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Abstract: The interactions between ncRNAs and proteins are critical for regulating various cellular
processes in organisms, such as gene expression regulations. However, due to limitations, including
financial and material consumptions in recent experimental methods for predicting ncRNA and
protein interactions, it is essential to propose an innovative and practical approach with convincing
performance of prediction accuracy. In this study, based on the protein sequences from a biological
perspective, we put forward an effective deep learning method, named BGFE, to predict ncRNA
and protein interactions. Protein sequences are represented by bi-gram probability feature extraction
method from Position Specific Scoring Matrix (PSSM), and for ncRNA sequences, k-mers sparse
matrices are employed to represent them. Furthermore, to extract hidden high-level feature
information, a stacked auto-encoder network is employed with the stacked ensemble integration
strategy. We evaluate the performance of the proposed method by using three datasets and a five-fold
cross-validation after classifying the features through the random forest classifier. The experimental
results clearly demonstrate the effectiveness and the prediction accuracy of our approach. In general,
the proposed method is helpful for ncRNA and protein interacting predictions and it provides some
serviceable guidance in future biological research.
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1. Introduction

In recent studies, non-coding RNA (ncRNA) plays a regulatory role in controlling cell molecules,
which gradually attracts researchers’ attentions. In the field of known biological knowledge, ncRNAs
are interpreted as those RNAs that are transcribed from the genome but cannot be translated into
proteins. Therefore, the functions of these ncRNAs are vastly different. In other words, each ncRNA has
its own role in the processes of protein translations, which is extremely confusing for most researchers.
In recent works, more and more evidences indicate that the occurrences of a series of major diseases are
related to the disequilibrium of ncRNAs. Meanwhile, increasing amounts of ncRNAs whose functions
have not been known yet are discovered through some advanced technologies [1–3]. Therefore, it is
urgent to make the biological functions of these ncRNAs, such as RNA stability and RNA translation,
clear. To learn about the functions of the ncRNA, researchers need to confirm whether ncRNAs are
able to interact with other proteins in the processes of biological reactions [4]. Shen et al. proposed
a method to predict ncRNA and protein interactions based on sequences by way of deep learning
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named IPMiner (Interaction Pattern Miner) [5]. Furthermore, several machine learning techniques,
including support vector machine (SVM), have been put forward in predicting RNA-binding residues
in proteins [6].

Recently, great progresses have been made in the study of RNA-protein interactions [2,7–14].
Although excellent achievements have been obtained both in the field of supervised and unsupervised
learning, there still are some shortcomings and spaces for improvement in the current methods.
The high-throughput technologies consume too much time, the determination of RNA’s complex
structure requires a large amount of physical resources [12], and some sequence specificity methods
fail to predict the exact interaction of ncRNAs and proteins. Since the sequence specificity of ncRNA
and protein interactions have been shown by a large number of studies, it is indicated that the
sequence has been able to carry enough useful information to predict the interaction between ncRNA
and proteins [7,15]. Therefore, extracting feature information from sequences is considered to be a
reliable and effective method that can discern whether the ncRNA and protein are capable of reacting
each other well. In order to obtain more accurate prediction results, some innovative techniques that
are only based on the sequences of ncRNA and proteins were proposed in predicting RNA-protein
interactions. Suresh V et al. reported the interactions between ncRNA and proteins can be well
predicted according to cumulative experimental validation [14]. In addition, some other studies focus
on the interface of ncRNA and protein in proteins that can indicate how the reactions interact each
other [16]. Yi et al. also proposed a deep learning framework, named RPI-SAN, using pure sequence
information and employed complex stacked auto-encoder network in predicting these interactions [17].

