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Abstract

Previous research reported that college students’ symbolic addition and subtraction fluency 

improved after training with non-symbolic, approximate addition and subtraction. These findings 

were widely interpreted as strong support for the hypothesis that the Approximate Number System 

(ANS) plays a causal role in symbolic mathematics, and that this relation holds into adulthood. 

Here we report four experiments that fail to find evidence for this causal relation. Experiment 1 

examined whether the approximate arithmetic training effect exists within a shorter training period 

than originally reported (2 vs 6 days of training). Experiment 2 attempted to replicate and compare 

the approximate arithmetic training effect to a control training condition matched in working 

memory load. Experiments 3 and 4 replicated the original approximate arithmetic training 

experiments with a larger sample size. Across all four experiments (N = 318) approximate 

arithmetic training was no more effective at improving the arithmetic fluency of adults than 

training with control tasks. Results call into question any causal relationship between approximate, 

non-symbolic arithmetic and precise symbolic arithmetic.
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1. Introduction

The Approximate Number System (ANS) supports the ability to represent, compare, and 

manipulate non-symbolic and approximate quantities without number symbols or language. 

The ANS is evident in diverse species of animals and early in human development 

(Feigenson, Dehaene, & Spelke, 2004). The number sense theory posits that the ANS is 

foundational to the development of symbolic mathematical knowledge (Dehaene, 2011; 

Gallistel & Gelman, 1992). A strong version of the number sense theory states that the ANS 

remains foundational for mathematical ability throughout the human lifespan (e.g., Bugden, 

DeWind, & Brannon, 2016; Feigenson, Libertus, & Halberda, 2013).

A large body of work relates the ANS to symbolic mathematical skill. The same brain 

regions that support symbolic math representations are recruited when children and rhesus 

macaques make approximate number judgments, supporting the neuronal recycling 

hypothesis (Dehaene & Cohen, 2007; Dehaene, Piazza, Pinel, & Cohen, 2003). There is a 

small, but significant, correlation between ANS acuity and a variety of symbolic math skills 

in both children and adults (for meta-analyses see Chen & Li, 2014; Fazio, Bailey, 

Thompson, & Siegler, 2014; Schneider et al., 2016). ANS acuity is longitudinally predictive 

of later math abilities (He et al., 2016; Soto-Calvo, Simmons, Willis, & Adams, 2015; Toll, 

Van Viersen, Kroesbergen, & Van Luit, 2015). Furthermore, some children with 

developmental dyscalculia have lower ANS acuity than age matched or skill matched control 

groups (Olsson, Östergren, & Träff, 2016; Piazza et al., 2010). These correlational findings 

suggest, but do not demonstrate, a causal link between ANS acuity and symbolic math 

ability throughout the lifespan.

The strong version of the ANS theory led to the prediction that there would be a causal link 

between tasks that engage the ANS and symbolic math performance, even among adult 

participants. In the first such experiment, Park and Brannon (2013) found that adults who 

trained with non-symbolic, approximate arithmetic problems answered more double and 

triple digit addition and subtraction problems correctly at post-test compared to pretest than 

subjects who trained with a numeral ordering task, a knowledge training task, or a no-

contact control group. Approximate arithmetic training involved addition and subtraction of 

dot arrays over six or ten 25-min sessions. A subsequent experiment (Park & Brannon, 

2014) replicated this effect, and found that non-symbolic, approximate arithmetic training 

improved symbolic arithmetic fluency more than training with a non-symbolic number 

comparison task, a visuo-spatial short-term memory task, or a numeral ordering training 

task. A separate research group replicated this effect with the finding that subjects trained on 

approximate arithmetic improved more on a symbolic arithmetic fluency test compared to 

subjects who spent the same amount of time answering general knowledge multiple choice 

questions (Au, Jaeggi, & Buschkuehl, 2018). Taken together, this work suggested that 

practice with non-symbolic addition and subtraction increases the ability to solve symbolic 

addition and subtraction problems.

Results of these training studies were interpreted as evidence for the strong version of the 

number sense theory that the ANS remains foundational for symbolic mathematics 

throughout the lifespan (e.g., Bugden et al., 2016; Feigenson et al., 2013; Hyde, Berteletti, & 
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Mou, 2016; Spelke, 2017). However, a caveat to this interpretation is that although the 

approximate arithmetic task requires the representation of large, approximate quantities, 

there is no evidence that the task changes ANS acuity. ANS acuity is quantified with a 

comparison task where participants identify which of two arrays of dots is greater in 

quantity, and the Weber fraction provides an estimate of the ratio between the two dot arrays 

that a participant requires for successful discrimination. Approximate arithmetic 

performance shows ratio dependence, and clearly requires participants to use their 

approximate sense of quantity, but the task also involves additional cognitive skills such as 

visual working memory and mental manipulation. An intuitive explanation for positive 

transfer between non-symbolic approximate arithmetic and symbolic arithmetic is that non-

symbolic, approximate arithmetic training improves ANS acuity, which in turn leads to 

better symbolic math performance. However, contrary to this explanation, all current 

evidence indicates that non-symbolic arithmetic training does not change participant’s ANS 

acuity (Au et al., 2018; Park & Brannon, 2014). Moreover, while ANS acuity is somewhat 

malleable with training (DeWind & Brannon, 2012) even extended training with non-

symbolic dot comparison was not sufficient to improve adult symbolic arithmetic 

performance (Cochrane, Cui, Hubbard, & Green, 2018). Thus, any improvements in 

symbolic arithmetic fluency that resulted from approximate arithmetic training were not due 

to sharpening ANS acuity, but instead some other aspect of the non-symbolic, approximate 

arithmetic task. Park and Brannon (2014) instead proposed that the repeated manipulation of 

mental representations of quantity in arithmetic operations was the mechanism of symbolic 

arithmetic improvement.

