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Abstract

Background: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete
sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are
segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form
patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-
understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in
establishing a functional retinal architecture.

Methodology/Principal Findings: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and
horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten
knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer.
The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of
their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials
were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while
Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals.
Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN
expression and activity were normal in the absence of Dscam.

Conclusions/Significance: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset
of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our
findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an
integral component of a novel cell positioning pathway in the retina.
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Introduction

Patterning of retinal neurons in the radial or vertical dimension

allows for the directional flow of visual information. Light first

stimulates photoreceptors in the outer nuclear layer (ONL), which

then signal through interneurons in the inner nuclear layer (INL);

the latter transform visual information and finally relay it to retinal

ganglion cells (RGCs) in the ganglion cell layer (GCL), which in

turn transmit visual information to the brain. A further refinement

of cellular spacing occurs along the tangential (horizontal) plane,

with cone photoreceptors, horizontal cells, amacrine cells and

RGCs forming non-random cellular arrays or mosaics that evenly

tile the retinal field [1]. The processes of retinal neurons also

arborize and synapse in precise patterns, sorting into specific

sublaminar compartments arranged vertically in the outer (OPL)

and inner (IPL) plexiform layers, while in the horizontal plane,
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retinal neurites disperse in regularly spaced arrays to provide

complete visual coverage [2]. Currently, the molecular mecha-

nisms that specifically direct individual types of retinal cells into

their proper laminar and mosaic positions, where they establish

subtype-specific arborization patterns, are not completely under-

stood.

Each retinal cell type follows distinct migratory routes to reach

its final destination. For instance, as retinal progenitor cells

differentiate into RGCs, they lose their apical processes and retain

their basal contact, which becomes the axon and helps to ‘‘pull’’

RGCs into their laminar position in the GCL [3,4]. In contrast,

amacrine cells lose both apical and basal attachments upon

differentiation, and this allows them to migrate more freely into

the INL and GCL, likely in response to environmental cues [1].

Globally, the vertical migration of retinal cells depends on the

extracellular matrix [5] and the proper establishment of apicobasal

cell polarity [1]. In contrast, the molecular regulation of cellular

positioning in the tangential plane is less well understood. At the

cellular level, retinal mosaics of each cell type develop cell-

autonomously, independently of those formed by other cell types

[6]. Minimal distance spacing rules are the primary determinant of

somal patterning in retinal cell mosaics [7]. However, the cellular

mechanisms that establish these minimal distances between

homotypic cells are cell type-specific, and can involve negative

feedback regulation of cell fate specification, tangential dispersion

and/or programmed cell death [8]. Similarly, the rules governing

the distribution of retinal cell dendrites in the tangential plane also

vary, depending upon the cell type in question [7]. One of the few

molecules known to regulate retinal cell spacing and neurite

arborization in the tangential plane is DSCAM, a homophilic cell

adhesion molecule of the immunoglobulin superfamily (IgSF).

DSCAM controls the spacing, as well as the neuritic arborization

patterns, of specific RGC and amacrine cell subtypes, disrupting

these cellular mosaics and leading to cell and neurite clustering [9–

13]. Interestingly, in the mammalian retina, DSCAM is thought to

control cell spacing and dendritic patterning by blocking

responsiveness to unknown adhesive signals, resulting in a ‘‘gain’’

of adhesiveness in Dscam mutant retinas that leads to the specific

clumping of amacrine and RGC somata and processes in ectopic

locales along the radial and tangential dimensions. Currently, the

identities of the adhesive signals that are blocked by DSCAM to

regulate radial/tangential dispersion are unknown. However,

several other cell adhesion molecules have been shown to pattern

the stratification of retinal cell neurites/processes in the vertical

axis of the IPL; these include the related IgSF molecules DscamL

and Sidekick1/2 [14], the atypical cadherin Fat3 [15], as well as

class 5 and 6 semaphorins and their plexin receptors [16].

Pten (phosphatase and tensin homolog) encodes a lipid and protein

phosphatase that negatively regulates phosphoinositide-3-kinase

(PI3K) signalling and controls cell growth and migration in

multiple tissues [17–21]. In the nervous system, Pten mutations

lead to neuronal hypertrophy and defects in cell migration,

dendrite arborization and myelination [17,18,22–26]. In the

retina, the ectopic activation of PI3K signaling results in defective

cell migration [27]. Similarly, a recent report has demonstrated

that the retina-specific deletion of Pten, which results in elevated

PI3K signalling, results in deficits in retinal cell differentiation and

migration and abnormal physiological responses of the mutant

retina to light [28]. Here we used a different retina-specific cre

driver, identifying several additional functions for Pten in retinal

development, while corroborating some of the previously reported

findings [28]. Specifically, we report that PTEN is preferentially

expressed in subpopulations of mosaically-patterned retinal cells,

all of which become hypertrophic in retina-specific Pten condi-

tional knock-outs (cKO). We also identify specific defects in

cellular patterning and neurite arborization in Pten mutant retinal

ganglion, horizontal and amacrine cells. These Pten mutant cellular

defects appear to result in abnormalities of visual processing, as

revealed by deficits in ERG recordings and optokinetic responses.