In this study, we put forward a sequence-based method using deep learning model Stacked
auto-encoder (SAE) network combined with Random Forest (RF) classifier. We used k-mers sparse
matrices to represent ncRNA sequences and then extracted feature vectors from these matrices by
Singular Value Decomposition (SVD). For protein sequences, to excavate more biological information,
Position Specific Scoring Matrix (PSSM) was used to obtain evolutionary information from each
sequence; moreover, a bi-gram algorithm was further used to get feature vectors from PSSMs. As the
advantage of deep learning is representation learning, which means that learning representations
of data make it easier to extract useful information when building classifiers or other predictors.
SAE was further employed to learn high-level hidden information. Subsequently, data and labels
were all fed into the RF classifier to classify whether a pair of protein and ncRNA interacted or not.
Furthermore, to evaluate the performance of our approach, five-fold cross-validation and generic
evaluation measures were used. We also compared our method BGFE with other methods on three
benchmark datasets. According to the experimental results, BGFE performed much better than other
methods, with the specific accuracies of 0.8868, 0.9600, and 0.9130 on dataset RPI488, RPI1807, and
RPI2241, respectively. The experimental results show that our method achieved high accuracy and
robustness of the protein-ncRNA interaction prediction task.

2. Results

In this study, we purposed a sequence-based method using deep learning model SAE network
combined with the RF classifier that was named BGFE. Figure 1 shows the workflow for this method.
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Figure 1. Step-wise work flow for the proposed BGFE method. In the non-coding RNA (ncRNA) and 
protein sequences used for training and prediction, Singular Value Decomposition (SVD) converts 
ncRNA sequences into feature vectors from 4-mer sparse matrices, while protein sequences are 
represented by bi-gram algorithm form Position Specific Scoring Matrix (PSSM). These feature 
vectors are processed by multi-layer stack auto-encoder to obtain deeper feature information. 
Subsequently, training data and labels are fed into a random forest classifier for classification 
training. In addition, fine-tuning the model parameters after obtaining the machine learning model 
further contributes the model accuracy. 

2.1. Performance Evaluation 

As shown in Table 1, the specific performance is composed of five indicators, including 
accuracy, sensitivity, specificity, precision, and MCC, respectively [18]. Our method BGFE achieved 
a performance with the accuracy of 0.8868, sensitivity of 0.9268, specificity of 0.8354, precision of 
0.9328, and MCC of 0.7744 on dataset RPI488. On dataset RPI1807, the result reached at a high 
accuracy of 0.9600, sensitivity of 0.9344, specificity of 0.9989, precision of 0.9117, and MCC of 0.9217. 
On dataset RPI2241, the predicting result was up to the accuracy of 0.9130, sensitivity of 0.8772, 
specificity of 0.9660, precision of 0.8590, and MCC of 0.8335.  

On the other hand, as shown in the Receiver Operating Characteristic (ROC) curves in Figures 
2–4, the corresponding AUC of RPI488, RPI1807, and RPI2241 are 0.8980, 0.9920, and 0.9470, 
respectively. From the experimental results, we can figure out that the accuracy has been increased 
to ninety percent on dataset RPI2241, which shows that high level protein features can be directly 
extracted from PSSM instead of counting the frequency of occurrence of amino acids from the 
protein consensus sequences and primary sequences. 

Table 1. Prediction Performance on Dataset RPI488, RPI1807, and RPI2241. 

Dataset Accuracy Sensitivity Specificity Precision MCC 
RPI488 0.8868 0.9268 0.8354 0.9328 0.7743 

RPI1807 0.9600 0.9344 0.9989 0.9117 0.9217 
RPI2241 0.9130 0.8772 0.9660 0.8590 0.8335 

Figure 1. Step-wise work flow for the proposed BGFE method. In the non-coding RNA (ncRNA) and
protein sequences used for training and prediction, Singular Value Decomposition (SVD) converts
ncRNA sequences into feature vectors from 4-mer sparse matrices, while protein sequences are
represented by bi-gram algorithm form Position Specific Scoring Matrix (PSSM). These feature vectors
are processed by multi-layer stack auto-encoder to obtain deeper feature information. Subsequently,
training data and labels are fed into a random forest classifier for classification training. In addition,
fine-tuning the model parameters after obtaining the machine learning model further contributes the
model accuracy.

