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Introduction: Electromechanical reshaping (EMR) involves the application of an elec-
trical current to mechanically deformed cartilage to create sustained tissue shape change.
Although EMR may evolve to become an inexpensive and reliable way of producing
shape change in cartilage during reconstructive surgery, the precise mechanism of EMR
is unknown. We aim to examine the isolated effect of protonation (pH) on shape change
in cartilage. Methods: Nasal septal cartilages of rabbits were mechanically deformed
and placed in a rigid jig. The deformed cartilages were submerged in isotonic phosphate
buffered saline baths (osm = 290 mmol/Kg) with a pH of 3 (N = 51), pH of 7 (N =
51), and a pH of 11 (N = 51) for 15 minutes. Following re-equilibration, specimens
were removed from their jig and the angle change from baseline was measured using
digital micrometry. Results: Significant shape change was noted in all specimens, with
an angle change of 33.6◦, 33.3◦, and 32.0◦ experienced by the pH of 3, 7, and 11 groups,
respectively. Despite a trend toward increased shape change in the acidic treatment, there
was no significant difference between groups. Conclusions: Although current evidence
indicates that dynamic oxidation-reduction reactions within the extracellular matrix of
cartilage may be implicated in EMR-induced shape change, when pH was isolated as a
single variable it was not sufficient to produce cartilage shape change.

Cartilage is a tissue of paramount importance for the structural frameworks of the face
and the functionality of the upper airway. The nuances of human expression and sensation
rely in part upon shape and structure established by the cartilage scaffolds of the nose
and external ear. Likewise, the patency of the human airway depends on support from
cartilage in the nasal airway, trachea, and larynx. Over recent years, electromechanical
reshaping (EMR) has emerged as an experimental method to reshape cartilage and other
tissues.1-5 EMR involves the application of a direct electric current to electrodes contacting
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mechanically deformed cartilage within regions of increased internal stress, with subsequent
stress relaxation achieved as a consequence of in situ redox reactions. The potential medical
applications of EMR are broad and include esthetic procedures such as rhinoplasty and
otoplasty, as well as procedures aimed at restoring normal function such as septoplasty,
reconstruction of facial structures, and correction of congenital or acquired malformations
of the airway. Although EMR may evolve to become an inexpensive and reliable way of
producing shape change in cartilage, the mechanisms responsible for EMR-induced shape
change remain unclear.

Extensive and detailed ex vivo studies have found correlation between the degree
of cartilage shape change during EMR and the total charge transferred, voltage differ-
ence, and current application time.1-7 In vivo studies in animal models have demonstrated
potential clinical efficacy.8 The complex, osmotically active, and negatively charged ex-
tracellular matrix of cartilage behaves like a charged hydropolymer and is susceptible to
redox reactions and alteration of ionic bonds, van der Waals interactions, and hydrogen
bonding. In EMR, an electrical potential is established resulting in (1) the electrolysis of
water (near anode) and reduction of water (near cathode); (2) creation of chemical gradi-
ents throughout the extracellular matrix; and (3) the evolution of hydrogen, oxygen, and
chlorine gasses.2 Electrolysis of water has the potential to alter macromolecular struc-
ture within the matrix including status of hydrogen bonds, charge shielding, and van der
Waals interactions. In particular, we suspect that EMR induces protonation of electronega-
tive proteoglycans in the extracellular matrix, thereby affecting hydrogen bonding and local
electrochemical repulsive forces in cartilage resulting in changes in the Donnan equilibrium,
at least transiently.1,9 This study aimed to isolate and evaluate the effect of steady-state pH
changes alone, without the complex alterations created by electrolysis, on cartilage shape
change.

METHODS

Tissue specimens

Nasal septal cartilages (N = 153) were extracted from freshly euthanized New Zealand
white rabbits (age 9-12 weeks) procured from a local abattoir (Fig 1). The dimensions (size
and shape) of these specimens vary little between individual animals when controlled for
animal age or weight.10 Each septum was cut into 24 ± 0.5 mm × 6 ± 0.2 mm sections
and placed in a phosphate buffered saline (PBS) solution for immediate use.