Finally, although the retinal phenotypes in Pten cKO and Dscam

KO show some similarities, we find that PTEN expression and

activity are not altered in Dscam mutants. Pten is thus a novel

component of the cellular growth, positioning and neurite

arborisation pathway(s) that operate within retinal cells that form

non-random cellular arrays or mosaics.

Results

Generation of retinal-specific Pten cKOs
We reasoned that the molecules involved in regulating cell type-

specific migration patterns in the retina would be expressed in

distinct sets of actively migrating, newly differentiated retinal cells.

By screening the expression profiles of several signal transduction

molecules in embryonic and early postnatal mouse retinas, we

revealed that several components of the PI3K signalling pathway –

including the PTEN phosphatase – were expressed in a restricted

manner in differentiating retinal neurons. From embryonic day (E)

12.5 to P0, PTEN protein was detected at low levels in the outer

neuroblastic layer (onbl), where proliferating progenitors reside,

and at higher levels in the developing INL and GCL (data not

shown). By postnatal day (P)7, when retinal differentiation is

complete except in the peripheral-most retina, PTEN expression

was detected in a subset of postmitotic retinal cells, including

Brn3b+ RGCs, calbindin+ horizontal cells, and Pax6+ amacrine

cells and RGCs (Figure 1A–C). In contrast, PTEN immunoreac-

tivity was low in Chx10+ bipolar cells and undetectable in

rhodopsin+ rod photoreceptors (Figure 1D,E). Furthermore, in the

plexiform layers, PTEN was co-localized in syntaxin+ amacrine

cell processes, SMI-32+ RGC dendrites, and calbindin+ horizontal

cell processes (Figure 1B; data not shown). During retinal

development, PTEN is thus preferentially expressed in the cell

bodies and processes of retinal neurons that form mosaics,

including RGCs, amacrine and horizontal cells.

Given that Pten regulates cell size, migration and neurite

arborization in several CNS domains [17,24–26], we predicted

that it may play a critical role in retinal development. To analyze

the requirement for Pten in the developing retina, we used a

conditional loss-of-function approach, taking advantage of a

retina-specific Cre transgene (Pax6 a-enhancer/P0 promoter::Cre-

IRES-GFP; hereafter named Pax6::cre) that promotes recombina-

tion in the peripheral retina beginning at E10.5, targeting

progenitors for all retinal cell types [29]. Pax6::cre transgenics

were crossed with mice carrying a Z/AP dual reporter (Figure 1F)

[30]. To confirm that cre-mediated excision occurred, a

histochemical stain for alkaline phosphatase (AP), which is

transcribed upon cre-mediated excision, was performed, and

shown to specifically label cells in the peripheral retina of Z/

AP;Pax6::cre transgenics at E12.5 and in P7 flatmounts

(Figure 1G,H). Conversely, b-galactosidase activity (marking

non-recombined cells) was more intense in the central retina

(Figure 1I). Pax6::cre mice were then crossed with animals carrying

a floxed Pten allele (floxed exons 4/5; designated Ptenfl; Figure 1J)

[18]. As expected from our reporter analyses, PTEN immunola-

beling was reduced, except in the central-most retina in P7 Ptenfl/fl;

Pax6::cre animals (hereafter designated Pten cKO; Figure 1L vs 1K);

this reduction was confirmed by Western blotting at P21

(Figure 1M).