2.1. Performance Evaluation

As shown in Table 1, the specific performance is composed of five indicators, including
accuracy, sensitivity, specificity, precision, and MCC, respectively [18]. Our method BGFE achieved a
performance with the accuracy of 0.8868, sensitivity of 0.9268, specificity of 0.8354, precision of 0.9328,
and MCC of 0.7744 on dataset RPI488. On dataset RPI1807, the result reached at a high accuracy of
0.9600, sensitivity of 0.9344, specificity of 0.9989, precision of 0.9117, and MCC of 0.9217. On dataset
RPI2241, the predicting result was up to the accuracy of 0.9130, sensitivity of 0.8772, specificity of
0.9660, precision of 0.8590, and MCC of 0.8335.

On the other hand, as shown in the Receiver Operating Characteristic (ROC) curves in Figures 2–4,
the corresponding AUC of RPI488, RPI1807, and RPI2241 are 0.8980, 0.9920, and 0.9470, respectively.
From the experimental results, we can figure out that the accuracy has been increased to ninety percent
on dataset RPI2241, which shows that high level protein features can be directly extracted from PSSM
instead of counting the frequency of occurrence of amino acids from the protein consensus sequences
and primary sequences.

Table 1. Prediction Performance on Dataset RPI488, RPI1807, and RPI2241.

Dataset Accuracy Sensitivity Specificity Precision MCC

RPI488 0.8868 0.9268 0.8354 0.9328 0.7743
RPI1807 0.9600 0.9344 0.9989 0.9117 0.9217
RPI2241 0.9130 0.8772 0.9660 0.8590 0.8335
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Figure 4. ROC curves of performance comparisons between BGFE and other strategies on dataset RPI2241.

2.2. Comparison between Three Base Models and Final Integration Model BGFE

In this study, we used stacked ensembling to integrate three base predictors as the final predictor.
In order to prove the superiority of this ensembling strategy, we compared BGFE with three base
models, named SA-RF, SA-FT-RF, and RPIseq-RF. The results are reported in Tables 2–4. In particular,
SA-FT-RF means the stacked autoencoder with Fine Tuning and Random Forest classifier. Similarly,
SA-RF means Stacked autoencoder with Random Forest classifier (without fine tuning), and RPIseq-RF
means the Random Forest version RPIseq using raw feature and these three models are base predictors
for the stacked ensambling strategy. Three basic models are integrated as the final model, named BGFE.

Table 2. Specific Performance of Four Methods on Dataset RPI488.

RPI488 Accuracy Sensitivity Specificity Precision MCC

BGFE 0.8868 0.9268 0.8354 0.9328 0.7743
Raw feature 0.8168 0.8083 0.8192 0.8104 0.6299

Stacked auto-encoder 0.8806 0.9243 0.8255 0.9351 0.7638
Stacked auto-encoder
without fine tuning 0.8600 0.8848 0.8271 0.8850 0.7187

The boldface indicates this measure performance is the best among the compared methods for individual dataset.

Table 3. Specific Performance of Four Methods on Dataset RPI1807.

RPI1807 Accuracy Sensitivity Specificity Precision MCC

BGFE 0.9600 0.9344 0.9989 0.9117 0.9217
Raw feature 0.9349 0.9508 0.9308 0.9400 0.8688

Stacked auto-encoder 0.9396 0.9029 0.9994 0.8651 0.8830
Stacked auto-encoder
without fine tuning 0.9645 0.9672 0.9688 0.9590 0.9281

The boldface indicates this measure performance is the best among the compared methods for individual dataset.
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Table 4. Specific Performance of Four Methods on Dataset RPI2241.

RPI2241 Accuracy Sensitivity Specificity Precision MCC

BGFE 0.9130 0.8772 0.9660 0.8590 0.8335
Raw feature 0.6438 0.6525 0.6313 0.6565 0.2881

Stacked auto-encoder 0.9041 0.8895 0.9329 0.8747 0.8156
Stacked auto-encoder
without fine tuning 0.6438 0.6517 0.6327 0.6551 0.2879

The boldface indicates this measure performance is the best among the compared methods for individual dataset.

