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ABSTRACT

Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function—for example,
recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common
motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of
regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many
pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets.
Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or
pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects
by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family
covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold
to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can
simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally
exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families,
achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and
report 213 enriched motifs, including both known and novel structures.
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INTRODUCTION

RNA structures play an important role in the function and
regulation of almost all known classes of RNA. In coding
transcripts, conserved secondary structures have been found
in the untranslated regions (UTRs) that operate in cis to reg-
ulate processes such as alternative splicing, translation, and
subcellular localization (for review, see Wan et al. 2011).
Several of these cis-structures have been found to be motifs
—modular elements that occur across multiple different
transcripts and provide a similar function or regulatory sig-
nal. Examples include the selenocysteine insertion sequence
(Walczak et al. 1996), the iron response element (Casey
et al. 1988), and some localization signals (Martin and Eph-
russi 2009). Structure motifs also play a well-documented
role in noncoding RNA function, such as the cloverleaf struc-
ture of tRNAs and the long hairpin structure of premicro-
RNAs. The Rfam database (Burge et al. 2012) has organized
many of these known motifs into structure “families” and
provides a covariance model (CM) (Eddy and Durbin
1994) for each family, which can be used to quickly scan

new sequences to infer instances of known motifs. How-
ever, the identification of novel motifs that are not already
modeled by Rfam remains a challenging problem.
Existing algorithms for finding novel secondary structure

motifs differ widely in their approaches, but almost all begin
with some form of structure prediction. Structure prediction
can be done for single sequences individually by maximizing
thermodynamic stability, as in MFOLD (Zuker 1989, 2003)
and RNAfold (Hofacker et al. 1994; Hofacker 2003), or can
be done using covariance information of stem nucleotide
pairs from a multiple alignment. Although alignment-based
methods generally result in more reliable predictions than
thermodynamic stability alone, building a multiple align-
ment of RNAs can be difficult when the primary sequences
are highly diverged. For most traditional sequence aligners,
performance drops off dramatically when aligning families
with <60% sequence identity (Gardner et al. 2005). Given
that many highly conserved structure families have an
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average sequence identity lower than this threshold (e.g., the
tRNA family with 46% sequence identity), such aligners are
often not sufficient for identifying RNA structure families.
To address this issue, methods such as FoldalignM (Torarins-
son et al. 2007), Dynalign (Mathews and Turner 2002),
and LocARNA (Will et al. 2007) attempt to align RNAs by
both sequence and structure simultaneously, using approxi-
mations of the Sankoff align-and-fold algorithm (Sankoff
1985). Although these methods generally perform better
than traditional aligners on structural RNAs, they are compu-
tationally intensive and require time-saving heuristics when
used to align a large number of sequences.

In order to identify structures that occur multiple times in
a given data set, an additional step of clustering is needed.
The choice of distance metric and clustering algorithm
depend largely on the method used for structure prediction.
Individually predicted structures can be compared by com-
puting a distance metric over the base-pair probability matri-
ces (Ding et al. 2005; Liu et al. 2008) or the dot-bracket
structure representations (Moulton et al. 2000). A popular
approach is to first reduce each individual structure to a
tree representation, where stems and loops are reduced to a
graph-theoretic representation, before computing a tree
alignment or edit-distance (Hofacker 2003; Höchsmann
et al. 2004; Liu et al. 2005; Steffen et al. 2006; Yao et al.
2006). A recent algorithm in this vein is GraphClust (Heyne
et al. 2012), which uses the RNAshapes software (Steffen et al.
2006) to sample several low-energy structures that are then
encoded as graphs and compared using a graph kernel.
Alternatively, instead of predicting each individual structure
and then comparing pairs of structures, the structural simi-
larity between two RNAs can be derived directly from their
pairwise alignment using an align-and-fold algorithm. This
is the strategy used by RNAclust (Will et al. 2007) and
FoldalignM. Once a distance matrix has been created for
the sequences of interest, common clustering methods can
be used to identify recurring structures. However, as these
algorithms all use as their basis some form of folding or pair-
wise sequence alignment, they are limited by the tradeoff be-
tween speed and accuracy.

Here we describe a novel approach to RNA structure clus-
tering which does not require folding or pairwise alignment
of the input sequences. Our approach is inspired by the idea
of an “empirical kernel,” where the distance between any two
objects is computed within an observation-spanned subspace
by comparing each object to a set of empirical examples or
models (Scholkopf and Mika 1999). Using Rfam CMs as
our empirical models, we thus measure the structural dis-
tance between two RNA sequences based on their respective
scores against each CM. In this way, we represent each input
sequence as a superposition of known structures. Part of the
motivation for this approach comes from known examples of
such superposition in nature, such as the presence of tRNA-
likemotifs in transfer-messenger RNA (tmRNA) (Moore and
Sauer 2007) and in some internal ribosome entry sites (Jan

et al. 2003). However, as we will show here, this approach
can identify motifs even in the absence of trivial similarity be-
tween the motif and the reference models. Using this folding-
and alignment-free distance measure as a basis, we developed
a pipeline called NoFold for clustering and automatically
extracting cohesive clusters, which can be used to find struc-
ture motifs in any set of RNA sequences. In a benchmark
containing 20 Rfam structure families, we demonstrate that
NoFold can simultaneously recapitulate almost all of the
families with high sensitivity and precision and that this per-
formance is robust to the presence of unrelated sequences
within the data set or extraneous flanking sequence on the
structural sequences. Using NoFold, we identify 213 motifs
that are enriched in the 3′ UTRs and retained introns of den-
dritically localized transcripts, including a previously identi-
fied localization-mediating motif and several potentially
novel structures with similarity to the Drosophila K10 locali-
zation element.

RESULTS

Construction and normalization of the structural
feature space

Our approach is akin to measuring the distance between
two locations not by direct measurement but by using their
respective distance to a set of landmarks. For example, the
distance between two street corners A and B might be mea-
sured by measuring the distance between A and three tall
buildings, X, Y, and Z and also measuring the distance be-
tween B and the same X, Y, and Z buildings. The accuracy
of such triangulation will depend on the relative location
and the number of such landmark buildings. The advantage
is that we do not have to make direct measurements between
A and B, which might be difficult (e.g., because the streets are
blocked).
Here, we used Rfam CMs as our landmarks to triangulate