Pten Function in the Retina
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Figure 1. PTEN retinal expression and generation of retinal-specific Pten cKO. (A–E) Co-labeling of P7 retina with PTEN (red) and Brn3b
(green, A), calbindin (green, B), Pax6 (green, C), Chx10 (green, D) and rhodopsin (green, E). Blue is DAPI counterstain. Insets to the right of each panel
are high magnification images of PTEN+ cells, showing co-expression in Brn3b+ RGCs (A), calbindin+ horizontal cells (B) and Pax6+ amacrine cells (C).
Insets in D show low levels of PTEN co-expression in Chx10+ bipolar cells, while PTEN protein was not detected in rhodopsin+ rod photoreceptors (E).
(F–I) Schematic illustration of crosses between transgenic animals carrying a Z/AP dual reporter and Pax6 a-cre/P0 promoter::Cre-IRES-GFP transgene
(hereafter designated Pax6::Cre) (F). Analysis of AP histochemical stain (i.e., recombined cells) in Pax6::Cre;Z/AP double transgenics at E12.5 (G) and in a
P7 retinal flatmount (H). b-galactosidase histochemical stain (i.e., non-recombined cells) in a P7 retinal flatmount (I). Inset in G is a high magnification
image of the eye, with the asterisk designating a lack of recombination in the central retina. (J) Schematic illustration of crosses between mice
carrying a floxed PTEN allele (PTENfl) and Pax6::Cre transgene. (K–M) Expression of PTEN in P7 Pten+/+ (K) and Pten cKO (L) retinal sections. Bracket in L
shows central retina where Pten is not deleted and expression is maintained. Insets in K and L show PTEN immunolabeling of retinal flatmounts,
confirming that PTEN expression is retained in the central retina in Pten CKOs. PTEN Western blot analysis and densitometry on P21 wild-type and
Pten heterozygous and homozygous cKO retinae (M). (N,O) Expression of pAktSer473 in P7 wild-type (N) and Pten cKO (O) retinae. Asterisks in O mark
aberrant aggregations of amacrine dendrites in the INL. (P,Q) Western blot analysis and densitometry of pAktSer473/Akt (P) and pS6Ser235/236/S6 (Q) in
P21 wild-type and Pten cKO retinal lysates. p values are denoted as follows: ,0.05 *, ,0.01 **, ,0.005 ***. gcl, ganglion cell layer; inl, inner nuclear
layer; ipl, inner plexiform layer; le, lens; on, optic nerve; onbl, outer neuroblast layer; onl, outer nuclear layer; opl, outer plexiform layer; re, retina. Scale
bars = 50 mm (A–E,N,O), 2 mm (G), 1 mm (H,I), 600 mm (K,L).
doi:10.1371/journal.pone.0032795.g001
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PTEN is a negative regulator of PI3K, which phosphorylates

and activates membrane inositol phospholipids. pAktSer473 is a

readout of active PI3K signalling, the phosphorylation of which is

reversed by the PTEN phosphatase. Accordingly, pAktSer473 levels

were elevated in the peripheral GCL, INL, IPL and OPL in P7

Pten cKO retinas (Figure 1O vs 1N), and the increase in pAktSer473

levels was confirmed by Western blotting of P21 retinal lysates

(Figure 1P). Furthermore, phosphorylation of S6 (pS6Ser235/236), a

downstream effector of mTOR signalling that is also regulated by

the PI3K pathway, was also increased (21-fold) in P21 Pten cKO

retinas (Figure 1Q). Thus, PI3K and mTOR signalling, which are

negatively regulated by PTEN, are strikingly upregulated as a

consequence of deleting Pten in the retina.

Pten is required to establish a normal retinal architecture
and regulate cell size

To determine whether Pten was globally required for retinal

morphogenesis, histological sections of adult wild-type and Pten

cKO retinas were analyzed. While the three cellular and two

plexiform layers were readily visible in both wild-type and Pten

mutant retinas (Figure 2A–D), several abnormalities were

apparent in Pten cKOs, including: 1) a striking increase in retinal

thickness; 2) a grossly expanded IPL populated by ectopic cells; 3)

an expanded, loosely packed INL in which nuclei appeared larger,

and 4) a thinner ONL. These results suggested that Pten may

influence several events during retinal development, including

cellular differentiation, cell migration, and neurite outgrowth and

arborization, each of which was then individually investigated.

Pten mutations are associated with cellular hypertrophy in

several tissues, largely because of the role that PTEN plays in

negatively regulating mTOR-p70S6K-S6 signalling, a key cell

growth pathway [18,22–24,31]. Given that pS6 levels were

elevated in Pten cKO retinas at P21 (Figure 1Q), we investigated

whether the loss of Pten resulted in an increase in retinal cell sizes

(Figure 2). We found that the cross-sectional areas of calbindin+

horizontal cell bodies in Pten cKO retinas were 1.5 times the area

of wild-type horizontal cells at P7 (Figure 2E–G; Table S1),

increasing to 2.1 times the normal area at P21 (Figure 2H–J; Table

S1). Furthermore, in P21 retinal flatmounts, the cross-sectional

areas of choline acetyltransferase-positive (ChAT+; 2.1-fold

increase; Figure 2K–M; Table S1) and tyrosine hydroxylase-

positive (TH+; 2.4-fold increase; Figure 2N–P; Table S1) amacrine

cell somata were significantly larger in Pten cKO retinas compared

to wild-type retinas, as were SMI-32+ RGCs (3.1 times normal;

Figure 2Q–S, Table S1).

Thus, the sizes of somata of the three retinal cell types that

express high levels of PTEN are increased in Pten cKOs, as

expected from the observed increase in mTOR signalling in these

mutant retinas.