As shown in Figures 2–4, the ROC curves indicate the intuitive comparison among SA-FT-RF,
SA-RF, RPIseq-RF, and the proposed BGFE. The x-axis of the ROC curve represents the false positive
rate, while the y-axis of the ROC curve expresses the true positive rate. According to the results
of the comparison, we found that our ensembling strategy had a better prediction accuracy when
compared to other three base models at the specific accuracies of 0.8868 and 0.9130 in RPI488 and
RPI2241, respectively. In RPI1807 dataset, although BGFE did not achieve the best performance, it still
has an accuracy of 0.9600. This comparison results revealed that our method with stacked ensembling
had a good performance in predicting interactions from base models, especially for those datasets with
lower correlation.

2.3. Comparison of Prediction with BGFE and Other Methods

To further verify the reliability of our method BGFE, we also compared BGFE with other
experimental methods at the present stage. V. Suresh et al. proposed a computational method
to predict ncRNA and protein interaction, named RPI-Pred, by using the sequence and structural
information [14]. RPI-Pred adopted the well-known SVM classifier, which was implemented as
an independent in-house procedure. On this basis, RPI-Pred was evaluated by using a 10-fold
cross-validation (10-fold CV) rather than the five-fold cross-validation in BGFE. The accuracy of these
two cross validation methods is similar, but, in general, five-fold CV is used more widely in biological
experiments. Usha K Muppirala et al. also proposed a sequence-based method similarly to our
method, but adopted different feature extraction methods [19]. They used two classifiers including
SVM and RF to fit the training dataset and predict the interactions between ncRNAs and proteins.
Here, we only compared their performance by using an RF classifier instead of SVM. Ying Wang et al.
proposed a novel extended naive-Bayes-classifier to predict ncRNA and protein interactions only based
on sequence as well [20]. The classifier that they used was quite different from the traditional one.
They extracted effective features by reducing the likelihood ratio score, which can not only integrate
the transparent features, but also reduce the order of computational complexity in the process of
predictions. Table 5 shows the comparison between BGFE and other three methods.

Table 5. The Performance Comparison between BGFE and Other Methods on Dataset RPI1807
and RPI2241.

RPI1807 Accuracy Sensitivity Precision

BGFE 0.9600 0.9344 0.9117
RPI-Pred 0.9300 0.9400 0.9400

RPI2241 Accuracy Sensitivity Precision

BGFE 0.9130 0.8772 0.8590
RPI-Pred 0.8400 0.7800 0.8800

Usha K Muppirala 0.8960 0.9000 0.8900
Ying Wang 0.7400 0.9160 0.6990

When compared with these four methods, our method BGFE resulted in a better performance
both on dataset RPI1807 and the RPI2241. BGFE achieved an AUC of 0.9970 in RPI1807 and 0.9640
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on RPI2241, respectively. The high precision prediction results indicated that only extracting features
from sequence was reliable and credible in predicting ncRNA and protein interactions.

3. Discussion

In this study, we presented a computational scheme to mine the deep ncRNA-protein interaction
patterns and then predict them based on stacked auto-encoder and stacked ensembling. It has achieved
accurate and reliable accuracies of 0.8868 on dataset RPI488, 0.9600 on dataset RPI1807, and 0.9130
on dataset RPI2241, respectively. These comprehensive experimental performances on datasets with
different characteristics proved the effectiveness of BGFE well. The comparison results between BGFE
and other basic models also indicate that discriminant high-level features automatically learned from
multiple layers of neural network can be well extracted by auto-encoder.