RNAs of unknown secondary structure, which enabled us to
identify groups of similarly structured RNAs (motifs) with-
out explicitly predicting the structures of those RNAs. CMs
are a form of stochastic context-free grammar used by the
Rfam database to model the consensus sequence and second-
ary structure of RNA structure families (Eddy and Durbin
1994; Burge et al. 2012). We used all 1973 CMs in Rfam
v.10.1 to create an empirical feature space for triangulation
and clustering of RNAs. The raw feature space consisted of
1973 dimensions, each corresponding to one CM. The coor-
dinates of an arbitrary RNA sequence within this space was
determined by scoring it against each CM using the cmscore
module of Infernal (v.1.0.2) (Nawrocki et al. 2009) and using
the resulting bitscores as the coordinates along each axis.
These bitscores indicate how well a sequence matches each
CM, taking into account compensatory base changes that
maintain conserved pairing interactions. Thus, the feature
space can map RNA sequences according to their similarity
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to known structures. We note that although scoring an RNA
sequence against a CM can be considered a form of align-
ment, there was distinctly no pairwise sequence alignment
of the RNA sequences to each other during this stage of the
algorithm. Therefore, in contrast to existing alignment-based
clustering algorithms, our algorithm had linear growth in the
number of “alignments” with increasing data set size, rather
than quadratic growth. Although the subsequent clustering
step in our method was quadratic (Müllner 2011), in practice
this part of the process was much faster than in alignment-
based algorithms because only a simple distance measure
needed to be calculated for each comparison, rather than
an alignment (that will typically add another quadratic factor
in terms of sequence length).
Initial analysis of the raw feature space using randomly se-

lected transcript sequences revealed a relationship between
the length of an RNA sequence and the score it received
against a CM (Fig. 1A). For a given CM, this relationship
was strongest for sequences that were shorter than the length

of the CM itself and indicated that shorter sequences were be-
ing penalized in a manner proportional to their deficiency in
length. We also observed that larger CMs tended to produce
lower scores on average, even when only considering se-
quences longer than the length of the CM (Fig. 1B). To nor-
malize for these two length effects, we separately estimated
the mean and standard deviation of scores for each combina-
tion of sequence length (between 10 and 500 nt) and CM,
and used these parameters to produce Z-standardized scores
(Z-scores) according to the length of the original sequence
and the particular CM. Specifically, the Z-score Z for a se-
quence of length l against CM c is calculated as Z = (x−
µlc)/σlc, where x is the raw score and µlc and σlc are the
mean and standard deviation, respectively, of the scores of se-
quences of length l against CM c. We applied this normaliza-
tion to an independent data set and found that this procedure
greatly reduced the relationship between sequence length and
score (Fig. 1C) and zero-centered the range of scores pro-
duced by each CM (Fig. 1D).
Although Rfam CMs model a wide variety of structures,

there are several subgroups of CMs that are structurally relat-
ed (e.g., microRNAs) that may therefore produce very similar
scores for a given RNA sequence even if the sequence does
not belong to the CM model families. In agreement with
this, we observed correlation in the scores produced by sev-
eral groups of CMs; for example, mir-70 (RF00833) and
mir-355 (RF00797) had a Spearman correlation of 0.72 in
their scores against random sequences. These kinds of corre-
lation over random sequences imply structural correlation of
themodels rather than biological correlation of the sequences
and as such the model correlations are likely to distort the bi-
ological information from the ensemble of the CMs. To re-
duce our feature space to a set of independent axes, we first
assessed the structural correlation of the CMmodels by mea-
suring their length-normalized scores (Z-scores) over a ran-
domly sampled set of 24,550 subsequences from the mouse
and human transcriptome (see “Normalization of feature
space” in Materials and Methods). We then performed prin-
ciple components analysis (PCA) on the Z-scores, which re-
sulted in an orthogonal set of axes (i.e., uncorrelated) ordered
by the total variance explained by each coordinate. We select-
ed the first 100 principle component axes as representing
informative variation (see “Normalization of feature space”
in Materials and Methods) and used the loadings of these
axes directions to construct our final feature space for subse-
quent measurements. Another view is to think of the loadings
as a set of weights on the CM Z-scores that results in a 100-
dimensional RNA structure feature space. We refer to this
space here as the RNA Empirical Structure Space (RESS).
Each RESS coordinate is a weighted linear combination of
the CM Z-scores; therefore, the RESS feature scores of a given
sequence can be back transformed into individual CM Z-
scores and analyzed in terms of Rfam models as demonstrat-
ed later in Results. The contributions of each CM to each
RESS axis, as well as the correlations of each axis with GC

A B

C D

FIGURE 1. Normalization of the empirical feature space. Examples of
CM score characteristics before (A,B) and after (C,D) normalization, for
sequences and CMs of length ≤500 nt. (A) A representative example of
the scores given to sequences of various lengths against a single CM, in
this case tRNA. We consistently observe a relationship between se-
quence length and score that is most pronounced for sequences that
are smaller than the size of the CM (73 nt in this case, indicated by
the dashed line). Gray lines show separate linear regression fits to the
scores of sequences shorter or longer than 73 nt, with slopes (m) indi-
cated. (B) We additionally observed a relationship between the length
of a CM and the average score that it produces. Average score was cal-
culated based only on sequences with a length longer than the CM.
(C) The length- and CM-specific procedure to calculate Z-scores greatly
reduced the relationship between sequence length and score on an inde-
pendent data set. Linear regression fit lines and slopes are indicated as in
A. (D) Using Z-scores greatly reduced the relationship between CM
length and the average score produced by the CM, and the average score
for all CMs was close to zero.
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content, CM length, and number of hairpins, are available on
our supplementary website (kim.bio.upenn.edu/software/
nofold.shtml).

Suitability of the RESS for structure similarity analysis

We first asked whether structurally similar sequences become
grouped together when mapped to the RESS. As an initial
test, we created three synthetic structures of the same length
but with different numbers of hairpins (Fig. 2A) and gener-
ated sequences that had the appropriate base complementar-
ity to form each of these structures. These sequences were
generated randomly (but respecting pairing constraints; see
“Synthetic structures” in Materials and Methods) to ensure
that the members of each structure group were not trivially
similar on the primary sequence level. We created 50 se-
quences for each structure and verified that, as expected,
the sequences appeared random on the primary sequence
level (25% average pairwise sequence identity). We scored
the sequences against the Rfam CMs and projected them
into the RESS. As an initial assessment of the relative posi-
tioning of the sequences within the RESS, we visualized the
sequences using PCA ordination of the 100-dimensional
RESS coordinates (Fig. 2B). The different structural sequenc-
es formed three well-separated clusters along the first and
second PC axes, indicating that the RESS mapped the se-
quences with similar structure closer together than sequences
of different structure.

We next sought to define a distance measure that could be
used within the RESS to identify structurally related sequenc-
es. An appropriate distance measure should assign a small
distance between pairs of related structures and a larger dis-
tance between pairs of unrelated structure. To test this, we
used our data set of synthetic structure sequences to calculate
distance measures on (1) pairs of sequences with the same
structure, (2) pairs with different structure, and (3) pairs of
completely random sequence. We found that Spearman dis-
tance (defined as one minus the Spearman correlation across
RESS coordinates) worked well to distinguish the pairs of re-
lated structure from other types of pairs, and was a marked
improvement over sequence identity alone (Fig. 2C) or Eu-
clidean distance (see supplementary website). We therefore
used this measure as the basis for identifying similar struc-
tures and clustering.

Automated structural clustering for motif
identification

Toward the goal of identifying secondary structure motifs in
large sequence data sets, we developed a pipeline for cluster-
ing sequences within the RESS and automatically extracting
clusters with a sufficiently small diameter (calculated as the
average pairwise Spearman distance among the cluster mem-
bers). We call this pipeline “NoFold” to highlight the fact that
it does not use folding or alignment in the initial steps of
sequence comparison and clustering. The overall steps of

the pipeline are illustrated in Figure 3
and explained in detail in the Materials
and Methods. Briefly, input sequences
were scored against the 1973 Rfam
CMs, normalized and mapped to the
RESS, and clustered by average-linkage
hierarchical clustering using Spearman
distance as the distance measure. The
resulting hierarchical tree was cut into
all possible clusters with three or more
members, and all nonoverlapping clus-
ters with a diameter below a certain
threshold were extracted. The threshold
was designed to control the false positive
rate (FPR) and was derived from the dis-
tribution of cluster diameters that we
observed when clustering randomly gen-
erated sequences. The threshold was set
such that only ∼5% of nonstructural
clusters will have a small enough diame-
ter to pass this filter. To improve the sen-
sitivity of the method, we aligned and
folded the sequences within each passing
cluster using LocARNA and used this to
train a new CM for each cluster (“clus-
ter-CMs”). We then used each cluster-
CM to search the original sequence data

FIGURE 2. Structurally similar sequences are clustered together in the RESS. (A) Three synthetic
structures designed for this analysis. (B) PCA of the structure sequences after projection to the
RESS separates the sequences based on structure. (C) Distributions of the distances between pairs
of related structure (“1-hp versus 1-hp,” “2-hp versus 2-hp,” and “3-hp versus 3-hp”), pairs of
different structure (“Diff structs”), and pairs of random sequences (“Rand versus Rand”).
Distance between pairs was calculated by Spearman distance (left panel) or sequence identity
(right panel). Related structure pairs were closer, on average, than different or random pairs in
the RESS.
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set for additional instances of the modeled structure, similar
to what has been done in GraphClust (Heyne et al. 2012) and
CMfinder (Yao et al. 2006). When searching the data set, se-
quences were allowed to match to multiple cluster-CMs,
which can occasionally lead to substantial overlap between
the final clusters. We therefore merged any clusters that over-
lapped by >50% of their members.
To test the ability of NoFold to identify multiple structure

motifs simultaneously, we created a data set consisting of se-
quences from the seed alignments of 20 Rfam structure fam-
ilies that varied widely in size and structure (Table 1). The
sequences of each family were filtered such that no pair of se-
quences shared >75% sequence identity (after alignment),
which resulted in an average sequence identity of 32%–

54% per family and a total of 978 sequences. We used this
data set to test NoFold under three conditions: (1) a basic
test using the exact sequences reported by Rfam (“plain se-
quences”), (2) a test where 10–50 nt of random sequence
was added to both ends of every sequence (“embedded se-
quences”), and (3) a repeat of the first test but with the addi-
tion of 3000 random, unrelated sequences matched to the
dinucleotide frequency and length distribution of the Rfam
sequences (“plain sequences with background”). These last
two tests were designed to emulate common, yet challenging
situations in RNA structure analysis where the exact bound-

aries of the RNA structures are not known (test 2) or a large
proportion of the sequences in the data set do not contain an
instance of a motif (test 3).
We note that because the Rfam families used in these test

data sets are also represented directly by CMs that form the
basis of the RESS, this potentially makes clustering of these
sequences easier for NoFold. To reduce this effect, we re-
moved from the feature space the test family CMs and any
CMs that appeared to be very similar to one of the test fam-
ilies. We did this by examining the Z-scores (before projec-
tion into the RESS) of each test family against all CMs and
removing CMs with an average Z-score >3 for any family.
As the parameters used to calculate Z-scores are derived
from a large sample of transcript sequences, a high Z-score
for a given CM indicates that a sequence is more similar to
that CM than what is typically observed. This procedure re-
sulted in the removal of 44 CMs (see “Rfam benchmark tests”
in Materials and Methods for full list). We verified through
linear discriminant analysis that the top discriminating
CMs for this data set were not related to the data set families
after this removal process. All Rfam tests were carried out us-
ing this modified feature space.
We compared the performance of NoFold with Graph-

Clust on the three test sets described previously (Table 1).
Default parameters were used for both methods, with the ex-
ception that sliding window generation was turned off for
GraphClust so that full-length structures would be clustered
(we note that this may negatively affect the performance of
GraphClust). We measured performance based on how
well each family was reconstructed in the final set of clusters.
In this context, we defined family “sensitivity” as the fraction
of sequences from that family that were present in any cluster
dominated by that family, and family “precision” as the frac-
tion of sequences in clusters dominated by that family that
actually belonged to that family. Both NoFold and Graph-
Clust performed very well, but NoFold consistently detected
more of the families and had a higher average sensitivity
than GraphClust in all three tests. NoFold also had a slightly
higher proportion of families that were detected in a single
cluster rather than being split into multiple separate clusters
(Fig. 4). Family sensitivity was not significantly correlated
with the standard deviation of family sequence length
(NoFold: r =−0.005, P = 0.98; GraphClust: r = 0.18, P =
0.45), indicating that the good clustering performance
was not simply due to length similarity within families.
Notably, both methods had very high precision (0.98–0.99)
across all tests and did not return any clusters dominated
by background sequences in the third test, indicating that
these methods can appropriately distinguish between clusters
of related and unrelated structure. The test set where se-
quences were embedded in random flanking sequence
proved to be the most difficult, resulting in an average sensi-
tivity drop of ∼0.15 for both methods. The performance
drop for each family was significantly correlated with the
length of the sequences in the family (Spearman correlation

FIGURE 3. Outline of the NoFold approach for identification of struc-
ture motifs in unaligned RNA sequence data sets. The method does not
require structure prediction or pairwise alignment of the input sequenc-
es for clustering, in contrast to existing methods.
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−0.53, P < 2.2 × 10−16), indicating that detection of smaller
structures was impacted the most. We note that although
some of the test families were related to each other (e.g.,
RF00009, RF00010, and RF00011), both NoFold and Graph-
Clust were generally able to separate these families into sep-
arate clusters. Overall, these results demonstrate that NoFold
can simultaneously detect multiple structural motifs of dif-
ferent sizes with very high sensitivity and precision and is
comparable to or exceeds the performance of the current
state-of-the-art software.

