel of a corrupted image based on a relatively small
universe of “basis” kernels. To facilitate training effective deep learning models, we applied
data augmentation techniques and generated a large number of realistic synthetic brain
MRI images. Our experimental results suggested that, with a sufficiently dense basis, a
neural network could effectively guess the degrading kernel and improve the image quality
of motion-affected scans. Our study further demonstrated values in building customized
models for individual MRI planes. We recognize some limitations associated with our
framework, including the primitive approximation of complex real-world head motions
and the assumption of a uniform kernel space coverage with our random walk approach.
Nevertheless, we believe that the framework presented here merits further investigation
based on the promise shown by our experiments.
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