The proposed method BGFE resulted in the reliable ncRNA and protein interaction prediction
performance with high accuracies, which have mainly benefited from the following points in our
opinion: (1) The use of PSSM ensures that the effective and useful information can be extracted
from the protein sequences and makes these feature-information simple and intuitive. (2) From a
biological point of view, the bi-gram feature extraction method can help us to distinguish those protein
folds from the different amino acids subsequences in the conserved areas. As a result, there is an
individual group of bi-gram features that represents each protein sequence in the conserved area.
(3) Deep learning is a tool to model complicate statistical features in datasets. Therefore, through deep
learning, hidden relationships between k-mers sequence motif can be well automatically learned by
a stacked auto-encoder. The specific mechanism of stacked auto-encoder accurately identifies and
extracts the most informative hidden-level features, and meanwhile eliminating the hidden irrelevant
variabilities to avoid cures of dimensionality. The high-dimensional raw protein and ncRNA features
especially demand this kind of dimensionality reduction and feature simplification. (4) On the other
hand, stacked ensembling is able to integrate individual strengths of different predictors well, which
provides better performances than previous manually designed average voting and majority voting.

However, actually, our approach is currently obtained by training small-scale datasets, and only
a minor part of ncRNA and protein interaction patterns in nature are verified in this experiment,
because of the difficulty in collecting large-scale complex interactions from nature and corresponding
databases. On the other hand, as we all know that the bigger dataset gives the better performance of
deep learning because of the automatic learning of sequences’ representative features. Accordingly,
training datasets as big as possible are inquired to take all the possible situations into consideration.
In order to achieve this goal, a large number of the datasets that were established by positive samples
ought to be collected from the structure complexes or from other experimental methods. At the same
time, the negative samples will also verify their importance in predicting performance. Hence, we
should also figure out an efficient method in learning negative samples distributions of ncRNA and
protein pairs. In addition, another strategy to cope with sample unbalance is to train the model with
similarity matrices only using positive samples.

In general, although our method BGFE performs well in predicting interactions between ncRNA
and proteins, like other deep learning algorithms, there are a lot of limitations and disadvantages.
There is still much room for improvement in our research. Predicting interaction methods is a black box
about learning machines without the biological in-sight in the ncRNA and protein pairs. Our method
tries to extract protein features and automatically learn the advanced features with the help of random
forests classifier, but it still does not make a very good breakthrough from the perspective of biology.
In the future research, we will expect the design of a better network architecture for extracting hidden
advanced features from the perspective of biology.
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4. Materials and Methods

4.1. Datasets

We executed experiments on three public datasets, including RPI488, RPI1807, and RPI2241.
The dataset RPI488 was purposed in IPMiner [5,21]. It is a non-redundant long ncRNA-protein
interaction dataset that is based on structure complexes, which consists of 488 protein-lncRNA
pairs, including 243 interactive pairs and 245 non-interactive pairs. On the other hand, two more
sets of data, RPI1807 and RPI2241, were directly collected from the RPIseq database [12,14]. The
RPI1807 is established by parsing the Nucleic Acid Database (NAD), which contains 1807 positive
ncRNA-protein interaction pairs, which includes 1078 RNA chains, 1807 protein chains, and 1436
negative ncRNA-protein interaction pairs, which includes 493 RNA chains and 1436 protein chains,
respectively. While, RPI2241 consists of 2241 ncRNA and protein pairs. For these three datasets, they
were all extracted from structure-based complexes. The datasets details show as following Table 6.

Table 6. Details of the ncRNA-Protein Interaction Datasets.

Dataset Interaction Pairs Number of Proteins Number of RNAs

RPI488 1 243 25 247
RPI1807 1 1807 1807 1078
RPI2241 1 2241 2043 332

1 RPI488 is lncRNA-protein interactions based on structure complexes, RPI2241 and RPI1807 are RNA-
protein interactions.

4.2. Position Specific Scoring Matrix

Position Specific Scoring Matrix (PSSM) is capable of testing the distantly related proteins in past
studies. From the biological perspective, PSSM is a matrix that is used to distinguish the similarity
of two sequences, since PSSM are able to predict quaternary structural attributes, protein disulfide
connectivity, and folding pattern [22–24]. Each element of the PSSM indicates the probability of the
substitution of an amino acid to another amino acid [25]. If the replacement of these two amino acids
is frequent, then it indicates that this substitution can be accepted by nature with high amino acid
substitution scores [26]. Each random protein sequence can be transformed into a PSSM through the
Position Specific Iterated BLAST (PSI-BLAST) [27].