Figure 1. Rabbit septal cartilage. (a) Rabbit septal
cartilage in its native unbent state, viewed on its short
axis. (b) The same specimen after being reshaped in
the 90◦ jig in a treatment pH solution.
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Figure 2. Plastic jig used to mechanically deform specimens during pH treatment.
(a) The 90◦ jig with multiple perforations to allow free flow of liquid to the cartilage
specimen. (b) The jig was designed to hold the cartilage specimen statically in position
without tension or pressure on the specimen.

pH solutions

Three different solutions were created using PBS titrated to a pH of 3, 7, and 11, respec-
tively, with 10M hydrochloric acid and 10M sodium hydroxide (Sigma-Aldrich, St Louis,
Missouri). The solutions were buffered using minimal NaCl (Sigma-Aldrich, St Louis,
Missouri) to a physiological osmolality of 290 ± 4, and osmolality was confirmed using a
vapor pressure osmometer (Wescor, Logan, Utah).

Experimental set-up

Rigid plastic jigs were created to hold the cartilage specimen at a 90◦ bend angle. Multiple
perforations were created in the jig walls to increase contact between the cartilage and
the surrounding aqueous media (Fig 2). After placement in the plastic jig, each cartilage
specimen was secured with set screws in these 90◦ jigs, and then submerged completely in a
bath with pH of 3 (N = 51), pH of 7 (N = 51), or pH of 11 (N = 51) for 15 minutes (Fig 3).
The jigged specimen was stirred and tapped to ensure the release of any air bubbles present
on the cartilage-liquid interface. Following the pH bath immersion, the jigged cartilages
were washed in PBS with neutral pH of 7 briefly and then allowed to re-equilibrate by
submersion in a fresh PBS bath with pH of 7 for 15 minutes (all the while remaining
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mechanically deformed in the jig) (Fig 4). After this final PBS bath, the cartilage jig was
patted dry with a surgical towel, and the cartilage specimen was immediately removed from
the jig and digitally photographed on its long axis (Digimax i5, Samsung, Ridgefield Park,
New Jersey).

Figure 3. Experimental set-up. (a) Cartilage specimens are placed in the perforated hard plastic
jig. (b) Using set screws to gently fasten the jig walls, the cartilage is mechanically deformed to
90◦. (c) Following mechanical deformation, the jigged cartilage specimen is completely submerged
in the pH treatment bath.

Analysis of bend angles

The bend angle of the treated specimens was determined using the protractor function
available on ImageJ (National Institute of Health, Rockville, Maryland). Native rabbit
septal cartilage is uniformly flat with a bend angle of 0◦, whereas the theoretical maximum
bend angle achievable with our jig is 90◦ (Fig 1). A smaller outside angle correlates
with less effective reshaping of the cartilage. Statistical analysis was performed using a
Kolmogorov-Smirnov test.

RESULTS

All cartilage specimens experienced shape change, with an angle change of 33.6◦, 33.3◦,
and 32.0◦ experienced by the pH of 3, 7, and 11 groups, respectively (N = 51/group)
(Fig 5). Despite a trend toward increased shape change (as reflected by greater out-
side angle change) in the acidic treatment, there was no significant difference between
the pH of 7 control group and the experimental pH of 3 group (P = .33), or be-
tween the pH of 7 control group the experimental pH of 11 group (P = .52). Like-
wise, there was no significant difference between the pH of 3 and pH of 11 groups
(P = .45).
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Figure 4. Experimental flowchart.
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Figure 5. Effect of pH on cartilage shape change. Cartilage spec-
imens were immersed for a total of 15 minutes in an isotonic pH
treatment bath, then allowed to re-equilibrate for 15 minutes in neu-
tral pH PBS solution before undergoing digital photography and
analysis of their bend angle change. The specimens treated with
pH of 3, 7, and 11 experienced angle changes of 33.6◦, 33.3◦, and
32.0◦, respectively. There was no significant difference between any
groups (n = 51, P > .3). Error bars represent SD. PBS indicates
phosphate buffered saline.