To verify that NoFold can perform well on structures that
bear absolutely no evolutionary homology with CMs in the
feature space, we additionally performed clustering on the se-
quences derived from the three synthetic structures described
in the previous section. The results of this test for NoFold
and GraphClust are summarized in Table 2. GraphClust de-
tected all members of the 1-hairpin and 2-hairpin families,
but did not detect the 3-hairpin structure. In contrast,
NoFold detected all three structures with reasonable sensitiv-
ity.Most notably, the average precision of the NoFold clusters
was much higher than the GraphClust clusters (0.81 versus
0.53, respectively), suggesting that the use of information
from Rfam CMs by NoFold improved clustering even though
the synthetic structures were not members of any Rfam fam-
ily. Upon individual inspection of the clusters, we found that
the GraphClust clusters each contained a substantial mix of
all three structures, with a high degree of overlap between

each cluster. For example, the largest cluster contained all
50 of the 1-hairpin sequences, but also contained 38 of the
2-hairpin sequences and 18 of the 3-hairpin sequences. The
NoFold clusters, in contrast, were generally much more spe-
cific to a single family, as is reflected in its higher precision.
Although it is possible that fine-tuning some of the Graph-
Clust parameters (such as the number of clustering itera-
tions) may improve its performance in these tests, these
results are meant to represent the “out-of-the-box” perfor-
mance of each method. Altogether, these results demonstrate
that NoFold can reliably detect structure motifs in the

TABLE 1. Clustering sensitivity of NoFold and GraphClust for three test conditions on the Rfam benchmark data set

Family Rfam ID # Seqs Avg % ID Avg Len ± SD (nt)

Plain sequences
Embedded
sequences

Plain seqs with
background

NoFold GraphClust NoFold GraphClust NoFold GraphClust

5S_rRNA RF00001 100 49% 116 ± 5.2 1.00 1.00 0.20 1.00 1.00 0.99
5_8S_rRNA RF00002 22 54% 149 ± 14.7 0.91 0.95 0.86 0 0.86 0.95
U1 RF00003 20 48% 162 ± 5.3 0 0 0 0 0 0
U2 RF00004 70 47% 188 ± 14.4 1.00 1.00 1.00 1.00 1.00 1.00
tRNA RF00005 100 40% 73 ± 5.2 0.92 0.91 0.72 0 0.91 0.90
Vault RF00006 52 50% 101 ± 13.5 0.96 0.94 0.50 0.94 0.94 0.96
U12 RF00007 27 46% 165 ± 21.5 1.00 1.00 1.00 0.85 0.89 1.00
Hammerhead_3 RF00008 13 45% 55 ± 9.3 0.85 0 0 0 0.85 0.92
RNaseP_nuc RF00009 68 32% 303 ± 43.3 0.74 0.62 0.49 0.54 0.50 0.60
RNaseP_bact_a RF00010 100 49% 360 ± 25.8 1.00 1.00 1.00 1.00 1.00 1.00
RNaseP_bact_b RF00011 41 53% 357 ± 26.3 0 1.00 1.00 1.00 1.00 1.00
U3 RF00012 38 41% 204 ± 30.8 0.92 0.92 0.87 0.95 0.82 0
6S RF00013 86 38% 181 ± 11.6 0.98 0.90 0.77 0.60 0.79 0.99
U4 RF00015 61 45% 145 ± 21.1 0.97 0.95 0.66 0.95 0.97 0.95
SNORD14 RF00016 7 44% 110 ± 13.9 0 0 0 0 0 0
Metazoa_SRP RF00017 17 45% 290 ± 33.3 0.94 0.94 0.94 1.00 0.94 0.94
CsrB RF00018 7 53% 340 ± 18.0 1.00 0 1.00 0 1.00 0
Y_RNA RF00019 24 47% 97 ± 10.5 1.00 1.00 0.96 1.00 1.00 1.00
U5 RF00020 82 44% 117 ± 7.2 1.00 0.99 1.00 1.00 1.00 0.99
Histone3 RF00032 43 45% 46 ± 0.4 0.86 0.65 0.26 0 0.79 0.91
Background – 3000 25% 215 ± 102.0 – – – – 0 0
Avg sensitivity 0.80 0.74 0.66 0.59 0.81 0.76
Avg precision 0.98 0.99 0.99 0.98 0.99 0.98

Bold values highlight the best performance for each family within each test condition.

FIGURE 4. Distribution of the number of separate clusters assigned to
each Rfam family for a given test. Clusters were assigned to a family only
if it was the dominant family within that cluster. The observations for all
20 families across all three tests are displayed. Most families were as-
signed to only one cluster per test, and the maximum number of clusters
per family in any test was three.
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complete absence of sequence conservation or homology
with the feature space.
Finally, we performed clustering on the entire Rfam data-

base using a setup similar to a cross-validation analysis.
Specifically, we grouped all 1973 Rfam families into 10 sub-
sets such that similar families were put into the same subset.
This grouping was done by hierarchically clustering the CMs
based on their scores against random sequences and then cut-
ting the dendrogram to create exactly 10 clusters. The CMs in
each cluster then determined which families were grouped
together for the analysis (see “Rfam benchmark tests” in
Materials and Methods). For each subset, we extracted up
to 15 sequences per family such that no pairwise sequence
identity exceeded 75%. We removed any families with <3 se-
quences, resulting in a total of 937 families (6085 sequences)
included across all subsets. We ran each subset separately
through NoFold, removing any CMs from the feature space
that had an average Z-score >3 for any family, as described
previously. GraphClust was run for 25 iterations (10 clus-
ters/iteration) on each subset. The average family sensitivity
across the 10 subsets was 0.57 for NoFold and 0.55 for
GraphClust (0.51 and 0.55, respectively, when averaging
directly across the families rather than the subsets). The lower
sensitivity of both methods in this test reflects the inherent
difficulty of this test compared with the 20-family test, as it
requires the methods to separate many more families simul-
taneously, and each subset may contain several related fami-
lies with similar structure. In addition, the performance of
NoFold was likely impacted by the need to remove large por-
tions of the feature space for each subset. The specificity of
both methods remained high at 0.99. Full results of this anal-
ysis are available on our supplementary website.

Application of NoFold to novel motif discovery

An important process in neurons is the localization of specific
transcripts to the dendrites, which allows for local translation
and spatially restricted synaptic remodeling (Job and Eber-
wine 2001; Sutton and Schuman 2006; Bramham and Wells
2007). Targeting of transcripts to the dendrites is thought to

be mediated primarily by RNA-binding
proteins, which recognize cis-elements
on the transcripts called dendritic target-
ing elements (DTEs). Under the assump-
tion that some DTEs may be motifs that
appear across multiple different tran-
scripts, it should be possible to identify
these motifs computationally. However,
despite much work over the last 25 yr
to pinpoint such motifs, only a few have
so far been found (Eberwine et al. 2002;
Holt and Schuman 2013). Given that al-
most all previous searches for DTEs have
focused on primary sequence motifs, we

asked whether it might instead be secondary structures that
provide the common recognition element between tran-
scripts. We decided to apply NoFold to a data set of known
dendritically localized transcripts from rat to see if we could
identify any structural motifs enriched in these sequences,
which might explain their localization.
To aid in the functional interpretation of novel motifs, we

added several types of automatic annotations to NoFold.
First, as we had already scored each sequence against all
Rfam CMs in the first step of NoFold, we made use of this
rich source of information in order to annotate each cluster
with the Rfam families it most resembles. To do this, we cal-
culated the average Z-score of the sequences in the novel clus-
ter for each CM and reported the 10 CMs with the highest
average Z-score. As mentioned previously, the parameters
for calculating the Z-scores were derived from an indepen-
dent sampling of transcript sequences, so a high Z-score
(>3) for a CM indicates that a sequence scored unusually
well against that CM compared with the general transcrip-
tome. Averaging Z-scores across a whole cluster tends to
highlight the CMs that scored highly for multiple sequences
in the cluster, suggesting a structural resemblance to the fam-
ily modeled by these CMs. Although a high Z-score does not
necessarily indicate functional homology, we have found it to
be a useful first-pass annotation to guide deeper analysis. For
additional annotation, we also created a multiple alignment
and predicted a consensus structure for each final cluster us-
ing LocARNA. Using this alignment, we ran RNAz (Washietl
et al. 2005) with default parameters to obtain several statistics
such as the structure conservation index (SCI). We note,
however, that these statistics should be interpreted with cau-
tion because RNAz was trained on different window sizes and
different types of alignments. Finally, we automatically
trained a new CM for each final cluster which can be used
in the future to search additional databases for instances of
the motifs.
As a first step toward identifying structural DTEs, we com-

piled a list of 211 transcripts with experimental evidence for
dendritic localization in rat neurons. From each transcript,
we obtained from RefSeq (rn4) the 3′ UTR sequence as
well as the sequence of any cytoplasmically retained introns

TABLE 2. Clustering sensitivity and precision of NoFold and GraphClust for the synthetic
structure benchmark

Family
#

Seqs
Avg %
ID

Length
(nt)

NoFold GraphClust

Sensitivity Precision Sensitivity Precision

1-Hairpin
structure

50 25% 71 0.70 0.80 1.00 0.39

2-Hairpin
structure

50 25% 71 0.88 0.79 1.00 0.67

3-Hairpin
structure

50 25% 71 0.58 0.85 0 –

Average 0.72 0.81 0.67 0.53
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(Khaladkar et al. 2013), which have previously been shown to
harbor DTEs (Buckley et al. 2011). To focus our search on
smaller structure elements, we used a sliding window ap-
proach to split each 3′ UTR and intron sequence into several
smaller segments. We have validated that the use of a sliding
window still allows for good sensitivity of motif detection (see
supplementary website). We created 50- and 150-nt sliding
window sets for the retained intron and 3′ UTR sequences
of the dendritically localized transcripts and searched these
regions for motifs using NoFold (Table 3). NoFold identified
a total of 290 clusters (“motifs”) that contained three or more
sequences. To test whether these motifs were enriched within
dendritic transcripts, we created a background data sets con-
sisting of introns or 3′ UTRs (RefSeq, rn4) from nondendriti-
cally localized transcripts and scanned this set for matches to
the NoFold motifs (see “Dendritic localization data set” in
Materials and Methods). This was done using the cluster-
CM for eachmotif in conjunction with the cmsearch program
(Nawrocki et al. 2009). We compared the number of motif
matches between the dendritic sequences and nondendritic
sequences and found a total of 213 of the motifs were signifi-
cantly enriched in the dendritic transcripts (Fisher’s exact
test, FDR-adjusted P < 0.05).

Previously, Buckley et al. (2011) found that a ∼74-nt hair-
pin structure within the retained introns of several dendritic
transcripts was sufficient to confer dendritic localization in
rat hippocampal neurons. These structures were instances
of the ID element, a type of rodent SINE retrotransposon el-
ement that likely arose from the dendritically localized BC1
gene (Kim et al. 1994). We asked whether the ID element
structure was among the motifs found by NoFold in our in-
tron sequences. We found two motifs in the 50-nt set (M28
andM51) and one motif in the 150-nt set (M3) that had high
sequence identity with the ID element, all of which were sig-
nificantly enriched in the dendritic introns (Fisher’s exact
test, FDR-adjusted P < 0.05). M3 was additionally predicted
to form a highly similar structure to the ID hairpin (Fig.
5A). This cluster contained sequences overlapping 10 of the

12 BLAST hits for the ID element within
the intron sequences (see “Dendritic lo-
calization data set” in Materials and
Methods), and additionally contained
one extra instance of the ID element not
found by BLAST. Although this extra se-
quence had low sequence identity with
the ID hairpin sequence (59%), it was
structurally conserved (SCI = 0.83) and
was predicted to form a similar hairpin
structure. Using the top 10 CM list anno-
tationgeneratedbyNoFold,we found that
the tRNA CM was the top CM for M3 by
average Z-score (Z = 4.87), which is not
surprising given that the ID element and
BC1 RNA are evolutionarily related to al-
anine tRNA. We note that despite this

similarity, scanning the full-length intron sequences with the
tRNACMusing the traditional Rfam cmsearch only identified
four instances of the ID element, highlighting the improved
sensitivity thatNoFoldprovides formotifs that arenot directly
modeled in Rfam.
In addition to the ID element, we also identified several

motifs with similarity to known localization elements from
Drosophila. Most strikingly, we found that 37 motifs were an-
notated as having the K10 transport/localization element CM
(K10_TLS; RF00207) among their top 10 best CMs, with five
of these motifs having an average Z-score >5 and 28 having

TABLE 3. Summary of motifs identified in dendritic localization data sets

Data set
#

Seqs
Window

size #Windows

# Motifs

≥3
seqa

≥5
seqa

≥10
seqa Enrichedb

SCI
>0.5

Dendritic
transcripts:
retained
introns

199 50 nt 1839 89 13 2 73 33
150 nt 727 7 7 2 4 0

Dendritic
transcripts:
3′ UTRs

143 50 nt 3454 186 24 0 126 87
150 nt 1127 12 1 0 10 4

a≥3 seq, ≥5 seq, and ≥10 seq indicate the number motifs found in at least 3, 5, and 10 dif-
ferent sequence windows, respectively.
bEnriched motifs had P < 0.05 after FDR correction.

A B

C

FIGURE 5. Consensus structures of motifs that are enriched in den-
dritically localized transcripts. (A) A motif (M3) found within dendritic
introns with high sequence and structure similarity to the ID element
hairpin (inset). (B) Two motifs (M39 and M103) with high average Z-
scores for the K10 localization element (K10_TLS, inset) (M39, Z =
5.80; M103, Z = 5.47). Although sequence homology with K10_TLS
was low, these motifs share the high AU content characteristic of
K10_TLS. (C) Two examples of potentially novel structure motifs
(M158, M172) found in dendritic 3′ UTRs.
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a Z-score >3 for this CM. The K10_TLS is a 44-nt hairpin
structure that mediates localization of the fs(1)K10 mRNA
during Drosophila oocyte development (Serano and Cohen
1995). The majority of our K10_TLS-like motifs were pre-
dicted to have a stem–loop consensus structure enriched
with AU base pairs (72% AU-content on average), similar
to K10_TLS (Fig. 5B), although primary sequence identity
was low. Overall, these 37 clusters encompassed a total of
60 unique genes, which is 28% of the total genes in the
data sets, and 28 of the clusters were significantly enriched
in dendritic transcripts (Fisher’s exact test, FDR-adjusted P
< 0.05). We also found nine motifs with another Drosophila
localization structure, the Wingless localization element 3
(WLE3; RF01046), within their top 10 CMs, although only
one had an average Z > 3. To our knowledge, a role for these
motifs has not yet been described in mammals. Additionally,
we identified several potentially novel motifs with stable and
conserved structure, such as hairpin motif M172, which is
found in six dendritic transcripts, and double-hairpin motif
M158, which is found in four transcripts (Fig. 5C). Full
data on all identified motifs are available on our supplemen-
tary website. Altogether, these results suggest that NoFold is
useful as a first-pass high-throughput screen to identify the
locations of recurring structural motifs in a data set, which
can then be used to prioritize sequences for lower-through-
put experimental analyses.

DISCUSSION

We have described here a novel approach for clustering RNA
secondary structures that uses comparison to empirical mod-
els to map RNA sequences to a structural feature space (the
RESS). By scoring primary RNA sequences across a large
number of Rfam CMs and treating the scores as geometric
coordinates, the RESS allows interpolation and extrapolation
across existing models to identify novel combinations of
structural features modeled by the original Rfam CMs. We
find that sequences from the same structure family tend to
cluster within the RESS and that these clusters can be extract-
ed from unrelated sequences using unsupervised methods
with very high sensitivity and precision. We use our approach
to identify 213motifs enriched in dendritically localized tran-
scripts in rat. We hypothesize that some of these motifs may
play a functionally important role in dendritic localization
given their enrichment within dendritic transcripts and, for
several motifs, high scores for CMs related to localization.
Within the dendritic RNAs we identified a large number of

clusters that scored highly against the K10_TLS CM. It is un-
clear whether these clusters represent distinct structure fam-
ilies or are subgroups of one larger structure family that
might include K10_TLS. Early studies of the K10_TLS indi-
cated that the size and shape of the structure were most im-
portant for localization and that most nucleotides in the stem
and loop regions can be changed as long as they do not dis-
rupt base-pairing (Serano and Cohen 1995). More recently, a

tertiary structure analysis of K10_TLS by NMR spectroscopy
revealed that extensive purine stacking within the AU-rich
stem region causes K10_TLS to take on an A′-form helix
conformation with a widened major groove, and that this ge-
ometry is important for localization (Bullock et al. 2010).
Although tertiary features such as this are not directly mod-
eled by CMs and therefore may not be captured by our meth-
od, it is possible that the high AU content found in most of
our K10_TLS-like motifs could allow them take on an A′-
form helix and therefore be localized by a similar mechanism.
As these results are still preliminary, additional experiments
will be needed to verify these motifs and identify which pro-
teins recognize them.
Beyond the experimental data set considered here, there

are many possible applications of NoFold. For example, to
identify structures bound by a particular RNA-binding pro-
tein, one could analyze sequences that are known to be bound
by that protein to see if any common motifs emerge. A sim-
ilar tactic could be applied to find motifs involved in splicing,
RNA stability, and translational efficiency. On our supple-
mentary website, we provide the initial results of an analysis
of structures involved in noncanonical translation initiation
as an additional example. The RESS itself could also be
used directly as a feature space for supervised classification
of RNAs, e.g., classification of unannotated noncoding
RNAs into broad functional categories, as has been attempted
using other types of features (Leung et al. 2013).
We note that because the scoring process scales linearly

with increasing data set size, this approach is feasible for
data sets up to several thousand sequences. Specifically, on
one CPU core, a single 50 nt sequence was scored in an aver-
age of 0.012 sec per CM, or ∼24 sec for the entire Rfam CM
set. As the scaling for increasing sequence lengths is qua-
dratic, we generally recommend using sequences or sliding
windows of <300 nt. We have implemented an option to par-
allelize the scoring process and several of the downstream
steps of NoFold, which can greatly decrease runtime when
the appropriate hardware is available. Runtime for the down-
stream steps of the NoFold process generally depended on the
number of clusters that passed the thresholds, but usually
took substantially less time than scoring. Although the overall
runtime of GraphClust was generally shorter than NoFold on
a single core (3 min for GraphClust versus 39 min for NoFold
on a 100-sequence data set), NoFold was sped up consider-
ably when parallelized (4.2 min on 16 cores for the same
data set). In contrast, we observed that GraphClust did not
always make use of all available cores (2.2 min on 16 cores
for the same data set). This appears to be dependent on the
number of clusters that were actually found.
An important limitation of our approach can arise from

the use of empirical models to construct the feature space.
An ideal set of empirical models should comprise all of the
major structures of RNA such that any RNA structure can
be placed “inside” the coordinates. By using all available
models, we hoped to create such a feature space, but we do
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not have any guarantee. Another remaining limitation of our
method is the detection of structures embedded in larger se-
quences. Here we used a sliding window to segment larger se-
quences to aid in detecting such structures, at the expense of
some sensitivity. More sophisticated methods that might
optimize for subsequence structures will yield improvements
in this area. The development of alternate methods for
segmenting large sequences will likely continue to improve
the sensitivity of NoFold and other existing motif finders.
Another avenue for improvement is in cluster delineation.
Here we developed several data-driven criteria for cluster
identification, but many other machine learning approaches
may be applied to the basic concept of RESS.

An interesting future consideration will be the tailoring of
different collections of empirical models to suit specific ap-
plications. Although here we used the entire set of Rfam
v.10.1 CMs to define our feature space, different utility might
be found using different subsets of CMs (or other models).
As discussed in the Introduction and Results, the coordinate
space established by the RESS using the CMsmay be seen as a
set of canonical models against which novel sequences are
compared with assess their interrelationships. We hypothe-
size that if the models are at large scale (e.g., a sparse set of
very different secondary structures), this is akin to having
very coarse-grained models and such a subset of models
(i.e., CMs) may be useful for large-scale structure discrimi-
nation but not for fine-scaled differences. Alternatively, we
hypothesize that a set of closely related CMs may help dis-
criminate fine-scaled differences. Thus, future work may en-
tail using different subsets of CMs and resulting RESS
coordinates for different subgroups of structures.

MATERIALS AND METHODS

Data and software

NoFold is available on our supplementary website (kim.bio.upenn
.edu/software/nofold.shtml). Full clustering results and input data
sets used in this study are also available on the site.

Scoring of RNA sequences

Sequences were scored against each of the 1973 Rfam CMs (v.10.1)
using the cmscoremodule of Infernal (v.1.0.2) with options “–search
–a” (Nawrocki et al. 2009).

Normalization of feature space

To obtain normalization parameters, a data set was generated by ex-
tracting sequences of varying length from random locations within
transcripts sampled from the whole mouse (UCSC, mm9) and hu-
man (RefSeq, hg19) transcriptomes. Any exactly identical sequences
were removed.We included 50 sequences of each length in the range
of 10–500 nt in the data set, for a total of 24,550 sequences. We used
this data set to obtain the parameters for normalization and stand-
ardization of the feature space that were used for all other data sets.

First, for each CM, we estimated the mean and standard deviation of
scores obtained by sequences of each length. We used these param-
eters to Z-score sequences in a length- and CM-dependent manner,
as described in the text. Next, after normalizing the scores of the
24,550 sequences in this manner, we performed PCA (using prcomp
in R) on the data set to obtain a set of independent axes. We retained
only the axes with an eigenvalue >1.0 (Kaiser criterion), which
yielded 124 axes. We rounded this down to the top 100 axes and re-
corded the loadings for these axes to use for future data sets. Finally,
we recorded a set of parameters to re-standardize the 100 PC axes.
All subsequent data sets were mapped to this normalized feature
space (the RESS) using the parameters estimated here.

Synthetic structures

We designed the following synthetic structures, which we show be-
low in dot-bracket notation (where matching parentheses represent
paired bases and periods represent unpaired bases):

1-hp: (((((((((((((((((((((((((((((((((.....)))))))))))))))))))))))))))))))))
2-hp: (((((((((((((((((((((((.....)))))))))))))((((((((....))))))))))))))))))
3-hp: (((((((((((((((((((....)))))(((((.....)))))(((((....)))))))))))))))))))

Two-dimensional representations of these structures are also
shown in Figure 2A. We randomly generated 50 sequences for
each structure by generating complementary base pairs simultane-
ously (but randomly) as defined in the dot-bracket string. This en-
sured that each sequence had at least the potential to form the exact
intended structure. Only Watson–Crick base pairs (A–U and G–C)
were used. G–U wobble pairs were not used for simplicity. We did
not require that the MFE structure be equivalent to the intended
structure, although we note that the majority of the sequences did
form the intended structure when folded by RNAFold.

To test distance measures, we generated all possible pairs of se-
quences from the same structure, different structures, or random se-
quences (which may or may not have stable structure). For each
pair of sequences, we measured their percent sequence identity
and their Spearman distance within the RESS, where Spearman dis-
tance is defined as one minus the Spearman correlation of the coor-
dinates of the two sequences in the RESS. The random sequences
were generated to have the same average dinucleotide frequency as
the structural sequences but had no particular structure. Average
dinucleotide frequency was matched by generating sequences ac-
cording to a first-order Markov process where the transition prob-
ability between each pair of nucleotides was estimated from the
sequences of the original data set.

NoFold structure clustering pipeline

A procedure to delineate robust RNA sequence clusters in the struc-
tural feature space was implemented as follows. Scored sequences
were clustered by hierarchical clustering (average linkage using
Spearman distance) using the fastcluster package (Müllner 2011)
in R. Using a procedure similar to that described in Khaladkar
et al. (2008), the resulting dendrogram was cut into all possible clus-
ters of size three or greater and the average pairwise Spearman dis-
tance between cluster members was calculated for each cluster
(cluster “diameter”); then any clusters with a diameter larger than
an empirically derived threshold were removed (see Threshold
Determination, below). As cutting the dendrogram into all possible
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clusters results in many clusters that contain almost the same se-
quences, we implemented two filters for choosing nonoverlapping
clusters: a “sensitive” filter (optimized for picking larger clusters)
and a “specific” filter (optimized for picking tighter clusters). In
the sensitive filter, clusters are first ranked by their size (large to
small) and then by their diameter (small to large). Clusters were
then chosen in a greedy manner from first to last, throwing out
any clusters that overlap with a previously chosen cluster. In the spe-
cific filter, clusters with three or more members were simply ranked
by diameter (small to large) and then chosen greedily as previously.
We tested these two filters using sequences from the BRAliBase II
benchmark data set (Gardner et al. 2005) and found that the specific
filter produced fewer false positives but sometimes missed positive
examples. To improve the sensitivity of this mode without sacrific-
ing specificity, we implemented an additional cluster-expansion
step, where a new CM was trained for each cluster (“cluster-CM”)
based on the multiple alignment of the cluster sequences by
LocARNA. These cluster-CMs were then used to pick up additional
matches to the structure within the original sequence database using
the cmsearchmodule of Infernal with options “–toponly –glocal.” A
sequence was counted as a hit for a given cluster-CM if it obtained a
bitscore of at least log2(size of search database), or in the case of the
dendritic and noncanonical translation data sets, a bitscore of at least
10. If any two expanded clusters overlapped by >50%, they were
merged into one cluster. After cluster expansion and merging,
each cluster was automatically annotated in several ways to help
give insight into potential functions, as described in the text.
RNAz was run using default parameters.

Threshold determination

An empirical threshold for filtering clusters based on diameter (av-
erage pairwise Spearman distance) was calculated based on the dis-
tribution of cluster diameters that result from clustering random,
unrelated sequences. As the expected cluster diameter is dependent
on the total number of sequences in the data set being clustered, we
separately calculated this threshold for different database sizes (usu-
ally rounding the database size to the nearest 100). For a given data
set size, we also calculated a separate threshold for each cluster size
(where size refers to the number of cluster members), as clusters
with more members tend to have larger diameters.
We created a data set of 10,000 random 50 nt sequences with the

same average dinucleotide frequency as the mouse and human tran-
scriptomes using a first-order Markov model as described in the
“Synthetic Structures.” As these sequences were randomly generat-
ed, we do not expect them to share substantial structure. Sequences
were scored and mapped to the RESS. To obtain the distribution of
cluster diameters for a given data set size, we used the following pro-
cedure: (1) A subset of the 10,000 sequences was picked at random
to create a data set of the desired size; (2) the subset was hierarchi-
cally clustered using Spearman distances and average linkage and all
possible clusters were extracted from the resulting dendrogram; (3)
the diameter of each cluster was calculated and recorded in separate
lists based on the number of sequences in the cluster; (4) steps 1–3
were repeated enough times to obtain >10,000 observations of clus-
ters of size three (this required more iterations for small data sets
and fewer for large data sets). The result of this procedure was a dis-
tribution of cluster diameters for each size cluster. A “high-confi-
dence” threshold for each cluster size was then defined as the

distance at which 99% of the clusters of that size had a larger diam-
eter than the threshold, and a “good-confidence” threshold was set
at the 95%mark. At these thresholds, we would expect∼1% and 5%
of structurally unrelated clusters to pass the thresholds, respectively.
The 95% threshold was used for choosing clusters in all analyses de-
scribed here.

Rfam benchmark tests

RNA sequences were taken from the Rfam.seed file available on the
Rfam FTP (v.10.1). This file contains sequences from the seed align-
ments of 1973 Rfam families. We extracted the sequences for the
first 20 Rfam families (RF00001-RF00020) and filtered each family
so that no pair of sequences had >75% sequence identity. Sequence
identity was calculated using the alignments specified in the Rfam.
seed file, which is a multiple alignment of the whole family.
Insertion characters (e.g., “.”) were therefore ignored if they were
present in both sequences being compared. After the sequence iden-
tity filtering, all remaining sequences in the family were used as part
of the benchmark, up to a maximum of 100 sequences per family.
Family RF00014 (DsrA) had only one sequence left after filtering
(of the original five) and was therefore replaced by RF00032
(Histone3), which was chosen because it is often used in the litera-
ture as a structure analysis benchmark family and is a particularly
small structure. Altogether, this yielded a data set of 978 sequences.
All information about alignment was removed, including all nonnu-
cleotide characters. We referred to this data set as the “plain se-
quences.” We additionally generated an “embedded sequence”
data set and a “plain sequences with background” data set. The em-
bedded data set was created by adding 10–50 nt (amount randomly
chosen) of additional flanking sequence to both the 5′- and 3′-ends
of each sequence in the plain data set. The flanking sequence was
matched to the average mono-nucleotide frequency of the plain se-
quence data set. The background-containing data set consisted of
the plain data set with an additional 3000 random sequences mixed
in, such that the random sequences outnumbered the Rfam se-
quences ∼3:1. These sequences were generated to have the same av-
erage dinucleotide frequency as the plain data set to ensure that
dinucleotide frequency alone was not sufficient to cause clustering
of random sequences. Matching of the average dinucleotide fre-
quency was performed using a first-order Markov process, as de-
scribed in the “Synthetic structures.”
After scoring but before clustering, we examined the sequences of

each family for particularly high scores against the feature space
CMs. We identified all CMs that had an average Z-score >3 (as cal-
culated using the Z-score parameters described in the “Normaliza-
tion of feature space”) and removed these CMs from the RESS. This
also required us to reestimate the RESS PCA projection without
these CMs. The full list of CMs that were removed is as follows:
5S_rRNA, 5_8S_rRNA, U1, U2, tRNA, tRNA-Sec, Tymo_tRNA-
like, mascRNA-menRNA, tmRNA, Vault, U12, Bacteria_large_SRP,
Hammerhead_1, Hammerhead_3, RNaseP_nuc, RNase_MRP,
RNaseP_arch, RNaseP_bact_a, RNaseP_bact_b, ACEA_U3, Fun-
gi_U3, Plant_U3, U3, 6S, U4, U4atac, SNORD14, SNORD53_S-
NORD92, Archaea_SRP, Bacteria_small_SRP, DdR20, Fungi_SRP,
Metazoa_SRP, Plant_SRP, Protozoa_SRP, CsrB, CsrC, PrrB_RsmZ,
RsmY, mir-299, Y_RNA, ceN72-3, U5, Histone3. Linear discrimi-
nant analysis was performed using the MASS package in R, and
the top loaded CM for each axis was examined manually. A list of
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the loadings obtained in this analysis is available on the supplemen-
tary website.

NoFold and GraphClust were run on each of the three data sets
using default parameters, with the exception that sliding window
generation was turned off for GraphClust to make the results
more easily compared. It is possible that the use of a sliding window
with both approaches could improve performance. Although
GraphClust has many parameters that could potentially be tuned
to produce better results, we felt that the default parameters were
reasonable for the purposes of this test. In particular, the default
specifies that GraphClust will be run for two iterations and find
up to 10 clusters per iteration, which is theoretically sufficient to
identify the 20 expected clusters in this particular data set. Our re-
sults should be interpreted as how each method performs “out-of-
the-box,”without tuning of parameters or use of a priori knowledge
of the size or number of motifs.

Rfam families were grouped for the cross-validation analysis by
clustering all of the 1973 CMs based on their scores against a large
set of random transcripts (same data set as described in “Normali-
zation of feature space” previously). Hierarchical clustering using
Spearman distance and Ward linkage was used. The dendrogram
was cut at a height such that exactly 10 clusters were created by
the cut. The CMs in each cluster then determined which families
were grouped together for the analysis. The reason for clustering
the families in this way was to reduce the number of CM features
that had to be removed for each analysis. GraphClust was set to
run for 25 iterations (10 clusters per iteration) for this analysis to en-
sure enough clusters could be detected in each subset. NoFold was
run using default parameters.

Dendritic localization data set

Dendritic transcripts in rat hippocampal neurons were identified by
in situ hybridization and soma-/dendrite-specific microarrays (C
Francis and J Kim, unpubl.). A transcript was called “dendritically
localized” if it had high expression in the dendrites relative to the
soma in either the in situ or microarray analysis, yielding 182 den-
dritically localized transcripts. An additional 29 known dendritically
localized transcripts in rodents were obtained from Subramanian
et al. (2011). Sequences from the 3′ UTR of these transcripts were
obtained from RefSeq annotations (rn4) using the UCSC genome
browser. If more than one 3′ UTR was available for a given gene,
only the longest sequence was used. Cytoplasmically retained intron
sequence was identified in rat using RNA-seq (Khaladkar et al. 2013)
and those belonging to a dendritically localized transcript were used
for the data set. These sequences consisted only of the regions of the
intron that were supported by reads, as described in Khaladkar et al.
(2013). As intron and 3′ UTR sequences are long and may contain
multiple structures, we generated sliding window data sets for each
using a 50-nt window with a 35-nt slide or a 150-nt window with a
105-nt slide. Instances of the ID element within the intron data set
were identified by a BLASTN search of the full length retained intron
sequences using the default parameters on the BLAST website
(Altschul et al. 1990).

As a background data set, we identified a set of nondendritically
targeted transcripts based on their very low expression in dendrites
relative to the soma from the microarray analysis. Introns and 3′

UTR sequences were extracted for a random subset of the top
1000 nondendritic transcripts and processed as above to create

background data sets of 10,000–30,000 windows for each analysis.
The GC content of the background data sets was 44%–48%, which
was similar to the test sequences (43%–45%GC). To test a motif for
enrichment within the dendritically localized set, we generated a
cluster-CM for each final motif using cmbuild (Nawrocki et al.
2009) and used this to search the background data set as well as
the original data set. The number of hits in each data set was used
in a one-sided Fisher’s exact test for enrichment of hits in the den-
dritic set, and Benjamini–Hochberg multiple testing correction was
applied using R.

Figure generation

Plots were generated in R (www.r-project.org) using the ggplot2
package (ggplot2.org). Structure depictions were created using
VARNA (Darty et al. 2009) based on consensus structure and se-
quence predictions from LocARNA.
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