Let P be a PSSM as the representative of an arbitrary protein. BLAST software that is characterized
by executing the parameter command about related proteins executes the PSSMs. A PSSM consists of
r rows and 20 columns with the explanation that r means the length of the primary sequence of an
arbitrary protein, while 20 means the quantity of amino acids, respectively.

P =
{

pi,ji = 1 . . . r, j = 1 . . . 20
}

(1)

The element in a PSSM at the position of i row and j column is represented by the symbol Pi,j.
The symbol Pi,j (∑20

j=1 pi,j = 1, f or i = 1, 2, . . . , r) denotes the relative probability of jth amino acid at
the ith position of the same protein sequence with which PSSM comes from [28,29].

In this study, PSI-BLAST software was used to transform each random protein sequence into a
PSSM the same as most studies for creating the train datasets and predicting interactions. In order to
obtain the protein sequences with higher and broader homology, the parameter e-value of PSI_BLAST
method was set to 0.001 [30]. Subsequently, three iterations are used to obtain the completed PSSMs
from protein sequences.

4.3. Bi-gram Feature Extraction of PSSM

To extract the features recognized from the protein folds, a bi-gram feature extraction technique is
employed by way of PSSM linear probabilities. In the meantime, we are incapable of directly extracting
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bi-gram features from the protein represented by the primary sequences or the consensus sequences,
because the combinations of amino acid cannot all be found in the protein sequences [31]. Therefore,
PSSM is figured out to replace it. Meanwhile, the bi-gram feature vector is computed through the
representing information that is mainly contained from PSSM [32]. A more specific mathematical
explanation will be given in the following paragraphs.

Let B be a bi-gram occurrence matrix and bm,n be the element in the matrix B. The symbol bm,n

can be interpreted as the occurrence probability of the transition from mth amino acid to nth amino
acid that is able to be calculated from the element Pi,j in its PSSM as the following equation:

B = {bm,n, 1 ≤ m ≤ 20, 1 ≤ n ≤ 20} (2)

bm,n = ∑r−1
i=1 pi,m pi+1,n(i ≤ m ≤ 20, 1 ≤ n ≤ 20) (3)

From the equation, we can get a bi-gram matrix with 400 elements. The 400 elements in matrix B
are also the feature vectors of the protein fold recognitions that we need. Let F be the bi-gram feature
vector of the protein fold recognition, which is as follows:

F = {b1,1, b1,2, . . . , b1,20, b2,1, . . . , b2,20, . . . , b20,1, . . . , b20,20}T (4)

where the symbol T means the transpose of the feature vector [33].
It is intuitively plausible that the bi-gram feature F contains much more serviceable information of

protein fold recognitions than extracting bi-gram features directly from the primary protein sequences
or the consensus protein sequences. Generally speaking, from a biological point of view, proteins with
the same physical folds have highly conserved amino acid subsequences [34]. In these conserved areas,
the subsequences of amino acids are represented by the bi-gram probability features [35]. Consequently,
if a certain subsequence of amino acids is known to be conservative in a protein fold, there is a group
of bi-gram features that represent each protein in the fold from that conserved area. This protein
character can help us to distinguish those protein folds from different amino acid subsequences [36].

4.4. Representation of ncRNA Sequences Using K-mers Sparse Matrix and SVD

As for ncRNA, we selected the deformation of two-dimensional matrices k-mers sparse matrices
to store the features of the ncRNA sequences [24]. Using two-dimensional matrices to represent ncRNA
sequences instead of one-dimensional vectors, much more useful and significant information is stored
in the original sequences, such as location information, can be saved. Thus, the ncRNA features that
were obtained by the two-dimensional matrix ought to have higher accuracy and better performance
in predicting the interactions between ncRNAs and proteins [24].