DISCUSSION

The extracellular matrix of cartilage is composed of 65% to 80% water, 15% to 25% col-
lagen, and 3% to 10% proteoglycans.11 The proteoglycans in collagen exist as polyanionic
molecules with numerous affiliated carboxyl and sulfate groups having pKa values ranging
from 3 to 3.6.12 The most prevalent proteoglycan in cartilage, aggrecan, has more than a
hundred negatively charged chondroitin sulfate side chains, with each chain in turn have
some 50 carboxy and sulfate groups each.13 The highly negatively charged and immobile
proteoglycans present in cartilage exert a high Donnan osmotic swelling pressure in the
cartilage that is balanced and mitigated by the mechanical tensile strength of collagen
within the tissue.9 This complex system of dynamic negative charge in a rigid molecular
framework allows cartilage tissue to behave largely like a matrix of immobilized charge
bathed in a highly conductive fluid. Prior experimentation using streaming potential and
isometric stress has shown that the isoelectric point of intact cartilage is approximately
at pH of 2.75, and that this isoelectric curve was dominated by the titration of carboxyl
groups.12 The isoelectric point of cartilage (pH = 2.75) as well as the pKa values of carti-
lage associated carboxyl and sulfate groups (pH = 3–3.6) suggest that cartilage approaches
its maximal electroneutrality around pH 3. For this reason, we felt that maximal cartilage
shape change would be induced following exposure to pH 3 treatment baths. Treatment
with pH 7 represented a physiologic control, and treatment with pH 11 represented an
extreme basic control of equal magnitude to the acidic pH 3 group. Given the known pKas
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of cartilage proteoglycan groups, it is probable that treatment with solutions of pH less
than 3 would result in increasing polybasic protonation of cartilage macromolecules, which
would intensify molecular repulsions and made shape change less likely.

Previous studies have shown that during EMR, total charge transfer correlates with
the degree of cartilage shape change and that electrolysis of water clearly occurs and is the
dominant chemical reaction. Hydrolysis will drop the local pH at the anode and raise the
pH at the cathode. Hence, investigating whether pH alone might be a dominant mechanism
responsible for EMR-induced cartilage shape change is important. The most straightforward
approach to examine the effect of steady state pH change is through the use of immersion
baths; however, the stable and widespread changes in pH created by immersion are very
different from that which occurs during EMR in situ.

This is the first attempt to examine pH changes alone as a causative factor responsible
for macroscopic cartilage shape change in EMR, decoupled from redox chemistry and
evolved electrical and chemical gradients. In this first attempt, we observed no significant
difference in shape change between acidic (pH 3), neutral (pH 7), and basic pH (pH 11).

While our results indicate that modification of steady state pH alone is not sufficient
to produce cartilage shape change, it is important to note that pH alterations during EMR
are much more dynamic (both spatially and temporally) than the experimental model used
in this study. EMR produces unique electrical and chemical gradients around the anode
and cathode. As ions are transported along these gradients, they are able to interact with
various matrix constituents1,2 These transient gradients and the local creation and diffusion
of charged species is likely relevant to the shape change effect observed with EMR. When
a cartilage specimen is flexed, compression occurs at the inner bend angle while tension
occurs along the outer bend angle. Hence, the local density of charged proteoglycans is
increased along the inner bend angle of the cartilage specimen as matrix molecules are
brought into closer contact. Conversely, as the cartilage matrix is decompressed along
the outer bend angle of the cartilage specimen, the local charge density is decreased. By
precise positioning of the anode and cathode, EMR is able to dramatically and rapidly
increase the rate of redox reactions in areas of maximal proteoglycan charge density, while
minimally affecting redox reactions elsewhere in the cartilage sample (unpublished data). In
comparison to EMR, immersion rapidly creates steady state changes in pH throughout the
specimen without localizing changes in species concentration to a specific area of cartilage
in particular regions of increased internal stress. Notably, due to the continuous and discrete
application of current, the milieu immediately adjacent to the anode or cathode may have
a significantly different pH from the surrounding tissue and the immersion media.