The initial aim of the current set of experiments was to investigate the necessary parameters 

for transfer from approximate arithmetic training to symbolic arithmetic calculation to shed 

light on potential mechanisms of the approximate arithmetic effect. Experiment 1 asked 

whether the approximate arithmetic training effect exists with a shorter training period than 

originally reported (2 vs 6 days of training). Experiment 2 compared approximate arithmetic 

training to training matched in working memory load and the numerical quantities 

manipulated, but without addition or subtraction operations. Unexpectedly, we failed to 

replicate the approximate arithmetic training effect in Experiments 1 and 2. Consequently, 

we attempted more precise replications of Park & Brannon, 2013, 2014 in Experiment 3 

(approximate arithmetic training compared to numeral ordering training) and a preregistered 

replication in Experiment 4 (approximate arithmetic training compared to approximate 

number comparison training). Finally, to increase the power for detecting any transfer effect 

we analyzed the data from Experiments 1–4 combined with the original data from the Park 

and Brannon experiments. Over four experiments and 318 participants we found no support 

for the original claim that training adults on the approximate arithmetic task benefits 

symbolic arithmetic fluency.

2. Methods

2.1. Subjects

Participants in Experiment 1 were recruited through the University of Pennsylvania′s 

Psychology Subject pool and received course credit for participation. Participants in 
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Experiments 2–4 were recruited with flyers distributed throughout the University of 

Pennsylvania’s campus. These flyers advertised for participation in a “Brain Exercise” 

psychology experiment to study adult cognition. Subjects in Experiments 2 and 3 were paid 

in a lump sum at the completion of the post-test. Subjects in Experiment 4 were paid after 

each session. Flyers contained the same language as the recruitment flyers used in the 

original Park & Brannon studies (2013, 2014). Participants recruited through flyers were 

largely students at the University of Pennsylvania. Participants were required to speak 

English and be under the age of 35.

There were 38 subjects in Experiment 1, 78 subjects in Experiment 2, 91 subjects in 

Experiment 3, and 111 subjects in Experiment 4. A power analysis indicated 19 subjects in 

the approximate arithmetic training condition would achieve 80% power to detect the 

original effect size of improvement on the arithmetic fluency test as found in Experiment 1 

of Park & Brannon, 2013 (the smallest original effect size found). We increased the number 

of subjects per condition in each subsequent experiment to increase the power to detect 

improvement on the arithmetic fluency test, resulting in our goal of 50 subjects per condition 

in Experiment 4 as reported in our preregistration. We collected 5 extra participants in the 

approximate arithmetic condition of Experiment 4 due a lower than anticipated rate of 

attrition. This sample size resulted in 99% power to detect the original effect size of 

improvement in Experiment 4 using a one sample two-sided t-test (cohen’s d = 0.68, 

significance level = 0.05). Age and gender by experiment and training condition are reported 

in Table 1.

2.2. Procedure

For each experiment, participants were randomly assigned to conditions. All participants 

completed a pretest battery, 2 or 6 25-min training sessions, and a post-test battery that was 

matched to the pre-test battery. The pre and post-test battery in all experiments included an 

exact symbolic arithmetic test and various other tests (see Supplementary Methods and 

Table 1 for details). Experiment 1 consisted of only two sessions while Experiments 2–4 

each consisted of 8 sessions. The training sessions were conducted on the same day as the 

pre and post-tests in Experiment 1 and on separate days for Experiments 2–4. Training 

sessions were 25 min in duration for all four experiments. All testing and training sessions 

took place in a quiet testing room with six computers. The average number of days between 

pre and posttest for participants in the approximate arithmetic training condition of each 

experiment is reported in Table 1. The order in which participants completed the pre and 

posttests was counterbalanced.

2.3. Training conditions

All four experiments consisted of an approximate arithmetic condition that was compared in 

a between subject design with at least one other training condition described below (Figure 

1). All experimental tasks are available for download at https://osf.io/9e5ca/?

view_only=9c2bd833cd9641d0af3c11c799cb4de7.

2.3.1. Approximate arithmetic (all experiments)—The approximate arithmetic 

training condition was taken directly from the Park and Brannon studies (2013, 2014). 
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Participants mentally added or subtracted dot arrays ranging from 9 to 36 as the arrays 

moved behind or out from an occluder in the center of a computer monitor. Participants were 

then required to either compare the imagined sum or difference to a new target array, or to 

match the imagined sum or difference to one of two target arrays. In Experiments 1–3 

participants responded by touching a touch screen monitor to indicate their choice. In 

Experiment 4, participants used the mouse to indicate their response. Dot arrays that 

represented the addends in the problem were visible for 1000 ms. Target dot arrays to be 

compared or matched were visible for 1500 ms before they were hidden behind a black 

circle. Both the matching and comparison trial types, and the addition and subtraction trial 

types were intermixed within 10 blocks of 20 trials each for each training session. Feedback 

was provided after each trial. The difficulty of the task was titrated to performance by 

decreasing the ratio between the imagined sum or difference and the target dot array. The 

numerical distance between the sum or difference and the target array varied in a log-base2 

scale, the log difference level. All participants started training with a log difference level of 

1.5. A log difference level of 1.5 is equivalent to a ratio of 2.83 (2^1.5 to 1) between the sum 

or difference and the alternative target array. For each 20-trial block, if performance was 

greater than 85% the log difference level decreased by one of the following randomly chosen 

values [0.13, 0.14, 0.15, 0.16, 0.17]. If performance over a block of 20 trials was less than 

70% the log difference level increased by one of the values randomly chosen from the 

following set [0.08, 0.09, 0.10, 0.11, 0.12]. The log difference level achieved at the end of a 

training session was carried over into the next session.

2.3.2. Numeral symbol ordering (Experiments 1–3)—This training condition was 

taken directly from the Number Symbol Ordering training condition used in (Park & 

Brannon, 2013; Park & Brannon, 2014). Participants were required to reorder sets of three 

Arabic numerals before the numerals moved off of the screen by tapping the numerals, 

which rearranged themselves randomly with each touch. A maximum of three triads 

appeared on the screen at the same time. If the triad was moving to the left on the screen the 

numerals needed to be in ascending order. If the triad was moving to the right on the screen 

the numerals needed to be in descending order. Participants received feedback on whether 

the triad was in the right order as it entered a gray block at the edge of the screen. This gray 

block turned green if the triad was in the correct order, or red if the triad was in the incorrect 

order at the end of each trial. Task difficulty was titrated by varying the speed in which the 

triads travelled across the screen. Triad speed started at 125 pixels/s. If accuracy was greater 

than 90% over a 2.2 min span, the speed increased by one of the values chosen randomly 

from the following [10, 11, 12, 13, 14]. If accuracy was less than 80%, the speed decreased 

by one of the following values [4, 5, 6, 7, 8]. The speed at the end of one training session 

was carried over into the next session.

2.3.3. Approximate range (Experiment 2)—This novel training condition was 

designed to match the working memory load of the approximate arithmetic training 

condition and required mental manipulation of dot arrays without mental arithmetic. 

Participants in this training condition indicated whether or not the number of dots in a target 

dot array fell inside or outside the range of two previously viewed dot arrays. Participants 

watched as one dot array appeared in the middle of the screen for one second before it 
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moved behind either an occluder (a gray box) on the right or an occluder (an identical gray 

box) on the left, counterbalanced. A second dot array appeared for one second and moved 

behind the second occluder. On comparison trials, a target array appeared at the bottom of 

the screen for 1000 ms and participants touched the screen to indicate whether this target 

was within the range of the previous two arrays. The target array was hidden by a black 

circle after 1000 ms, but subjects had 3500 ms more to respond to match the approximate 

arithmetic training condition. For example, if the first array contained 30 dots and the second 

array contained 120 dots and the target array had 15 dots the correct choice was “outside” 

the range. On matching trials, two arrays appeared at the bottom of the screen and subjects 

chose the array that was within the range of the previous two animated arrays. For example, 

if the first array contained 30 dots and the second array contained 120 dots the correct choice 

would be 90 rather than 180. The number of dots in one array ranged from 4 to 256. The two 

arrays that defined a range always had a ratio of 1:4. The difficulty of this task was titrated 

by changing the ratio between one of the range defining arrays and the target dot array. The 

numerical distance between one of the range defining arrays and the target array varied in a 

log-base2 scale, the log difference level. All participants started training with a log 

difference level of 1. A log difference level of 1 is equivalent to a ratio of 2 (2^1 to 1) 

between one of the range defining arrays and the alternative target array. If performance over 

a block of 20 trials was greater than 85% the log difference level decreased by 0.10. If 

performance over a block of 20 trials was less than 70% the log difference level increased by 

0.05. The log difference level achieved at the end of a training session was carried over into 

the next session.

2.3.4. Approximate number comparison (Experiment 4)—This training condition 

was taken directly from the Approximate Number Comparison training condition from Park 

and Brannon (2014). The task was to identify which of two dot arrays contained the greater 

number of dots. There were two trial types. In the mixed trial type, white and black dots 

appeared in an intermixed array on a gray background for 750 ms. Participants reported 

whether there were more black or white dots. In the other trial type participants saw two 

distinct black or white dot arrays on the screen at the same time, and chose which array was 

greater in numerosity. Participants responded with a mouse click. As in the approximate 

arithmetic training condition, difficulty was titrated using the log difference level. One of the 

dot arrays on each trial ranged from 16 to 32, and the other was determined by the log 

difference level. For example, if one array contained 16 dots, and the log difference level 

was 1.15, then the other array would contain either 16 × 2^1.15 or 16/2^1.15 dots. The 

titration procedure was the same as used in the approximate arithmetic training condition.

2.4. Pre and post tests

2.4.1. Exact symbolic arithmetic test (all experiments)—The test of arithmetic 

fluency developed by Park and Brannon (2013, 2014) was used in all four of the current 

experiments. Participants solved two and three digit addition and subtraction problems over 

two five minute blocks. The operands of the problems ranged from 11 to 244. Problems 

were chosen randomly for each participant from a set of 800 potential problems for the 

pretest and a distinct set of 800 for the posttest (counterbalanced). The number of problems 

that required carrying and borrowing was matched for the two problem sets. Performance 
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was quantified as the total number of correct problems solved over the 10-min assessment. 

As a proxy measure of a test-retest reliability score, the average correlation between pre and 

posttest arithmetic fluency score across all experiments and conditions was 0.90, indicating 

high reliability (for a breakdown by experiment and training condition see Table S1).

2.4.2. Expectation matching questionnaire (all experiments)—To assess whether 

any differences in arithmetic fluency gains by condition were driven by differences in 

participant’s expectation of improvement, we administered an expectation questionnaire 

(Dillon, Pires, Hyde, & Spelke, 2015). This questionnaire was administered after the 

completion of all other post-tests and is reproduced in the supplement. Questions included 

“After playing this number symbol/dot game, do you think you would answer arithmetic 

questions more quickly?” and “After playing this number symbol/dot game, do you think 

you would get more arithmetic questions correct?”. Participants indicated their response 

from 1 (strongly disagree) to 10 (strongly agree).

2.4.3. Additional pre and post-test assessments—Participants in each experiment 

completed two to four additional pre and posttests. These assessments were originally 

included as control tasks to assess whether any improvements in symbolic arithmetic after 

non-symbolic approximate arithmetic training were specific to symbolic arithmetic fluency. 

Given that the results were null for our outcome of interest, we restrict the description of the 

control assessments and the accompanying data to Table 1 and the Supplementary Material.

3. Theory and calculation

3.1. Analysis plan

Gain scores for each participant were calculated for the exact symbolic arithmetic 

assessment, by subtracting the number of problems solved correctly in 10 min at post-test 

from the number of problems solved correctly in 10 min at pretest. We removed any 

arithmetic gain score that was smaller than Q1 − × IQR or larger than Q3 + 2 × IQR, where 

Q1 is the first quartile, Q3 is the third quartile, and IQR is the interquartile range. In this 

analysis, quartiles were calculated with the data from each experiment separately. We then 

conducted a two-sample t-test or a one-way ANOVA to examine whether there was a 

significant difference between the average arithmetic fluency gain score by training 

condition. The transfer effect from training condition to arithmetic fluency score was further 

assessed using an analysis of covariance (ANCOVA) where pretest arithmetic fluency and 

training condition were used to predict post-test arithmetic fluency score. These analyses 

were preregistered for Experiment 4 with asPredicted.org (http://aspredicted.org/blind.php?

x=kh6sy2). As a complement to the frequentist analysis of the training effect, we also report 

a Bayesian analysis of this effect for each experiment to examine the relative support for 

both our hypothesis of interest and the null hypothesis. We conducted a Bayesian t-test or 

ANOVA, dependent on the number of training conditions for each experiment. We set a non-

informative Jeffreys prior width of 0.5 to correspond to a small effect (Morey & Rouder, 

2011). These analyses result in a Bayes factor (BF10), which can be interpreted as the 

likelihood ratio for the alternative hypothesis over the null. Given that the Bayes factor 

(BF10) is a ratio of the likelihood for the alternative hypothesis over the null hypothesis, the 

Szkudlarek et al. Page 7

Cognition. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://aspredicted.org/
http://aspredicted.org/blind.php?x=kh6sy2
http://aspredicted.org/blind.php?x=kh6sy2


inverse of the Bayes factor (BF01) can be interpreted as the likelihood ratio for evidence of 

the null hypothesis over the alternative hypothesis. Following Jeffreys (1961) we use the 

following designations to interpret the strength of the Bayes factors: 0–3 offer anecdotal 

support for H1, 3–10 moderate support for the H1, 10–30 strong support for H1, 30–100 

very strong evidence for H1, and values greater than 100 offer decisive evidence for H1. We 

use the inverse of these ranges to interpret support for the null hypothesis (BF01 anecdotal 

0.33–0, moderate 0.10–0.33, strong 0.10–0.03, very strong 0.03–0.01) To facilitate 

comparison with the present data we conducted a Bayesian analysis of Park and Brannon’s 

(2013, 2014) previously reported data broken down by experiment.

Finally, we combined the data from all experiments, including the data from (Park & 

Brannon, 2013; Park & Brannon, 2014) to test the hypothesis that approximate arithmetic 

training improves exact symbolic arithmetic fluency more than any of the alternative training 

conditions: approximate number comparison, visuo-spatial short term memory, numerical 

symbol ordering, approximate range, knowledge training, and a no contact control. This 

combined analysis is possible because the same pre and post arithmetic fluency test was 

used across all experiments and training conditions. We again used complementary 

frequentist and Bayesian approaches. We first report a one-way ANOVA with training 

condition as a factor and exact symbolic arithmetic gain score as the outcome. Then, we 

report a one-way Bayesian ANOVA testing whether condition as a factor adds significant 

variance over the model with the mean intercept only. This analysis tests whether any of the 

training conditions create significant differences in arithmetic fluency gain, however, we had 

a specific hypothesis that approximate arithmetic training improves arithmetic fluency more 

than any of the other training conditions. To examine this specific hypothesis, we also report 

a contrast between the average arithmetic fluency gain score for the approximate arithmetic 

condition compared to all other conditions. We followed up this analysis with one sided t-
tests between the average gain score for participants in the approximate arithmetic training 

condition and each other training condition. Finally, we compared the effect size of the 

arithmetic fluency gain found in the non-symbolic, approximate arithmetic condition across 

all seven experiments to test the robustness of the transfer effect regardless of the control 

conditions.

4. Results

4.1. Analysis of approximate arithmetic training performance

To quantify training performance, we calculated the mean log difference score of the 

matching and comparison trial types at the end of each training session for each participant 

in the approximate arithmetic training condition to match the analysis in the original Park 

and Brannon experiments. A one-way ANOVA indicated there was no significant difference 

between the last log difference level reached on training day 6 by experiment across the 

three Park and Brannon studies and the current experiments 2–4 (F5,182 = 1.32, p = .26, ηP
2; 

Fig. S7). This finding indicates that improvement in participants’ ability to add and subtract 

dot arrays over the course of training was consistent across the original and current 

experiments. There were also no significant differences between mean log difference level 

by experiment on training session 2 for Experiments 1–4 and the three experiments 
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conducted by Park and Brannon (F6,202 = 0.85, p = .53, ηP
2). These analyses suggest that 

motivation to complete the training task in the approximate arithmetic training condition was 

similar in the current experiments and the prior studies by Park and Brannon.

4.2. Experiment 1

A two-sample t-test indicated no significant differences in mean number of arithmetic 

problems solved correctly at pretest by condition (63 vs 73 problems; t36 = −1.20, p = .24, d 

= −0.39 95% CI [−1.1 0.27]) suggesting that random assignment was effective. There was 

no significant difference between the average arithmetic gain score for the approximate 

arithmetic and numeral ordering training conditions (Figs. 2 & 3; 4.3 vs 10 problems; t36 = 

−1.54, p = .13, d = −0.50 95% CI [−1.2 0.17]). An ANCOVA confirmed no significant effect 

of condition on post-test arithmetic fluency score when controlling for pretest arithmetic 

fluency score (F1,35 = 2.31, p = .14, ηP
2) significant pretest score by condition interaction 

(F1,34 = 0.003, p = .96). The complementary Bayesian t-test indicated a BF10 = 0.98. A 

Bayes factor close to 1 suggests no evidence for either the alternative or the null hypothesis.

4.3. Experiment 2

One participant in the approximate range condition was removed from the sample due to an 

outlier gain score. There were no significant differences in pretest score by condition 

indicating that random assignment was effective (Approximate Arithmetic 67 problems, 

Numeral Ordering 68 problems, Approximate Range 70 problems; F2,74 = 0.136, p = .87, 

ηP
2). A one-way ANOVA with training condition as a factor indicated no differences in 

arithmetic gain score by training condition (Figs. 2 & 3; Approximate Arithmetic 5.2 

problems, Numeral Ordering 7.3 problems, Approximate Range 5.5 problems; F2,74 = 0.257, 

p = .77, ηP
2). An ANCOVA indicated no significant effect of condition on post-test arithmetic 

fluency score when controlling for pretest scores (F2,73 = 0.265, p = .77, ηP
2), and no 

significant pretest by condition interaction (F2,71 = 0.661, p = .52). A Bayesian ANOVA 

resulted in a BF10 = 0.137, suggesting moderate evidence for the null hypothesis of no 

difference in arithmetic fluency gain score by condition.

4.4. Experiment 3

Two participants in the numeral ordering training condition were removed due to outlier gain 

scores. There was no significant difference in pretest arithmetic scores by condition 

indicating that random assignment was effective (75 vs 70 problems; t87 = 0.873, p = .38, d 

=0.19 95% CI [−0.24 0.61])). Again, there was no significant difference in arithmetic gain 

score by condition (Figs. 2 & 3; 8.0 vs 6.1 problems; t87 = 0.873, p = .38, d = 0.19 95% CI 

[−0.24 0.61]). An ANCOVA confirmed no significant effect of condition on post-test 

arithmetic fluency score when controlling for arithmetic fluency pretest score (F1,86 = 0.681, 

p = .41, ηP
2), and no significant pretest by condition interaction (F1,85 = 3.14, p = .08). The 

Bayesian t-test indicated a BF10 = 0.60, indicating anecdotal support for the null hypothesis 

that the difference between the mean gain scores of each condition is zero.
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4.5. Experiment 4

There was a marginal difference between the arithmetic fluency scores at pretest by 

condition (58 vs 70 problems; t109 = −1.92, p = .06, d = −0.37 95% CI [−0.75 0.01]). This 

effect was driven by the pretest score of one subject in the approximate number comparison 

condition who scored over 6 standard deviations above the mean pretest score. With this 

outlier pretest score removed, there was no longer a marginal difference in pretest score by 

condition (58 vs 66 problems; t108 = −1.66, p = .10, d = −0.32 95% CI [−0.70 0.06]). 

However, this participant was not removed from our subsequent analyses because their gain 

score was within our outlier cutoffs.2 There was no significant difference between arithmetic 

gain score by training condition (Figs. 2 & 3; 7.1 vs 10 problems; t109 = −1.35, p = .18, d = 

−0.26 95% CI [−0.63 0.12]).). An ANCOVA confirmed no significant effect of condition on 

arithmetic fluency post-test score when controlling for pretest score (F1,108 = 2.16, p = .14, 

ηP
2), and no significant condition by pretest score interaction (F1,107 = 0.261, p = .61). The 

Bayesian t-test indicated a BF10 = 0.85, indicating anecdotal support for the null hypothesis 

that there is no difference in gain score by condition.

4.6. Bayesian re-analysis of Park & Brannon, 2013, 2014

4.6.1. Park & Brannon, 2013 Experiment 1—A Bayesian t-test yielded a BF10 = 

3.01, suggesting moderate support for the alternative hypothesis of a significant difference 

between the arithmetic fluency gain scores for the approximate arithmetic (9.3 problems) 

and no contact control groups (0.31 problems). This reanalysis is consistent with the 

conclusions reported in Park & Brannon, 2013.

4.6.2. Park & Brannon, 2013 Experiment 2—A Bayesian ANOVA indicated a BF10 

= 1.71, indicating anecdotal evidence for the alternative hypothesis of a significant 

difference in arithmetic fluency gain score by training condition (Approximate Arithmetic 

15 problems, Numeral Ordering 5.1 problems, Knowledge Training 6.1 problems). This 

reanalysis is consistent with the conclusions reported in Park & Brannon, 2013.

4.6.3. Park & Brannon, 2014 Experiment 1—A Bayesian ANOVA indicated BF10 = 

4.28, indicating moderate evidence for the alternative hypothesis of a significant difference 

in arithmetic fluency gain score by training condition (Approximate Arithmetic 14 problems, 

Numeral Ordering 5 problems, Approximate Number Comparison −2.9 problems, Visuo-

spatial Short Term Memory 4.4). This reanalysis is consistent with the conclusions reported 

in Park & Brannon, 2014.

4.7. Combined analysis

We combined all the data from the current experiments and the three previous experiments 

conducted by Park and Brannon (2013, 2014) to yield a dataset with 486 individual 

arithmetic fluency gain scores across seven training conditions. A new outlier analysis with 

the full data set resulted in four arithmetic gain score outliers across all seven experiments: 

2Removal of this subject does not change the significance of any analyses. Difference between gain scores by training condition (t108 
= −1.45, p = .15; ANCOVA F1,107 = 2.36, p = .13, ηP

2; BF10 = 0.92).
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one from Park & Brannon, 2013 Experiment 2, one from Park & Brannon, 2014 Experiment 

1, one from Experiment 2, and one from Experiment 4. These participants were excluded 

from the current analysis. A one-way ANOVA predicting pretest arithmetic fluency score by 

condition was not significant (Fig. S5; F6,475 = 0.855, p = .53, ηP
2) indicating there were no 

significant differences in arithmetic fluency score by condition at pretest. Moreover, a one-

way ANOVA predicting arithmetic fluency pretest score by experiment was also not 

significant (Fig. S5; F6,475 = 1.27, p = .27, ηP
2) suggesting that the samples for each 

experiment had comparable initial arithmetic performance. Crucial to our main hypothesis, a 

one-way ANOVA predicting arithmetic fluency gain score with condition as a factor 

indicated no significant differences by condition (Fig. 4; F6,475 = 1.69, p = .12, ηP
2 = 0.02). 

An ANCOVA confirmed no significant effect of condition on arithmetic fluency post-test 

score when controlling for pretest score (F6,474 = 1.61, p = .14, ηP
2), and no significant 

condition by pretest score interaction (F6,468 = 0.718, p = .64). The complementary Bayesian 

one-way ANOVA resulted in a BF10 = 0.14 for the condition factor. This provides moderate 

evidence that the model with only the mean intercept is a better model of arithmetic gain 

score than a model with training condition as a factor. The current data is seven times (i.e., 

1/0.14 = 7.14) more likely to occur under the null hypothesis that the intercept only model is 

a better model of the data than the alternative model that training condition explains variance 

in arithmetic fluency gain score.

To test the specific hypothesis that approximate arithmetic training improves arithmetic 

fluency more than any other training condition, we ran a contrast between the approximate 

arithmetic condition and all other conditions. This ANOVA indicated a significant difference 

between the approximate arithmetic condition and the other training conditions as a whole 

(Fig. 4; F1,480 = 3.93, p = .048, BF10 = 0.68). However, one sided t-tests between the 

average gain score for the approximate arithmetic training condition and every other 

condition revealed that this effect was driven by greater arithmetic fluency gain scores in the 

approximate arithmetic training condition compared to the no contact control condition (t232 

= 3.12, p = .001, BF10 = 16.0). None of the other one-tailed t-tests comparing arithmetic 

fluency gain scores for the approximate arithmetic training and each of the other training 

conditions were significant (numeral ordering t325 = 0.987, p = .16, BF10 = 0.27; 

approximate number comparison t279 = 0.844, p = .20, BF10 = 0.28; approximate range t229 

= 0.986, p = .16, BF10 = 0.44; visuo-spatial short term memory t224 = 1.20, p = .12, BF10 = 

0.56; knowledge training t221 = 0.612, p = .27, BF10 = 0.41).

4.8. Effect size of approximate arithmetic training improvement in arithmetic fluency

Finally, we compared the effect size of the gain scores within the non-symbolic, 

approximate arithmetic training condition across experiments with 6 days of training 

(Experiments 2–4, Experiment 2 in Park & Brannon, 2013, Experiment 1 in Park & 

Brannon, 2014). The original experiments reported effect sizes for the approximate 

arithmetic training condition of d = 1.08 (15.4 problems, Park & Brannon, 2013 Experiment 

2), and d = 1.10 (14.4 problems, Park & Brannon, 2014 Experiment 1). The effect sizes for 

Experiments 2–4 of the present study were d = 0.45. d = 0.82, and d = 0.54, corresponding 

to an increase of 5.19, 8.00, and 7.05 problems answered correctly respectively. A one-way 
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ANOVA testing for a significant difference in arithmetic fluency gain score by experiment 

revealed a significant difference (Fig. 4; F4,159 = 3.10 p = .02, ηP
2 = 0.07). Pairwise tests 

revealed that the effect size for Experiments 2–4 were smaller than the effect size found in 

Park & Brannon, 2013 Experiment 2 (Experiment 2 p = .01, Experiment 3 p = .04, 

Experiment 4 p = .02), and the effect sizes found in Experiments 2 and 4 were smaller than 

the effect size found in Park & Brannon, 2014 (Experiment 2 p = .01, Experiment 4 p = .03). 

However, none of these pairwise comparisons survived the Holm correction for multiple 

comparisons.

4.9. Expectation matching analysis

When combining all data from Experiments 1–4 there was no correlation between a 

participant’s expectation of increased accuracy or speed on the arithmetic fluency test and a 

participant’s actual improvement on the arithmetic fluency test (accuracy r (286) = −0.03, p 
= .67, 95% CI [−0.14 0.09]; speed r (286) = −0.06, p = .33, 95% CI [−0.17 0.06]). For a 

comparison of expectation for improvement by condition, please see the supplementary 

material.

5. Discussion

The original goal of the current study was to replicate the finding that non-symbolic 

approximate arithmetic training improves symbolic arithmetic fluency, and to build on this 

finding by probing the mechanism of the transfer effect. However, we were unable to 

replicate the original finding across four independent experiments. Bayesian analyses for 

each of the four current experiments provided weak to moderate evidence in favor of the null 

hypothesis of no significant difference in arithmetic fluency gain by training condition. To 

increase the power to detect an approximate arithmetic training effect, we combined the data 

from all four experiments and the original data from Experiments 1 and 2 of Park & 

Brannon, 2013, and Experiment 1 of Park & Brannon, 2014. However, even with the large 

sample size of 486 (209 in the approximate arithmetic training condition alone) there was no 

significant difference in arithmetic fluency gain score by training condition. A Bayesian 

analysis of this combined data set indicated that the data is seven times more likely under the 

null hypothesis of no difference between training conditions than under the alternative 

hypothesis where training condition is predictive of arithmetic fluency gain.

All training conditions did, on average, improve participants scores on the arithmetic fluency 

test. However, without a significant difference in training effect by condition, this increase in 

performance is likely due to a test-retest effect. The testing environment, test instructions, 

and the method of response were the same during the pre and post-test sessions, and this 

similarity could result in improved performance at post-test. At the same time, without a no 

contact control condition in each experiment, we cannot definitively claim that a test-retest 

effect accounts for improved performance. It is possible that our control training conditions 

improved arithmetic fluency to the same degree as approximate arithmetic training, and this 

across the board improvement could account for our lack of a difference between training 

conditions at post-test. However, we consider this explanation unlikely due to the variety of 

alternative training conditions tested across all experiments.
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We did not find evidence that participants’ expectations of improvement impacted 

participants’ actual improvement on the arithmetic posttest. There was no significant 

correlation between a participant’s expectation of improvement and their actual 

improvement. Moreover, if anything, participants in the numeral ordering training condition 

expected to improve their arithmetic score to a greater degree than participants in the other 

numerical training conditions, and yet their gains were no greater than the other training 

conditions. This lack of correspondence between expected gains and actual gains is 

unexpected, but may reflect the fact that regardless of a participant’s expectation that ‘brain 

training’ should improve their cognitive ability, none of our training conditions were an 

effective way to improve arithmetic fluency.

We were also unable to replicate the effect size of the arithmetic fluency gain in the 

approximate arithmetic condition in the current experiments. The effect sizes for the 

approximate arithmetic condition in the current experiments were lower than the effect sizes 

found in Park & Brannon, 2013 Experiment 2 and Park & Brannon, 2014 Experiment 1. 

This may reflect the “winner’s curse” and be a consequence of the small sample sizes used 

in the Park and Brannon studies (Button et al., 2013). An underpowered experiment will 

tend to overestimate the size of the effect because, by chance, the original experiment found 

an estimate of the effect that was large enough to pass our statistical threshold for 

significance (p < .05). Consequently, subsequent experiments that attempt to replicate this 

effect will tend to find smaller effect sizes that are closer to the actual true effect size 

(Button et al., 2013). Thus, the smaller “true” effect size for the approximate arithmetic 

condition found in the replication experiments is not significantly different than the effects 

measured for the control training conditions. We consider this the best explanation for our 

inability to replicate Park and Brannon (2013, 2014).

While the small sample size used in the original experiments may have led to false positive 

results and our inability to replicate, we also considered other potential reasons for our 

discrepant results. The Park and Brannon studies (2013, 2014) were run at a different 

university than the current experiments, however, these universities are well matched in 

terms of academic performance, entrance selectivity, and student demographics. We found 

no systematic differences in pretest arithmetic fluency scores or engagement with the 

approximate arithmetic training task. The same participant recruitment flyers and computer 

programs for both the arithmetic fluency outcome measure and the training tasks were used 

in the both the original and current experiments. We did identify one minor difference in the 

way the conditions were run. In the original experiments training cohorts tested in the same 

room were largely made up of one training condition to prevent participants seeing the other 

training conditions. In the current experiments, subjects were randomly assigned to 

conditions to reduce the possibility of cohort effects. Although we did not anticipate this 

minor difference to impact our results, recent studies suggest small differences in 

experimenter or participant knowledge of conditions can influence results (e.g., Gilder & 

Heerey, 2018). Additionally, separate training condition cohorts could result in an uneven 

distribution of motivation to complete a ‘brain training’ experiment because of the sequential 

nature of this method of testing. Participants may have different levels of motivation at 

different timepoints in the academic semester.
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The results of the current experiments alone and in combination with the results of Park and 

Brannon (2013, 2014) lead us to conclude that there is no evidence that approximate 

arithmetic training improves arithmetic fluency in adults. However, it remains plausible that 

such training would be more effective in children. Previous studies with preschool and 

elementary school age children report that approximate arithmetic training has positive 

effects on tests of basic arithmetic calculation (Hyde, Khanum, & Spelke, 2014), symbolic 

number line placement (Khanum, Hanif, Spelke, Berteletti, & Hyde, 2016) and standardized 

math tests (Park, Bermudez, Roberts, & Brannon, 2016; Szkudlarek & Brannon, 2018). 