Pten regulates the positioning of RGCs, amacrine and
horizontal cell bodies

A fundamental feature of the mature retina is that neuronal cell

bodies are positioned in discrete strata within a nuclear layer for a

given type of cell, and that cells of a given type are positioned at

regular intervals across that stratum, facilitating complete and

economical sampling of the visual field [32]. These two features of

a functional retinal architecture are produced during development

through the radial and tangential dispersion of newborn

neuroblasts [33]. Our histological analyses provided evidence for

aberrant radial migration in the absence of Pten function, as

ectopic cells were detected in the Pten cKO IPL (Figure 2B,D).

Furthermore, Pax6+ amacrine cells and Brn3a+ RGCs were

detected in the Pten cKO IPL, indicating that subsets of amacrine

cells and RGCs migrate aberrantly along the radial axis (Figure

S1).

To test whether Pten also regulates the tangential dispersion of

retinal cells, we assessed the mosaic distribution of horizontal and

amacrine cell subtypes in P21 retinal flatmounts. Anti-TH was

used to label dopaminergic amacrine cells. In wild-type retinae,

TH+ cell somata mosaics were dispersed in a patterned array

(Figure 3A) [34]. In contrast, in Pten cKO retinas, TH+ amacrine

cells appeared less regularly distributed (Figure 3B). To quantify

the regularity of the cellular spacing in these mosaics, we examined

their spatial properties using Voronoi domain and nearest

neighbor analyses. Voronoi domain analysis computes the

territory surrounding each cell that is closer to that cell than any

of the neighboring cells [35]. Visual analysis of these Voronoi

diagrams (Figure 3C,D) and of plots comparing the frequency of

domain areas (Figure 3C9,D9) revealed a greater variability in

domain sizes in Pten cKO retinae. To analyze this quantitatively,

the Voronoi domain regularity index was calculated for each

individual field (average domain area/standard deviation;

Figure 3G), with higher values indicative of more regular spacing.

As expected, TH+ regularity indices derived from this Voronoi

tessellation were significantly lower in Pten cKO retinae

(p,0.0001; Figure 3G, Table S2). Nearest neighbour analyses

revealed a comparable increase in the variability of this measure

(Figure 3E,F), as revealed by the skewed distribution of nearest

neighbour distances for the TH+ amacrine cells in Pten cKO retina

(Figure 3E9F9), resulting in a significant decrease in the nearest

neighbor regularity index (p,0.0001; Figure 3H).

We used similar analyses to examine the distribution of

calbindin+ horizontal cells in P21 wild-type and Pten cKO retinal

flatmounts (Figure 3I,J). By generating the Voronoi tessellation for

calbindin+ horizontal cells (Figure 3K,L), and by plotting domain

sizes (Figure 3K9,L9), it was apparent that calbindin+ domains

were more irregular in Pten cKO retinae. Accordingly, a significant

decrease in the Voronoi domain regularity index was observed in

Pten cKO retinae (p = 0.03; Figure 3O). In contrast, while there

was a trend towards more variable calbindin+ nearest neighbours

in Pten cKO retinae (Figure 3 N,N9,O,O9), this difference did not

reach statistical signficance (P.0.05; Figure 3P).

Pten thus plays a role in the establishment of the mosaic patterns

of dopaminergic amacrine cells and calbindin+ horizontal cells.

Amacrine cell and horizontal cell differentiation are
perturbed in Pten cKO retinae

There are several variables that may negatively influence the

regularity of TH+ amacrine cell and calbindin+ horizontal cell

mosaics in Pten cKO retinae, including alterations in retinal

surface area, cell density, cell death, cell dispersion and cell fate

specification [8]. To better understand the disruption of these

mosaics in Pten cKO, we examined these parameters in more

detail. We first measured the overall surface area of the P21 retina,

revealing that Pten cKO retinae were 1.4-fold larger than wild-type

controls (P,0.0001; Figure 4A–C). We then quantitated the

density of TH+ amacrine cells and calbindin+ horizontal cells, and

by multiplying this number by the retinal surface area, generated

an estimate of total numbers of these cells in individual retinas.

Strikingly, both TH+ amacrine cells (P,0.0001; Figure 4D) and

calbindin+ horizontal cells (P,0.0001; Figure 4E) were reduced in

number in Pten cKO retinas (Table S2). Taken together these data

suggested that the loss of Pten leads to retinal hypetrophy at the

tissue level, but suggest that this is not due to a global increase in

cell number; rather, certain populations of retinal cells are present

in lower numbers in Pten cKO retinas.

Pten Function in the Retina
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We next addressed the mechanisms that might account for the

reduction in retinal cell numbers in Pten cKO retinae. Apoptosis

has been implicated in controlling the tangential distribution of

dopaminergic amacrine cells [34], although it is thought to play a

lesser role in regulating the formation of horizontal cell mosaics

[7]. To visualize apoptotic cells, we monitored the expression of

activated caspase-3 (ac-3) in wild-type and Pten cKO retinae at

E15.5, P0 and P7. The number of ac-3+ cells was not noticeably

elevated in Pten cKO retinas at embryonic and postnatal stages

(Figure S2). While the small number of ac-3+ cells made it difficult

to make a definitive statement, we nevertheless speculated that it

may instead be that fewer amacrine and horizontal cells were born

in Pten cKO retinas during development, rather than these cells

undergoing excessive cell death after their birth. To test this, we

used birthdating experiments, examining amacrine cell differen-

tiation between E12.5 to E18.5, when most of these cells are born

[36]. Given the sparse nature of horizontal cells, similar studies

were not performed with this cell type. Bromodeoxyuridine (BrdU)

was injected into timed pregnant females at E12.5, E15.5 and

E18.5 and retinas were then harvested at P7. By using Pax6 as a

pan-amacrine cell marker and quantitating BrdU+Pax6+/total

BrdU+ cells, we were able to show that there was a significant

decrease in the number of amacrine cells born at E12.5 (P = 0.02;

Figure 4F–H), E15.5 (P = 0.04; Figure 4I–K) and E18.5

(P = 0.0007; data not shown) in Pten cKO retinas.

There is thus a reduction in amacrine cell differentiation in Pten

cKO retinas throughout the period of genesis of this cell type. These

fewer amacrine cells then become aberrantly distributed in the

larger retinal surface area that is characteristic of Pten cKO retinas.

Aberrant IPL sublaminar organization in Pten cKOs
Because it has been shown that irregularity of cell spacing can

influence neurite arborization patterns (and vice versa) [10], we

examined the distribution of amacrine cell and RGC processes in

the tangential plane of Pten cKO retinas. In TH-labeled retinal

flatmounts, ectopic fasciculation and bundling of TH+ processes

was observed in P21 Pten cKO retinas, a feature not present in the

wild-type retinas (Figure 5A,B). Similarly, the dendrites of

melanopsin+ ipRGCs were aberrantly bundled in P21 Pten cKO

retinal flatmounts (Figure 5C,D). Pten thus plays a role in uniformly

distributing the processes of these two cell types across the retinal

surface. In the absence of this phosphatase, RGC dendrites and

TH+ amacrine cell processes appear to show a preference for

adhering to like-type processes, thereby fasciculating abnormally.

The gross expansion of the IPL in Pten mutant retinas suggested

that patterns of neurite stratification along the radial axis might

also be perturbed. Across this dimension, the IPL is comprised of

columnar modules of amacrine cell processes, bipolar cell axons

and RGC dendrites, which arborize and synapse in discrete layers

in a stereotypic fashion. The IPL is subdivided into two broad ON

and OFF layers, in which the processes of neurons depolarize or

hyperpolarize, respectively, in response to light. Within those two

layers, the IPL is further subdivided into discrete strata containing

the processes of particular types of bipolar, amacrine and ganglion

cells. Pten plays a role in the establishment of this stratified

architecture of the IPL. A disorganized and expanded IPL was

observed as early as P7 in Pten cKOs, as revealed by the GFP

reporter from the Pax6::cre transgene, which was co-localized with

Pax6+ (in somata of amacrine cells and RGCs) and syntaxin (in

amacrine cell processes; Figure 5E–H). By P21, an increasingly

expanded and fractionated IPL was present in Pten cKOs, as

revealed by labelling with pAktSer473 (Figure 1N,O), syntaxin

(Figure 5I,J), and phalloidin (labels actin cytoskeleton; data not

shown), in all IPL strata. To assess IPL patterning in more detail,

sublamina-specific markers were used. Given the aberrant

fasciculation of melanopsin+ ipRGC dendrites in the tangential

plane, we first examined if these dendrites were similarly perturbed

in the radial axis. Melanopsin is expressed in dendrites of type 1

(monostratified, targeting stratum 1) and type 2 (highly branched,

targeting inner or proximal IPL) intrinsically photoreceptive

RGCs (ipRGCs), and this stratification pattern was normal in

Pten cKOs (Figure 5K,L). Similarly, the processes of TH+

amacrine cells, which were also more heavily fasciculated in the

tangential plane, properly targeted substratum 1 in Pten cKOs

(Figure 5M,N). This was in contrast to amacrine cell processes

labelled with calretinin and calbindin, which arborized in three

strata in the IPL; and ChAT, a marker for cholinergic starburst

amacrine cells, which arborized in OFF (layer 2) or ON (layer 4)

sublaminae; all of these arborization patterns were disrupted in

P21 Pten cKO retinas (Figure 5O–R; 2E,F). Finally, the normal

termination zone of rod bipolar cell terminals in sublamina 5, as

revealed by labelling for protein kinase C a (PKCa), was severely

perturbed in Pten cKO retinas, with axonal boutons not restricted

to sublamina 5 (Figure 5S,T).

IPL patterning was thus found to be strikingly perturbed in Pten

cKOs, with defects most evident for amacrine cell processes and

bipolar cells. Given that synaptic patterning depends on

appropriate patterns of dendritic growth and arborization, we

next used electron microscopy (EM) to look for evidence of bipolar

and amacrine cell synapses in regions of the Pten cKO IPL where

ectopic cells and aberrant PKC terminals were observed. Low-

magnification EM images confirmed the striking expansion of the

IPL and the loose packing of INL cells in adult Pten cKO retinas

compared to wild-type retinas (Figure 6A,B). In high-magnifica-

tion EM images, synapses were observed between amacrine and

bipolar cells that were ectopically located in the Pten cKO IPL

(Figure 6C–F). Moreover, the presence of synaptically-located

ribbons at aberrant contacts (Figure 6D) suggests that neurotrans-

mission may occur at these sites. Indeed, molecular constituents of

bipolar and amacrine cells, albeit somewhat disorganized, were

expressed in the IPL of P21 Pten cKO retinas. These included

VGLUT1 (Figure 6I,I9,J,J9), a pre-synaptic, vesicular glutamate

transporter that loads glutamate into a bipolar cell’s synaptic

vesicles; PKCa, which labels glutamatergic bipolar cell terminals

(Figure 6G,G9,H,H9); and syntaxin, which labels amacrine cell

presynaptic terminals (Figure 6G,G9,H,H9). Notably, co-localiza-

tion of PKCa and syntaxin was detected in ectopic sites in the Pten

cKO IPL (Figure 6G,G9,H,H9). Misplaced cells can therefore form

apparent synaptic contacts in Pten cKOs, although from their

structure alone, we could not be certain that they were functional.

Pten regulates physiological responses to light
The presence of an expanded and disorganized IPL and the loss

of spatial regularity of certain cellular populations suggested that

Figure 2. Abnormal retinal architecture and increased retinal cell sizes in Pten cKOs. (A–D) Low (A,B) and high (C,D) magnification images
of hematoxylin-eosin (H&E) stained sections of adult wild-type (A,C) and Pten cKO (B,D) retinae. (E–G) Calbindin labelling of P7 wild-type and Pten cKO
retinal sections (E,F) and area measurements of calbindin+ horizontal cells (G). (H–S) Labeling of retinal flatmounts from P21 wild-type and Pten cKOs
with calbindin (H,I), ChAT (K,L), TH (N,O), and SMI32 (Q,R). Calculation of cell areas for P21 calbindin+ horizontal cells (J), ChAT+ (M) and calbindin+ (P)
amacrine cells and SMI32+ RGCs (S). p values are denoted as follows: ,0.05 *, ,0.01 **, ,0.005 ***. Scale bars = 100 mm (A,B,N,O), 50 mm (C–L,Q,R).
doi:10.1371/journal.pone.0032795.g002
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Figure 3. Aberrant cellular mosaicism in Pten cKOs. (A–H) Immunolabeling of P21 wild-type (A) and Pten cKO (B) retinal flatmounts with TH.
Voronoi diagrams depicting the distribution of TH+ amacrine cells in P21 wild-type (C) and Pten cKO (D) retinae. Calculation of TH+ Voronoi domain
areas and their relative distributions in these two fields for P21 wild-type (C9) and Pten cKO (D9) retinae. Near neighbors of a TH+ reference cell in P21
wild-type (E) and Pten cKO (F) retinae, with the nearest neighbour indicated in red. Frequency distribution of nearest neighbor distances between TH+

amacrine cells in these two fields for P21 wild-type (E9) and Pten cKO (F9) retinae. Calculation of Voronoi domain (G) and Nearest Neighbor (H)
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Pten cKO retinae may not be able to respond appropriately to light

stimuli. To directly address retinal function, the physiological

activity of adult Pten cKO retinae was assessed by recording full

field ERGs. The photoreceptor (a-wave) and bipolar cell (b-wave)

responses (amplitudes and implicit times) to a stepwise series of

increasing strengths of flashes of light were similar in both wild-

type and Pten cKOs under scotopic and photopic adaptation

(Figure S3A–F; Table S3). The only significant interaction was a

reduction in b-wave amplitude in Pten cKOs when activity from

cone bipolar cell responses was isolated with a double flash

procedure under scotopic adaptation (Figure S3G; Table S3). To

investigate the dynamics of amacrine cell-dependent physiological

functions [37], we used the Morlet wavelet transformation to

simultaneously characterize three oscillatory potential (OP)

properties, which can be graphically represented on a scalogram,

with amplitude (grey scale, from low to high amplitude in black

and white, respectively) plotted relative to ERG frequency (y axis)

and latency (x axis) [37]. OPs, which are represented in ERG raw

traces and as scalograms (Figure 7A–C,G–I; Figure S4A–C), were

strikingly irregular in Pten cKO retinae. Quantitatively, while OP

amplitudes did not vary between groups, frequencies were

significantly reduced under scotopic and photopic adaptation in

Pten mutants compared to wild-type retinas (Figure 7E,K; Figure

S4E; Table S3). A significant interaction was also found in OP

amplitudes of Pten cKOs when cone-driven responses were isolated

with a double flash under scotopic adaptation (Figure 7J; Table

S3). Finally, OP latencies were also significantly prolonged under

scotopic adaptation in Pten mutant mice (Figure 7F; Table S3).

Taken together, these findings reveal abnormal physiological

responses in the retinas of Pten cKO mice, with light-dependent

phase-locking of amacrine cell firing being most severely affected, while

other ERG components (i.e., a- and b-waves) were largely spared.

regularity indices for TH+ amacrine cells in wild-type and Pten cKO retinae. (I–P) Immunolabeling of P21 wild-type (I) and Pten cKO (J) retinal
flatmounts with calbindin. Voronoi diagrams depicting the distribution of calbindin+ horizontal cells in P21 wild-type (K) and Pten cKO (L) retinae.
Calculation of TH+ Voronoi domain areas and their frequency distributions in P21 wild-type (K9) and Pten cKO (L9) retinae in these two fields. Near
neighbors of a calbindin+ reference cell in P21 wild-type (M) and Pten cKO (N) retinae, with the nearest neighbour indicated in red. Frequency
distribution of distances between TH+ amacrine cells in P21 wild-type (M9) and Pten cKO (N9) retinae in these two fields. Calculation of Voronoi
domain (O) and Nearest Neighbor (P) regularity indices for calbindin+ horizontal cells in wild-type and Pten cKO retinae. p values are denoted as
follows: ,0.05 *, ,0.01 **, ,0.005 ***. Scale bars = 600 mm (A,B), 100 mm (C,D).
doi:10.1371/journal.pone.0032795.g003

Figure 4. Alterations of retinal surface area and horizontal and amacrine cell numbers in Pten cKO retinas. (A–C) Flatmounts of P21
wild-type (A) and Pten cKO (B) retinas and calculation of their surface areas (C). (D,E) Quantitation of total numbers of TH+ amacrine cells (D) and
calbindin+ horizontal cells (E) in P21 wild-type and Pten cKO retinas. (F–L) Birthdating experiments, with BrdU injected at E12.5 (F–H), E14.5 (I–K) and
E18.5 (L) with retinas harvested at P7. Retinas were labeled with Pax6 (green), BrdU (red) and DAPI (blue in F,G,I, J). Quantitation of Pax6+BrdU+/total
BrdU+ cells is shown in H, K and L. p values are denoted as follows: ,0.05 *, ,0.01 **, ,0.005 ***. Scale bars = 1 mm (A,B), 50 mm (F,G,I,J).
doi:10.1371/journal.pone.0032795.g004
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Pten is required for vision-dependent behaviour
RGCs are the output neurons of the retina, projecting their

axons to visual centers in the brain, including the lateral geniculate

nucleus and superior colliculus. Since amacrine cells strongly

influence the organization of RGC receptive fields [38], the

abnormality of visual processing by amacrine cells in Pten mutants

could affect visual behaviour. To assess whether Pten is required for

higher-order visual functioning, we first determined whether RGC

axons projected to their appropriate central targets in the absence

of Pten function. RGC axons were first labelled with SMI-32 in

P21 retinal flatmounts, and the fascicles were observed to be

thicker and more bundled in Pten cKO vs wild-type retinas

(Figure 8A,A9,B,B9). Pten cKO optic nerve diameters were also

increased compared to controls (Figure 8C–E). These results

suggest that, like the RGC cell bodies themselves (Figure 2Q–S),

their optic axons are hypertrophic, although we cannot rule out

the possibility that an increase in axon number also contributes,

particularly since retinal area (Figure 4C) increases almost as much

as does the increase in the cross-sectional area of the optic nerve

(Figure 8C–E). Regardless of the cause of the optic nerve

Figure 5. Abnormal patterning of the hypertrophic IPL in Pten cKOs. (A–D) P21 wild-type and Pten cKO retinae labelled in wholemount for
TH (A,B) and melanopsin (C,D). Arrowheads in B,D mark increased fasciculation of TH+ amacrine cell processes and melanopsin+ RGC dendrites in Pten
cKO retinae, respectively. (E–H) P7 wild-type and Pten cKO retinae labelled with GFP (green; from Pax6::cre transgene) and Pax6 (red; E,F) or syntaxin
(G,H). Bracket in F marks area where Pax6::cre transgene is not expressed. (I–T) P21 wild-type and Pten cKO retinae labelled with syntaxin (I,J),
melanopsin (K,L), TH (M,N), calretinin (O,P), ChAT (Q,R) and PKCa (S,T). gcl, ganglion cell layer; inl, inner nuclear layer; ipl, inner plexiform layer; le, lens;
onl, outer nuclear layer; opl, outer plexiform layer; re, retina. Scale bars = 50 mm (A,B,G,H,K–T), 100 mm (C,D,I,J), 600 mm (E,F).
doi:10.1371/journal.pone.0032795.g005
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hypertrophy, by using a Z/AP dual reporter to label Pax6::cre-

recombined (i.e., AP+) RGC axons [29,30,39], we observed that

the AP-labeled optic tract innervated the dorsal lateral geniculate

nucleus (dLGN) and superior colliculus (SC) similarly in P21 wild-

type and Pten cKOs (Figure 8F,G). Thus, deletion of Pten in RGCs

does not influence the specificity of their targeting to these two

main retinofugal targets. Indeed, the AP-negative strip associated

with central RGCs that did not undergo cre-mediated recombi-

nation (Figure 1H) was apparent across the medio-lateral axis of

the superior colliculus in the Pten cKO retina, as it is in the wild-

type (Figure 8F,G), indicating no gross disruption of retinotopic

order across the surface of the superior colliculus.

To determine whether the spatiotemporal processing of visual

information and its transmission to the brain were altered in Pten

cKO animals, we analyzed the optokinetic reflex (OKR), a

subcortical motor response to moving stripe patterns that is a

reliable and quantitative behavioural indicator of some aspects of

retinal function [40]. OKRs were measured using a virtual cylinder

that displayed vertical black and white stripes of varying dimensions

and contrasts, rotated at different speeds. In wild-type adult mice,

maximum contrast sensitivities were uniformly ,15.8 (threshold

contrast = 6.3%) at the optimal spatial frequencies (0.061 and 0.1

cycles/degree (c/d)), while the lower and upper limits of spatial

frequencies that evoked an OKR at 100% contrast were 0.019 and

0.375 c/d, respectively (Figure 8H). Average contrast sensitivities of

wild-type and Pten cKO animals at 0.275 c/d were significantly

different (n = 6 each; P = 0.034; Table S4). However, the distribu-

tion of contrast sensitivities in Pten cKOs was bimodal, falling into a

severely affected and a relatively unaffected group (n = 3 each). The

OKR contrast sensitivities of ‘‘unaffected’’ Pten cKO mice were

indistinguishable from those of wild-type mice, except for a mild

attenuation of contrast sensitivity and lowering of acuity at the

highest spatial frequencies (Figure 8I). The OKR contrast

sensitivities of ‘‘affected’’ Pten cKOs were significantly different

from those of either wild-type (P,0.001) or ‘‘unaffected’’ Pten cKOs

(P = 0.003; Table S4), reaching a maximum of only 2 (threshold

contrast = 50%) at the optimum spatial frequency, 0.1 c/d, and

could be elicited reliably only from 0.061–0.200 c/d (Figure 8I).

Thus, some Pten cKO mutants have a diminished capacity to

respond to motion of a global stripe pattern, suggesting that the

Figure 6. Synaptic contacts in the Pten cKO retinal IPL. (A–F) Electron microscopy (EM) of adult wild-type and Pten cKO retinae. Schematic
illustration of retinal architecture (A9). Low magnification EM images of wild-type (A) and Pten cKO (B) retinae, shown to scale, illustrating expansion of
mutant retinae. Higher magnification images of Pten cKO IPL (C–F), with boxed areas in C shown in higher magnification in D,E. Asterisks in C mark
ectopic cells in the IPL. Color scheme in D–F9 is as follows: Blue denotes rod bipolar cell terminal with ribbons (labeled R) in the Pten cKO IPL (D). Pink
denotes amacrine cell synapses on ectopic somata within the IPL (E,F). GCL, ganglion cell layer; inl, inner nuclear layer; ipl, inner plexiform layer; onl,
outer nuclear layer; opl, outer plexiform layer. Scale bars = 10 mm (A,B,C), 1 mm (D,E), 2 mm (F), 100 mm (G–J), 50 mm (G9–J9).
doi:10.1371/journal.pone.0032795.g006
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Figure 7. Altered ERG oscillatory potential responses in Pten cKO animals. (A–F) Scotopic ERG with representative trace (A; wild-type is
black; