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We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles
International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a
distance of 400m downwind of the runway. CO2 measurements are used to convert the aerosol data into
plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile
particle number EIs are of order 1016–1017 kg− 1 and 1014–1016 kg− 1, respectively. Black-carbon-equivalent
particle mass EIs vary between 175–941mg kg − 1 (except for the GE GEnx engines at 46mg kg − 1). Aircraft
tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific
parameters into the data set. Data acquisition and processing follow standard methods for quality
assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated
plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications.
The integrated data enable future studies seeking to understand and model aircraft emissions and their
impact on air quality.

Design Type(s) data integration objective • observation design • time series design

Measurement Type(s)
aircraft tail number • temperature of air • pressure of air • atmospheric
wind • carbon dioxide emission • carbon black nanoparticle • particulate
matter • cloud condensation nucleus

Technology Type(s)
visual observation method • weather station • gas analysis system •
spectrophotometer • Particle Count and Size Analyzer

Factor Type(s) temporal_instant

Sample Characteristic(s) City of Los Angeles • air • aviation fuel
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Background & Summary
Aircraft engine particle emissions are important contributors to local air quality near airports1–5, and
these downstream environmental impacts are likely to increase in concert with the projected growth of
the aviation sector over coming decades. Emissions relevant to local impacts occur during multiple stages
of aircraft movement including idle, taxi, take-off, and the portion of climb out and landing below 3,000
feet altitude above field elevation. Collectively these stages are referred to as the landing and take-off
(LTO) cycle. Emissions standards for each phase of the LTO cycle are set by the International Civil
Aviation Organization (ICAO) pursuant to Volume II of Annex 16 of the Convention of International
Civil Aviation6, which recommends standard engine emissions testing methods for gas-phase and aerosol
species. Aerosol emissions are quantified by engine manufacturers prior to certification and operation in
terms of a smoke number metric that describes how soot particles collected by a filter change the
reflectance of the filter over a defined sampling time, and which is known to be dependent on sampling
conditions and soot properties.

Recognizing the significant limitations of the smoke number metric, current and future efforts are
underway to measure engine LTO aerosol emissions in a more rigorous fashion by measuring particle
number and/or mass emission indices. While these data will inform transportation modelling of the next
generation of aircraft engines, there are currently no plans to recertify older engines that are in service
now (and are likely to remain in service in the coming decades). In addition, the LTO emissions
certification process is idealized as engine conditions are measured under discrete, steady thrust settings
that may differ from the thrust actually applied by pilots. For example, thrusts applied during taxi and
idle may be lower than the 7% of maximum thrust that is commonly assumed. Similarly, pilots frequently
take off under reduced thrust of up to 25% below maximum, depending on runway conditions and
aircraft weight and specifications7,8. Congestion on taxiways may lead to sudden engine accelerations and
decelerations as aircraft taxi to and from runways and thrust reversers may be applied during landings,
all of which are non-standard conditions5. In addition, aerosol particles undergo modifications by
condensation and coagulation in the airport environment. These modifications lead to effective emissions
that impact airport air quality not considered in the ICAO certification process. Finally, the amount of
time spent in each phase of the LTO cycle (referred to as time-in-mode, or TIM) drives the overall
amount of engine emissions and is not well constrained.

Given these myriad sources of variability, there is a need to understand the emissions from currently
in-service engines under real-world conditions. Here, we investigate particles emitted by aircraft during
take-off operations at Los Angeles International Airport and synthesize these emissions measurements
with information on the aircraft and engine specifications as well as the ICAO certification emissions
values for each engine model. The work flow of this study is shown in Fig. 1, leading from the base data
files generated by the instruments, field notes, and existing emissions databank, through the intermediate
analysis and processing steps, to arrive at synthesized output data files that form the two data records
described by this data descriptor. The environmental, aircraft, engine, and emissions data parameters are
listed in Table 1.

This comprehensive dataset informs future studies seeking to model the impacts of take-off engine
emissions at and in the vicinity of airports, to evaluate the performance of current approximation
methods for estimating emissions from smoke number measurements, to explore plume-averaged and
transient emissions profiles during many aircraft take-off events, and to understand the background
aerosol concentrations and properties downwind of a major airport in between the take-off events,
among other uses. A powerful and unique feature of this data set is that ambient concentrations of both
aerosols and carbon dioxide are used to compute EIs and link these EIs to specific aircraft and engines as
well as engine specifications and emissions standards.

Methods
Study site
Data were collected at 400-m distance downwind of the northern take-off runway (24L) of Los Angeles
International Airport (33.9509°N, 118.398°W) on two days: 18 May and 25 May 2014. A schematic of the
airport and aerial view of the sampling location near the runway are shown in Fig. 2. Runway 24L has a
declared length of 3,135 m, 263° true bearing, and is at an elevation of 38 m. A predominantly onshore
sea breeze of 0–10 m s− 1 was oriented down the runway (±20°) during both measurement days, which
advected the aircraft take-off plumes to the sampling inlet of the NASA Langley Aerosol Research Group
(LARGE) Mobile Laboratory. The height of the inlet was approximately 3 m above the ground. Ambient
temperature and relative humidity varied between 20–25 °C and 45–65%, respectively. Table 1 shows the
complete list of environmental data.

Ambient air was drawn through a 1.3 cm outer diameter stainless steel tube and distributed to
instruments inside the mobile laboratory with varying transport tubing lengths of 6–10 m depending on
where each instrument was mounted. Given the uncertainty in these varying transmission lengths,
the data are not corrected for size-dependent diffusional losses to the tubing walls. As a constraint
on these impacts, assuming a nominal flow rate of 50 l min− 1, calculations suggest that 13–22% of
20-nm-diameter particles are lost across the full range of transport tubing lengths9.
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Fuel properties
Laboratory analyses of fuel composition were obtained from LAXFUEL for the tanks on issue on May
18th and 25th, which describe the fuel sulphur content, aromatic content, naphthalenes content, and the
net heat of combustion. Mean fuel properties (±1 standard deviation) are reported for each day in
Table 2, assuming equal weighting across the two fuel batches analysed for the 18th and across the four
fuel batches analysed for the 25th. On the 18th only a single tank was on issue, while on the 25th, a tank
fuel containing moderate sulphur and low aromatics (710 ppmm S and 12 % by volume, respectively) was
initially on issue and was followed by another tank containing a blend of domestic and foreign fuels
whose sulphur and aromatic contents varied considerably (620–1,780 ppmm S and 17.6–23% by volume,
respectively). Since it is not possible to determine when a particular aircraft would have fuelled prior to
departure, it is not possible to draw composition-specific conclusions on emissions parameters. For
completeness, we report here the individual batch analyses and the daily-averaged fuel properties, which
are indicative of moderate sulphur content and typical aromatic content as compared to previously
reported jet fuel properties10,11.

Instrumentation and measurement methods
Environmental and emissions measurement parameters are summarized in Table 1, and a brief
description of each instrumental measurement method is given below.

Aircraft tail numbers, take off times, and plume start times. The time of each aircraft take off event
and the aircraft tail number were recorded by an observer in the field. These data were then matched to a
plume peak in the measurement time series. Of these pieces of information, the time recorded in the field
when the observer noticed the aircraft begin to take off (TakeoffStartTime_UTC) can be uncertain
because the observer was distracted, troubleshooting instruments, or missed the start of take off and
instead wrote down the time when the measurement peak appeared. Consequently, while these times are
used to roughly match the aircraft tail numbers to observed concentration peaks, we also report
PlumeStartTime_UTC as the start of the plume as determined during data post-processing. In a few
instances, TakeoffStartTime_UTC is after PlumeStartTime_UTC, and the latter is the more reliable data
parameter.

Meteorological parameters. Temperature, pressure, wind speed, and wind direction were measured
continuously with a WeatherHawk 232 weather station mounted on top of the mobile laboratory near the
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sampling inlet. Air temperature is measured to within ±0.5 °C accuracy with a thermistor, while the
piezoresistive barometric pressure transducer is accurate to within ±1.5 kPa. Wind speed is measured
with a cup anemometer with a starting threshold of 0.78 m s− 1, and wind direction is determined from a
vane sensor with 1% linearity and ~1 m s− 1 sensitivity.

Carbon dioxide (CO2). CO2 mixing ratio was measured at 1 Hz with a Licor LI-7000 CO2/H2O Gas
Analyser. The instrument measures the differential absorption of light by carbon dioxide and water
vapour at 4.255 and 2.595 μm wavelengths, respectively. Only the CO2 data were calibrated and are
included in this data set.

Black-carbon-equivalent particle mass (BC). BC mass concentration was measured with a Thermo
Scientific Multi-Angle Absorption Photometer (MAAP)12. The MAAP continuously measures the
amount of light transmitted through a particle-loaded glass fiber filter material as well as light
backscattered off of the filter, both at 670 nm wavelength. These measurements are then used to
determine a black carbon equivalent aerosol mass concentration by assuming a mass absorption
coefficient of 6.6 m2 g− 1. The instrumental uncertainty is estimated to be ±12%13.

Particle number. Particle number concentration was measured at 1 Hz with a TSI Condensation
Particle Counter (CPC; Model 3775). For particle concentrations less than 5 × 104 cm− 3, individual
particles are detected as pulses of laser light (‘single-counting mode’), while for higher particle
concentrations (5 × 104 to 1 × 107 cm− 3) the total amount of light scattered by the particle population is
used to determine concentration (‘photometric mode’). Particle concentration accuracy is reported
as± 10% in single-counting mode and± 20% in photometric mode. The minimum detectable particle size
of the CPC is 4 nm diameter and it has a response time of 4 s.

Non-volatile particle number. Non-volatile particle number concentration was measured at 1 Hz with
a TSI CPC (Model 3022A) located downstream of a thermal denuder. The thermal denuder is a stainless
steel tube heated at 350 °C in order to evaporate volatile material on the aerosol (e.g., sulphur and nitrate
species and organics). The 3022A CPC is similar to the 3775 Model, except that the minimum detectable
particle size is 7 nm diameter and the response time is o13 s. This difference in lower detection size does
not preclude direct comparison of total and non-volatile particle number because non-volatile particles,
such as black carbon, are known to be greater than 10–20 nm in diameter.

Particle number and volume size distribution. The particle number size distribution between 6 and
575 nm diameter was measured at 1 Hz with a TSI Engine Exhaust Particle Sizer (EEPS; Model 3090).
Particles are drawn into the EEPS at 10 l min− 1

flow rate and are given a positive charge via corona
charging before entering a measurement region of two concentric cylinders on which an electric field is
applied. The positively-charged particles move toward the outer electrode at a rate proportional to their
size-dependent electrical mobility until they ultimately impact on one of several sensitive electrometers.
An inversion algorithm is applied to the time-dependent electrometer currents to retrieve the aerosol size
and number concentration at 1 Hz.

Environmental data: Aircraft & engine information: Emissions measurements:

Date Aircraft tail number Carbon dioxide (CO2) mixing ratio

Take-off start time Airline Black-carbon-equivalent particle mass

Plume start time Aircraft manufacturer Particle (Dp>4 nm) number

Plume sampling duration Year of manufacture Non-volatile particle (Dp>7 nm) number

Latitude and longitude Aircraft model/series Particle number size distribution

Field elevation Aircraft master model Particle (5.6 nmoDpo560 nm) number

Runway length Aircraft master series Particle (5.6 nmoDpo560 nm) volume

Temperature Number of engines Cloud condensation nuclei (CCN) number at (2.6± 0.2)% supersaturation

Dew point Engine manufacturer Particle extinction coefficient at 532 nm wavelength

Relative Humidity Engine model/series

Pressure Engine type (TF, MTF, TP)

Wind speed Engine bypass ratio

Wind direction Engine pressure ratio

Engine maximum rated thrust

Engine certification smoke number

Table 1. Measurement parameters and associated aircraft characteristics.
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Past comparisons between an EEPS (or similar instruments such as the Cambustion DMS500 and TSI
FMPS) and a Scanning Mobility Particle Sizer (SMPS) have shown that the EEPS slightly undersizes soot
particles relative to the SMPS14–18. This undersizing is particularly problematic for large, diesel soot
agglomerates, and is less of an issue for aircraft soot that tend to be sub-100-nm in diameter and closer to
compact spheres than fractal agglomerates. In order to better understand the performance of the EEPS
relative to the state-of-the-art SMPS, we examined data from both instruments during the NASA
Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) project, which sampled the exhaust
of the NASA DC-8 CFM56 engines. This comparison showed that the EEPS undersizes particles by about
10% relative to the SMPS for intermediate and high engine thrust settings, which is similar to the size
discrepancy reported by Hagen et al.14 for aircraft soot sampled during the 2004 NASA APEX project.
Consequently, we have corrected the size bins by a scaling factor of 1.1 for all EEPS data, but also report
the uncorrected EEPS size bin diameters in the data record files. The EEPS-SMPS comparison using
ACCESS data shows good agreement between the number concentrations reported by both instruments,
which are well within the previously reported instrumental uncertainty of ±20%16.
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Cloud condensation nuclei (CCN) number. CCN concentration at (2.6± 0.2)% water vapour
supersaturation was measured at 1 Hz with a Droplet Measurement Technologies CCN Counter19,20. The
instrument was operated at an elevated flow rate of 1 l min− 1 and elevated temperature gradient of 16 °C
to effect this high supersaturation, which was calibrated using size-classified, dry ammonium sulfate
aerosols and Scanning Mobility CCN Analysis21. The uncertainty in supersaturation of 0.2% is
propagated from the scatter in the calibration critical activation diameters using Köhler theory with
corrections for incomplete solute dissociation following the ion-interaction approach of Pitzer and
Mayorga with parameters obtained from Clegg and Brimblecombe22–24. The uncertainty in the CCN
concentration is estimated to be 7–16%25.

Particle extinction coefficient. Aerosol light extinction is measured at 530 nm wavelength with a
cavity attenuated phase shift extinction (CAPS PMex) monitor26. The instrument sensitivity is 2.5 Mm− 1

with a response time of less than two seconds. The CAPS PMex instrument is also sensitive to the
presence of absorbing gases (e.g., NO2), which were not measured during this project. Yu et al.27 found
this correction to relatively minor for aircraft engine idle conditions, and the emissions index of NO2 at
higher engine thrusts is even lower than at idle28.

Emission index calculation
Here, we report engine emissions parameters in terms of a plume-average emissions index that is
normalized to the rate of engine fuel burn. This normalization process takes into account differences in
plume dilution that can be affected by turbulence, varying wind speed and direction, as well as differences
in sampling instrument response time constants. For example, the MAAP response time is much slower
than that of the particle concentration and size distribution measurements owing to the internal
averaging and smoothing algorithms applied by the instrument firmware.

The emission index of particle species X is determined following Moore et al.29 as

EIX ¼ X
CO2

Vm

MCO2

EICO2ð Þ

where; EICO2 ¼
RT
PVm

MCO2

MC þ αMHð Þ � 3160 gCO2 kg
- 1;

ΔX and ΔCO2 are the background-subtracted peak areas of the measured concentrations of species X and
CO2 at standard temperature and pressure, respectively; EICO2 is the emissions index of CO2, assuming
that the carbon content in the fuel is constant and is completely converted to CO2; R is the ideal gas
constant; T is the temperature at STP (273.15 K); P is the pressure at STP (1 atm); Vm is the molar volume
of ideal gas at STP (22.4 l mol− 1); α is the fuel hydrogen-to-carbon molar ratio (assumed to be 1.92); and
MCO2, MC, MH are the molar masses of CO2, carbon, and hydrogen, respectively.

Figure 3 shows example time series of CO2, black carbon mass concentration (BC), and particle
number concentration (CN), where the shaded regions represent the background-subtracted peak areas
(ΔCO2, ΔBC, and ΔCN). Bounding points were visually set by the authors on either side of the peak and
a linear fit between those points establishes the background baseline. The background-subtracted peak
area is then the difference between the integrated area under the concentration time series and the area
under the background baseline between those two points. This was determined using the areaXY function
in Igor Pro (Wavemetrics, https://www.wavemetrics.com/).

Ancillary data sets
Aircraft registration. The United States Federal Aviation Administration (FAA) and similar national
regulatory agencies maintain civil aircraft registration records that describe the general specifications of
the airframe and engines as well as attesting to the ownership of the aircraft and its airworthiness. Each
aircraft has a unique tail number identifier that maps to the various national registration databases, with

Fuel Analysis Batch Batch Volume
(Megaliters)

Sulfur (ppmm) Aromatics
(volume %)

Naphthalenes
(volume %)

Heat of Combustion
(MJ kg − 1)

18 May 2014 Tank 6014, Batch 1 14.58 1,530 17.7 0.81 43.249

18 May 2014 Tank 6014, Batch 2 14.98 1,280 18.5 1.31 43.252

18 May 2014 Mean — 1,400± 180 18.1± 0.6 1.06± 0.35 43.251± 0.002

25 May 2014 Tank 402, Batch 1 — 710 12 0.63 43.238

25 May 2014 Tank 609, Batch 1 16.34 620 17.6 0.63 43.245

25 May 2014 Tank 609, Batch 2 2.86 1,600 23 2.8 43.033

25 May 2014 Tank 609, Batch 3 5.25 1,780 22.6 2.2 42.984

25 May 2014 Mean — 1180± 600 18.8± 5.2 1.57± 1.11 43.13± 0.14

Table 2. Fuel properties of tanks on issue during the sampling period.
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the first letter denoting the nationality of the aircraft. For example, the United States nationality
designator is ‘N’, and U.S. flag aircraft have tail numbers that begin with ‘N’ followed by a unique
alphanumeric identifier. The aircraft tail numbers were photographed with a telephoto lens prior to take-
off as the plane taxied to the runway. The tail number was then used with aircraft registration databases
as in Fig. 1 to obtain the detailed specifications of the aircraft and engine. These data include the airline
(also visible from the aircraft markings), the aircraft manufacturer and year of manufacture, and the
aircraft model and series. In addition, the number of engines, their manufacturer, and their model and
series are contained within the registration database. A list of compiled aircraft and engine parameters is
given in Table 1, and the emissions data are summarized by engine type in Table 3.

ICAO aircraft engine emissions databank (EDB)—Version 23b. The International Civil Aviation
Organization maintains a database of the engine exhaust emissions parameters of production aircraft
engines. Emissions are characterized by the engine manufacturers following ICAO Annex 16 Vol II and
reported on a voluntary basis30. For each engine model and series, the EDB lists specifications including
the engine type (for example, turbofan, mixed turbofan, and turboprop), the engine bypass and pressure
ratios, and the engine maximum rated thrust. Emissions parameters reported in the EDB include carbon
monoxide, nitrogen oxides, hydrocarbons, and smoke number for four different engine power conditions
that correspond to different point in the LTO cycle (idle, approach, climb out, and take off conditions).
Detailed information about the test-specific fuel, its properties, and fuel flow rates at each power setting
are also provided. Since this data descriptor focuses on aerosol emissions, we only include the EDB smoke
number and associated test and fuel information in the synthesized data set (Data Citation 1).

Code availability
Data were analysed with commercially-available software including Igor Pro 6.37 and Microsoft Excel
2013. Summary statistics reported in the Technical Validation Section in this data descriptor are
generated with custom code in ‘R’, which is available without restriction in the data records as an HTML
file: LAX-Ground-ProcessingCode_R01.html.

Data Records
Two identical data records are associated with this work: a set of data archived in the NASA Aeronautics
Field Projects database (https://aero-fp.larc.nasa.gov/projects/lax) and a Dryad data set (Data Citation 1).
While the NASA database is the primary repository for NASA Aeronautics emissions research, the Dryad
database is indexed with a digital object identifier (DOI) ensuring a persistent identifier is assigned to the
data set. Each data record contains two files corresponding to the Output Data Files in Fig. 1. Time series
of synthesized aerosol and carbon dioxide concentration data on a common time base are found in the
LAX-Ground-Summary_TS_20140518_R01_thru20140525.xlsx Microsoft Excel workbook, where TS
denotes time series data. Meanwhile, the calculated emissions indices across both days are assimilated
with aircraft- and engine-specific parameters for each of the 275 take-off plume test points in the
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Microsoft Excel workbook entitled LAX-Ground-Summary_TP_20140518_R01_thru20140525.xlsx,
where TP denotes test point data. Also included in both data records is an HTML file containing code
used to process the data and figures in ‘R’ for this data descriptor named LAX-Ground-
ProcessingCode_R01.html.

Archived measurement parameters and associated aircraft and engine characteristics are detailed in
Table 1. These data map to the README tabs in the.xlsx workbooks.

The test points cover 29 different aircraft engine master model combinations that correspond to a
wide variety of aircraft as shown in Table 3. The majority of aircraft plumes sampled come from CFM56-
3B and CFM56-7B class engines that are popular in the Southwest fleet of 737s, from the CFM56-5B class
engines on Virgin America Airbus A319/320/321 aircraft, and from GE CF34-8 class engines on Delta
Connection CRJ and ERJ aircraft. This distribution is due, in part, to the close proximity of Runway 24L
to Terminal 1, which serves Southwest Airlines.

Technical Validation
Data were compiled into the data records described above, and data integrity is verified as follows:

(1) Plume peaks in the time series data are matched to specific aircraft take-off events as recorded in the
field during 18 and 25 May. The histogram in Fig. 4a shows the typical elapsed time between the
observed start of take-off and when the plume is detected by the instrumentation. Typical values vary
between 10–45 s and depend on the engine thrust, ambient wind speed, and wind direction. Once the
plume is detected, the typical duration is 40± 20 s (Fig. 4b), which is in good agreement with the
ICAO reference time-in-mode of 42 s for aircraft in the take-off portion of the LTO cycle8,31.

Engine manufacturer, model, and series Aircraft manufacturer Years of aircraft manufacture Aircraft model and series No. of plumes sampled

CFM CFM56-3B Boeing 1987–1997 737–300, 737–500 20

CFM CFM56-3C Boeing 1998 737–400 1

CFM CFM56-5A Airbus 1990–1998 A319–100, A320–200 11

CFM CFM56-5B Airbus 1999–2013 A319–100, A320–200, A321–200 40

CFM CFM56-5C Airbus 2001 A340–300 2

CFM CFM56-7B Boeing 1998–2014 737–700, 737–800, 737–900 86

GE CF34-3 Bombardier 2000–2003 CRJ-200 6

GE CF34-8 Bombardier, Embraer 2006–2011 CRJ-700, CRJ-900, ERJ-170 23

GE CF6-80C2 Boeing 1989–2012 747–400, 767–300 6

GE GE90-94B Boeing 2002–2003 777–200 2

GE GE90-115B Boeing 2003–2012 777–300, 777–300 6

GE GEnx-2B67 Boeing 2012–2014 747–800 2

EA GP7270 Airbus 2010–2013 A380–800 3

PW JT8D McDonnell Douglas 1987 MD-80 2

PW PT6A Beech 1996 1900D 7

PW PW118 Embraer 1994–1999 ERJ-120 10

PW 150A Bombardier 2004–2013 DHC-8 3

PW PW2000 Boeing 1984 757–200 1

PW PW4000 Airbus, Boeing 2002 A330–200, 767–300 2

Rolls-Royce AE3007 Embraer 1999–2007 ERJ-145 2

Rolls-Royce RB211 Boeing 1992–1993 747–400, 757–200 2

Rolls-Royce Trent 556 Airbus 2003–2009 A340–600 2

Rolls-Royce Trent 772 Airbus 2009 A330–200 2

Rolls-Royce Trent 892 Boeing 2006 777–200 1

Rolls-Royce Trent 970 Airbus 2011–2013 A380–800 3

IAE V2522 Airbus 1998 A319–100 1

IAE V2524 Airbus 2005–2007 A319–100 2

IAE V2527 Airbus 2000–2013 A319–100, A320–200 17

IAE V2533 Airbus 2008–2014 A321–200 10

Table 3. Summary of sampled aircraft engines and airframes. CFM, CFM International; GE, General
Electric Aviation; PW, Pratt and Whitney; EA, Engine Alliance (GE/PW); IAE, International Aero Engines.
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(2) Each of the 275 background-subtracted plume peak areas is integrated using the areaXY function in
Igor Pro with bounding background points set by the authors. The peak fitting procedure was carried
out independently by a co-author in order to verify the accuracy of the resulting data. In general, the
independently calculated EIs agree well with the data values reported here and were within 31, 3.4,
and 14%, on average, for the BC mass, particle number, and non-volatile particle number EIs,
respectively. A discrepancy of greater than 100% was found for only 18, 5, and 14 test points,
respectively, which drives these uncertainties. Significant outliers were examined individually to
ensure data quality. Common issues that were identified and fixed include errors in peak
identification/attribution when several aircraft took off over a short period of time, MAAP baseline
fluctuations that influenced the background subtraction, and transcription errors.

(3) Scatter plots showing the relationships between the calculated EIs for each aircraft take-off plume are
shown in Fig. 5. Where linear relationships between the two data variables are expected, blue, solid
lines denote orthogonal distance regression and red, dashed lines denote ordinary least squares
regression linear fits. Particle mass and volume are both dominated by larger black carbon, soot mode
aerosols. As shown in Fig. 5a, the ratio of the optically-derived soot mass to the integrated size
distribution volume constrains the soot effective density near unity, which is consistent with past
measurements of aviation emissions particle density32–34. Two notable outliers are Test Points 89 and
229, which correspond to the GE GEnx engines. Unlike the other engines whose emissions were
sampled, the GEnx line features a lean burn combustion system that appears to substantially reduce
the black carbon mass emissions at take-off conditions; however, overall particle number and volume
EIs are similar to those for other engine types.Good linearity is observed between particle number EIs
derived from the CPC and the integrated EEPS size distribution (Fig. 5c) as well as between the CAPS
particle extinction coefficient EIs and EEPS particle volume EIs (Fig. 5e). The 25% offset between the
EEPS and CPC number is likely due to differences in the lower detection limits of each instrument
(5.6 and 4 nm, respectively). No clear relationships are apparent between the other computed EI
parameters.

(4) Summary statistics for each of the 29 different aircraft engine master model types are given in Table 4
as the geometric mean EI times-divide (⋇) one geometric standard deviation (g.s.d.). Singular
values without a reported g.s.d. indicate that only one plume was sampled for that engine type.
Particle number EIs are of order 1016–1017 kg− 1, non-volatile particle number EIs are of order
1014–1016 kg− 1, and CCN number EIs are of order 1014–1015 kg− 1. Meanwhile, geometric mean
black-carbon-equivalent particle mass varies from 175–941 mg kg− 1 (except for the GE GEnx
engines at 46 mg kg− 1) and particle volume varies from 124–617 mm3 kg− 1.

These EIs are broadly consistent with the findings of Lobo et al.35, who report the range of particle
number EIs at 4 × 1015–2 × 1017 and mass EIs of 100–700 mg kg− 1 for aircraft taking off from
Oakland International Airport. Similarly, Klapmeyer and Marr36 found mean number EIs in the
range of 1.4 × 1016–6.8 × 1016 for different regional aircraft taking off from Roanoke Regional Airport.
Our number EIs are higher than the mean value reported by Herndon et al.37 at Boston Logan
Airport of (8.8± 7.6) × 1015 kg− 1, as well as the range of values of 1.8 × 1015–4.6 × 1015 kg− 1 reported
by Herndon et al.38 at Atlanta’s Hartsfield Jackson Airport. We attribute these differences to the use
of a 3022A CPC in both of the previous studies, which has a larger minimum size detection limit than
the 3775 CPC used in this study to measure total particle number.
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Figure 5. Scatter plots showing the relationship between measured particle emissions indices (EIs). Solid

lines are orthogonal distance regression (ODR) linear fits to the data, while dashed lines are ordinary least

squares (OLS) linear fits. For both fits, the intercept was held at zero. Outlier test points 89 and 229 are noted,

which correspond to the two plume intercepts of the GE GEnx engine. Note that kg− 1 denotes ‘per kilogram

of fuel’.
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(5) Log-normal fits to the geometric mean particle number and volume size distributions across all
aircraft plumes sampled are shown in Fig. 6a and 6b, respectively, overlaid on density maps of all
observed size distributions. The data were fitted using a bi-modal, log-normal function of the form

dEIi
d logDp

¼ i1ffiffiffiffiffi
2π

p
log σi1

exp
logDp - logDi1
� �2

2log 2σi1

" #
þ i2ffiffiffiffiffi

2π
p

log σi2
exp

logDp - logDi2
� �2

2log 2σi2

" #

where i is the total particle number (N) or volume (V) in the first (i1) or second (i2) size modes; EI is
the emissions index; Dp is the dry particle diameter; Di1 and Di2 are the geometric mean diameters of
the first and second size modes, respectively; σi1 and σi2 are the g.s.d. of the first and second size
modes, respectively. Fit coefficients for the number and volume size distributions are given in
Table 5.

The number distribution is dominated by a nucleation mode centred between 10 and 20 nm, while
the volume distribution is dominated by the larger soot mode centred between 70–120 nm. Both of
these features and their magnitudes are consistent with past measurements of advected aircraft
plumes35,37,38.

Engine manufacturer, model,
and series

Particle number
(kg− 1)

Non-volatile particle
number (kg− 1)

CCN number (kg− 1) BC-equivalent particle
mass (mg kg− 1)

Particle volume
(mm3 kg − 1)

CFM CFM56-3B 3.56 × 1016⋇1.41 2.54 × 1015⋇2.35 7.28 × 1014⋇1.39 564⋇1.41 406⋇1.25

CFM CFM56-3C 1.65 × 1016 2.31 × 1015 6.85 × 1014 792 700

CFM CFM56-5A 4.62 × 1016⋇1.25 1.85 × 1015⋇2.50 5.41 × 1014⋇1.44 419⋇1.37 327⋇1.34

CFM CFM56-5B 5.09 × 1016⋇1.39 1.78 × 1015⋇2.20 4.51 × 1014⋇1.53 276⋇1.51 274⋇1.30

CFM CFM56-5C 5.06 × 1016⋇1.02 1.11 × 1015⋇1.55 4.54 × 1014⋇1.07 416⋇1.08 317⋇1.18

CFM CFM56-7B 5.22 × 1016⋇1.31 2.21 × 1015⋇2.33 4.55 × 1014⋇1.91 348⋇1.55 306⋇1.38

GE CF34-3 3.62 × 1016⋇1.50 4.99 × 1015⋇1.34 9.13 × 1014⋇1.23 488⋇1.59 361⋇1.39

GE CF34-8 2.98 × 1016⋇1.74 2.67 × 1015⋇1.79 6.97 × 1014⋇1.90 435⋇1.49 295⋇1.50

GE CF6-80C2 3.83 × 1016⋇1.45 1.06 × 1015⋇2.54 2.86 × 1014⋇1.66 190 ⋇ 1.49 203⋇1.57

GE GE90-94B 3.95 × 1016⋇1.16 5.12 × 1014⋇1.13 1.80 × 1014⋇1.27 92.8⋇1.12 124⋇1.40

GE GE90-115B 3.39 × 1016⋇1.20 7.95 × 1014⋇1.96 3.42 × 1014⋇1.58 175⋇1.30 191⋇1.33

GE GEnx-2B67 8.83 × 1016⋇1.41 1.95 × 1015⋇4.07 3.77 × 1014⋇1.50 46.1⋇1.48 557⋇1.34

EA GP7270 2.86 × 1016⋇1.25 1.89 × 1015⋇1.18 3.23 × 1014 ⋇ 1.16 129⋇1.33 171⋇1.04

PW JT8D 1.73 × 1016⋇2.89 2.83 × 1015⋇2.53 1.27 × 1015⋇1.55 941⋇1.06 617⋇1.23

PW PT6A 3.77 × 1016⋇1.84 6.50 × 1015⋇1.79 6.45 × 1014⋇2.07 441⋇2.05 458⋇2.02

PW PW118 5.80 × 1016⋇1.33 2.98 × 1015⋇1.69 8.80 × 1014⋇1.30 649⋇1.62 478⋇1.52

PW 150A 5.87 × 1016⋇1.26 4.49 × 1015⋇3.56 5.93 × 1014⋇1.02 252⋇1.51 356 ⋇ 1.32

PW PW2000 2.46 × 1016 2.55 × 1015 1.16 × 1015 817 650

PW PW4000 8.80 × 1015⋇1.06 1.70 × 1015⋇1.22 5.11 × 1014⋇1.48 439⋇1.65 341⋇1.55

Rolls-Royce AE3007 2.61 × 1016⋇3.11 1.45 × 1015⋇1.02 1.90 × 1014⋇3.27 592 138⋇1.32

Rolls-Royce RB211 4.12 × 1016⋇1.39 1.07 × 1015⋇2.08 2.25 × 1014⋇1.01 196⋇1.25 242⋇1.70

Rolls-Royce Trent 556 2.83 × 1016⋇1.28 1.06 × 1015 ⋇ 3.99 3.18 × 1014⋇1.31 319⋇1.49 212⋇1.28

Rolls-Royce Trent 772 2.49 × 1016⋇1.32 1.06 × 1015⋇1.37 3.09 × 1014⋇1.21 177⋇1.01 171⋇1.39

Rolls-Royce Trent 892 3.04 × 1016 8.09 × 1014 4.36 × 1014 304 249

Rolls-Royce Trent 970 5.13 × 1016⋇1.17 8.44 × 1014⋇1.60 3.12 × 1014⋇1.23 356⋇1.23 340⋇1.10

IAE V2522 2.58 × 1016 2.86 × 1015 1.02 × 1015 584 392

IAE V2524 1.14 × 1016⋇1.15 3.42 × 1015⋇2.10 1.44 × 1015⋇1.43 786⋇1.21 501⋇1.16

IAE V2527 1.93 × 1016⋇1.75 2.36 × 1015⋇1.73 8.29 × 1014⋇1.51 414⋇1.33 376⋇1.36

IAE V2533 2.09 × 1016⋇1.98 1.90 × 1015⋇3.15 5.68 × 1014⋇1.51 343⋇1.29 289⋇1.50

Table 4. Summary statistics of selected engine emissions indices. Particle number measured by a TSI
3775 condensation particle counter (particle diameters, Dp>4 nm); non-volatile particle number measured by a
TSI 3022 condensation particle counter (Dp>7 nm); cloud condensation nuclei (CCN) number concentration
at (2.6± 0.2)% supersaturation measured by a DMT CCN counter; black-carbon-equivalent (BC-equiv.)
particle mass measured by a Thermo Multi-Angle Absorption Photometer (MAAP); particle volume measured
by a TSI Engine Exhaust Particle Sizer (EEPS) (5.6 nm>Dp>560 nm). Emissions indices reported as the
geometric mean ⋇ 1 geometric standard deviation (g.s.d). Note that kg− 1 denotes ‘per kilogram of fuel’.
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Usage Notes
Summary statistics reported in this data descriptor are generated with custom code in ‘R’, which is
available in the data records as an HTML file: LAX-Ground-ProcessingCode_R01.html. All files are self-
explanatory with metadata in the README tabs of the .xlsx data files.

Some possible uses of this dataset include:

● Incorporation of engine-specific geometric mean EIs and size distribution fit coefficients into airport
emissions modelling to understand the effect of take-off emissions and their impact at and in the
vicinity of airports.

● Comparison of ICAO smoke number data and measured EIs to evaluate current approximation
methods employed by models for parameterizing aircraft take-off emissions (e.g., FOA3, FOX)39,40.

● Examination of the aerosol and CO2 concentration time series data to determine if aircraft EIs change
during the approximately 0.7 min time-in-mode. For example, in a few cases a burst of non-volatile
soot particles was initially emitted by the engines, but this was not sustained during the rest of the take-
off plume duration. Is this common across engine types or due to operational factors?

● Analyses of the aerosol and CO2 concentration time series data outside of the immediate take-off
plume events to determine baseline aerosol concentrations in the vicinity of and downwind of the
northern LAX aircraft terminals.

A key feature of this data descriptor is that ambient concentrations of both aerosols and carbon
dioxide are used to compute EIs and link these EIs to specific aircraft. This level of specificity is
uncommon in the past literature, where only ambient aerosol concentrations are often reported. Given
the usefulness to modellers of reporting results in terms of an EI (in other words, in terms of the mass of
fuel burned), we suggest that future studies should follow this approach. In addition to the methodology
employed in this data descriptor, it is recommended that future aircraft emissions sampling studies
should also

● measure NOx and CO (and preferably also gaseous hydrocarbons) in order to infer the actual aircraft
thrust setting based on established methods, as it is known that aircraft frequently take-off at reduced
thrust relative to their maximum rated thrust setting8. NOx is particularly important because its EI
increases monotonically with engine thrust28.

● target newer engines with lean-burn combustors (e.g., GE GEnx) to validate the findings of this work
that these engines emit substantially less black carbon aerosol on a mass basis than other engines at
take-off, but that the particle number and volume emissions are similar to other engines.

● improve statistical sampling of CRJ and ERJ series aircraft that together account for more than 30% of
U.S. flights in 20118, and which are underrepresented in studies to date.
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● report aerosol concentration and EI summary statistics as either percentiles or as geometric means and
geometric standard deviations (as in this work). The use of arithmetic means and standard deviations
is widespread throughout the literature and incorrectly implies that the lower uncertainty bound is
close to, or even in some cases below, zero.
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