A ncRNA sequence is processed into a 4k × (L− k + 1) k-mers sparse matrix M. When
mjmj+1mj+2mj+3 is just equal to the ith k-mers among 4k different k-mer, set the element ai,j = 1.
Subsequently, the matrix M can be defined, as follows:

M =
(
aij
)

4k × (L− k + 1) (5)

aij =

{
1, i f mjmj+1mj+2mj+3 = k−mer(i)
0, else

(6)

After obtaining the corresponding two-dimensional matrix from the original sequence of ncRNA,
we transformed this matrix with large amounts of data by using SVD [37]. There are two primary
functions of applying SVD on the matrices. The first is Low Rank Approximation, the essence of which
is an approximate method that transfers the original complex matrix into a suitable corresponding
low rank matrix by way of low dimensional structures in the high dimensional space. Through this
efficient approximate technique, more valuable properties and information from the original complex
matrices can be conserved in new matrices [24]. In addition, the redundant information and noise
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can be effectively reduced. Besides, storage space, as well as computational complexity, can be
reduced further more. The second is dimensionality reduction. As the dimension increases, the limited
sample space becomes sparse, contributing to a phenomenon in which the model lacks generalization
capability for the new data in spite of it performing well on the training set data. Feature dimension
reduction is proposed to reduce the dimension and eliminate over-fitting phenomenon.

4.5. Stacked Auto-Encoder and Fine Tuning

The function of deep learning is learning various expressions of raw data layer by layer. Each layer
extracts more abstract and suitable complex features that are based on the expression features of the
previous layer to do some classification tasks. Actually, SAE is an unsupervised feature learning
approach that does the same thing as a member of large proportions of deep learning. In simple
terms, the structure of SAE is to stack multiple layer auto-encoders layer by layer [38]. Both the sparse
auto-encoders and the de-noising auto-encoders are kinds of mono-layer auto-encoders to learn a
characteristic change of

h = f (Wx + b) (7)

through a three layer network x → h→ x . The input x can be interpreted as a d-dimension dataset
and f can be interpreted as a non-linear function in the expression, which is an element-wise sigmoid
function f (x) = 1

1+e−x here.
In this study, the types of layer that we used are the dropout layer and fully connected layer [39].

In the dropout layer, some neurons unit activations are set to be zero randomly to avoid model training
over-fitting. After using SAE system as an unsupervised learning, a fine tuning operation is used
to tune each parameter of each layer based on back-propagation for a better performance. The SAE
system can be improved a lot through the use of fine tuning. In the fine tuning operation, a softmax
layer as the last layer with a sigmoid function is added to output from merged sub-networks of ncRNA
and protein as the expression.

Therefore, a SAE model can be formulated as the following optimization formula:

min

[
a

∑
i=1

(
hW,b

(
x(i)
)
− y(i)

)2
+ α
(
‖W‖2

)
+ β

b

∑
j=1

KL
(

p‖ p̂j
)]

(8)

where p̂j is the mean activation probability in the jth hidden unit, which calculated from p̂j =
1
a ∑a

i=1 hj
and the element p represents the desired probability of being activated.

In (8), the first item represents the reconstruction cost, the second item refers to a regularization on
weight to avoid over-fitting, and the last item makes a sparsity mapping from input layers to hidden
layers, in which the Kullback–Leibler (KL) divergence is employed to measure the similarity between
the desired and actual values shown as follows [40]:

KL
(

p‖ p̂j
)
= p log

p
p̂j

+ (1− p) log
1− p
1− p̂j

(9)

In the process of training datasets, the dropout probability is set to be 0.5, which is the most
suitable probability of dropout training system [41]. The whole SAE system is realized by the use of
keras library, while its parameters batch_size and nb_epoch is both set to be 100. The keras library is
described in detail in the website http://github.com/fchollet/keras.