Interventions that incorporate an approximate arithmetic component into a larger 

intervention have also improved the symbolic math skill of children (Dillon, Kannan, Dean, 

Spelke, & Duflo, 2017; Käser et al., 2013; Obersteiner, Reiss, & Ufer, 2013; Sella, 

Tressoldi, Lucangeli, & Zorzi, 2016). This pattern of results would be consistent with the 

finding that the correlation between the ANS and symbolic mathematics is stronger when 

children are just beginning to learn their numbers, but weakens as children engage in formal 

math education (Fazio et al., 2014). Approximate arithmetic training may be more effective 

in young children because it improves their conceptual understanding of arithmetic. The 

same training may not benefit adults as basic arithmetic skills become algorithmic after 

years of formal math education.

What are the implications of our results for the number sense theory? With our inability to 

replicate Park and Brannon (2013, 2014) there is little evidence in the literature that can 

make a causal claim in support of the strong version of the number sense theory, which 

hypothesizes a causal link between the ANS and symbolic mathematics in adulthood. The 

majority of evidence supporting this theory remains correlational in nature, and specifically, 

relies on a significant, although weak relation between ANS acuity and symbolic math skills 

(Chen & Li, 2014; Schneider et al., 2016). Importantly, approximate arithmetic training did 

not change ANS acuity in our experiments or in prior studies (Au et al., 2018; Park & 

Brannon, 2014). Approximate arithmetic is not a direct measure of ANS acuity, but instead 

uses ANS representations and requires additional cognitive processes (e.g., visual working 

memory and mental manipulation). It remains possible that an intervention that could 

effectively induce a significant change in ANS acuity would in fact change symbolic 

arithmetic performance (Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Szűcs & Myers, 

2017). Moreover, it is also possible that a different symbolic math skill other than arithmetic 

fluency could benefit from an ANS involved training, even among adults.

6. Conclusions

In sum, the present experiments lead us to reject the conclusion that training approximate 

arithmetic benefits symbolic arithmetic performance in adults. While the hypotheses that 

inspired these experiments emerged from the strong version of the number sense theory that 

the ANS is foundational for symbolic math throughout the lifespan, our current results no 

longer provide evidence for a causal link between the ANS and symbolic arithmetic in adult 

subjects. The educational implications of approximate arithmetic training in children remain 

unclear, but our results suggest that causal evidence for a link between non-symbolic and 

symbolic arithmetic is more likely to emerge from research with children at the beginning of 

their mathematical education.
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Fig. 1. 
Training conditions used in the current experiments and the original Park and Brannon 

(2013, 2014) experiments. All experiments included A) the approximate arithmetic training 

condition and B–F) at least one control condition. Experiment 1 included A) approximate 

arithmetic training and D) the numeral symbol ordering training. Experiment 2 included A) 

approximate arithmetic training and C) approximate range training and D) numeral ordering 

training. Experiment 3 included A) approximate arithmetic training and D) numeral ordering 

training. Experiment 4 included A) approximate arithmetic training and B) approximate 

number comparison training. Park and Brannon (2013) included A) approximate arithmetic 

training, D) numeral symbolic ordering training and F) knowledge training. Park and 

Brannon (2014) included A) approximate arithmetic training, B) approximate number 

comparison training, D) numeral symbol ordering training, and E) visual-spatial short-term 

memory training.

Figure modified with permission from Park and Brannon (2014).
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Fig. 2. 
Bar plot of arithmetic fluency gain score by condition and experiment. AA = approximate 

arithmetic, NO = numeral symbol ordering, ANC = approximate number comparison, AR = 

approximate range, STM = visuo-spatial short term memory, KT = knowledge training, NC 

= no contact. The arithmetic fluency gain score is plotted in terms of the number of correct 

arithmetic questions (post-test minus pre-test). The bars colored in shades of blue are 

numerical training conditions. The gray bars represent non-numerical or no-contact control 

training conditions. The error bars represent standard error of the mean. Please see Fig. S6 

for a plot of this data with all data points visible.

Szkudlarek et al. Page 19

Cognition. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Pre and post test scores of the exact symbolic arithmetic test by experiment and condition. 

The outcome measure of this assessment is the number of arithmetic problems participants 

solved correctly in 10 min. Error bars indicate standard error of the mean. Points are jittered 

horizontally to maximize visibility. There were no significant differences in pretest score by 

condition. Experiment 4 includes one participant in the Approximate Number Comparison 

condition who scored 6 standard deviations above the mean (288 questions correct at pretest, 

296 questions correct at post-test). This participant is included because their gain score is 

within the normal range. See also Supplementary Fig. S8 for a plot of pre and post test 

scores with all points visible.
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Fig. 4. 
Arithmetic fluency gain score by condition collapsed across all experiments including the 

original Park and Brannon experiments. Each point reflects one participant’s arithmetic 

fluency gain score. The points are randomly jittered horizontally to make all gain scores 

visible. The gain score is plotted in terms of the number of arithmetic questions solved 

correctly (post-test minus pretest). The dotted line indicates zero, which is the gain score of 

a participant who answered exactly the same number of arithmetic problems correct and pre 

and post-test. The red square indicates the mean gain score of participants in each training 

condition across all experiments. Data from participants in the original Park & Brannon, 

2013, 2014 experiments are represented with diamonds. Data from participants in the current 

Experiments 1–4 are represented with dots. AA = approximate arithmetic, NO = numeral 

symbol ordering, ANC = approximate number comparison, AR = approximate range, STM 

= visuo-spatial short term memory, KT = knowledge training, NC = no contact.
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