In addition to hydrolysis causing changes in pH, EMR is likely to produce a variety
of redox reactions with the resultant generation of other chemical species. In addition to
hydrogen gas, we also know that chlorine gas is generated during treatment of cartilage
with EMR. Although the specific molecular reactions propagated by EMR are not known
at this time, it is an active area of investigation in our laboratory and those of others. It is
highly likely that the mechanism of EMR is not dependent upon any steady state change in
one variable (such as pH), but on the variety of temporally and spatially localized changes
incurred by application of a directed electrical current.

Importantly, our previous published works have shown that much less dramatic shape
change is observed in cartilage control groups when using jigs and specimen sizes similar to
those used in this study. Typically, control group rabbit septal cartilages (to which electrical
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current has not been applied) demonstrated bend angles in the range of 10◦ to 19◦.1,2,4,8

There were some differences. First, those control specimens were submerged in an isotonic
aqueous media for only 4 to 20 minutes total, which is less than the total 30-minute
submersion used in this study. In addition, the plastic jigs used in previous experiments did
not have perforations, but had solid walls and a base in direct contact with the cartilage
specimen, thus reducing diffusion of aqueous media to only the exposed top and sides of
the jig. This jig setup, in addition to the reduced submersion time used in previous studies,
could have prevented complete diffusion of the surrounding aqueous media throughout the
cartilage specimens, thus reducing the effect of biomechanical changes (swelling, osmotic
pressure gradients, hydrolysis) known to result from prolonged osmotic stress. Finally,
specimens are secured within the jig using multiple small setscrews. It is possible that in
this study, there was a systematic use of a greater compression force when tightening these
setscrews that could create localized fractures at the flexure point.

There are a number of limitations to our study. The mechanical 90◦ bend angle imposed
on the natively straight septal cartilage by the hard plastic jig may lead to trauma or
microfracture in the specimen. Although rabbit cartilage is pliable, and studies on cartilage
tissue treated similarly with a 90◦ angle jig have demonstrated good ex vivo chondrocyte
viability, and even long-term in vivo survival, it is possible that the large number of
specimens used in this experiment incurred varying amounts of mechanical trauma from
setscrew tightening.2,8 Even if not grossly visible, any disruption of the cartilage’s structural
framework would certainly alter the microenvironment of the cartilage extracellular matrix
in a way that would impair or obscure a modest experimental effect, while not necessarily
affecting chondrocyte viability. To reduce the possibility of microtrauma to the cartilage
specimen, in future experiments, we plan to use a hard plastic jig with a more obtuse bend
angle. Similarly, future experiments will include histologic analysis of specimens to exclude
the role of microtrauma in cartilage reshaping. Although experience with prior studies and
the lack of significant shape change induced with the current model make microtrauma
an unlikely player in our results, histologic evaluation may still yield useful mechanistic
information.

This study represents a first attempt at analyzing the effect of varying pH on cartilage
shape change. While no significant shape change was associated with acidic or basic
treatments in the current study, this experiment brings to light the dynamic and spatially
complex electrochemical gradients induced by EMR. Hopefully, the results of this study
can be used to guide and improve future work in elucidating the electrochemical mechanism
of EMR.

CONCLUSIONS

Although prior work suggests that redox reactions within the extracellular matrix of cartilage
is the likely mechanism of EMR-induced cartilage shape change, this study shows that
steady state changes in pH alone may not be sufficient to induce shape change to a degree
greater than a pH neutral control. Thus, an isolated change in pH within the cartilage
environment is not responsible for the functionality of EMR. Likely, the mechanism of
EMR is more complex than simple pH change and probably involves multiple dynamic
and localized reactions. Further studies are needed to elucidate the precise mechanism of
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EMR cartilage reshaping, with thought to a more encompassing and dynamic assessment
of molecular changes in the cartilage extracellular environment.
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