4.6. Stacked Ensembling

For most classifiers, there are different classification performances to adapt to different kinds of
classification problems. To acquire the approximate optimal objective functions, it is necessary to use
multiple classifiers to integrate learning. Accordingly, it is crucial to find out the solution of ensembling
mechanism implementing to integrate the individual output. In the previous studies, most of the

http: //github. com/fchollet/keras
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solutions are the average individual model results strategy and the majority voting strategy [42,43].
While, in stacked ensembling, the output of the level 0 classifier will be used as training data for the
level 1 classifier as the combining strategy of multiple layers of neural networks intuition, where level
0 is the first layer in stacked ensembling and level 1 is the successive layer after level 0. The function
of the level 1 classifier is trying to combine the results of all single classifiers [44]. In this study, the
outputs of all level 0 classifiers are interpreted as predicted probability scores, while the successive
level 1 classifiers are logistic regression classifiers. As a result, the stacked ensembling is equal to
the average individual model result strategy when the score weights of logistic regressions of all
individual level 0 classifiers are the same, while it is equal to the majority voting strategy when there
is only one score weight that becomes non-zero [17].

Pw(y = ±1|s ) = 1
1 + e−ywTs

(10)

where s represents predicted probability scores of all level 0 classifiers vector outputs and w is the
weight vector of corresponding classifiers. The logistic regression is obtained from Scikit-learn [45].

4.7. Prediction Methods and Evaluation Criteria

In the machine learning field of all classifiers, there are four representative classifiers that are
supervised and efficient, including the SVM [6], neural network [46,47], Naïve Bayesian [48], and
RF [42]. Those four classifiers are managed and compared with each other, aiming to select the
appropriate one with the best accuracy and performance for predicting ncRNA and protein interactions.
In BGFE, to classify and predict, a RF classifier was used.

RF refers to a classifier that uses multiple decision trees to train and predict datasets [49].
In machine learning, the RF classifier is a multiple decision tree classifier with its output composed of
plural individual tree categories depending on the output category [50]. In order to construct RFs, the
datasets need to be selected from the random characters randomly, which guarantees the difference of
the decision trees in the RF classifier. Furthermore, the diversity of the system can be enhanced and
the classification performance can be improved as well. In order to actualize this target, a five-fold
cross validation technique is employed for evaluating algorithm performance and accuracy about
each group of dataset [51]. In the python environment, we can use the Scikit-learn package to help us
complete the task of constructing RFs [45].

In this study, several widely used computational criteria was employed to evaluate the prediction
performance, as follows [52]:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Sensitivity =
TP

TP + FN
(12)

Speci f icity =
TN

TN + FP
(13)

Precision =
TP

TP + FP
(14)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

where TP, FP, TN, and FN are, respectively, interpreted as the numbers of true positive, false positive,
true negative, and false negative. The ROC curve is understood as the threshold between specificity
and sensitivity. Meanwhile, the AUC is regarded as the area of the graph under the ROC curve. As a
result, the probability of falsely predicting the interaction between ncRNA and protein pairs will be no
more than one percentage.
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5. Conclusions

In this study, a sequence-based method named BGFE using deep learning model SAE network
combined with the Random Forest classifier was proposed. We used k-mers sparse matrices to
represent ncRNA sequences, and then extracted feature vectors from these matrices by SVD. For protein
sequences, PSSM was used to obtain evolutionary information from each sequence; moreover, the
bi-gram algorithm was further used to get feature vectors from PSSM. We selected three public datasets
to evaluate the performance of our model. In the experiments, our method BGFE achieved a great
performance in protein-ncRNA interactions in predicting tasks when the experiment results and
capability were evaluated. We also made a comparison between BGFE and other current methods,
while our method obtained a better performance than other methods in predicting interactions between
ncRNA and proteins. This study can predict the potential non-coding RNA-protein interacted pairs
accurately and it provides some useful guidance for the future biological research.
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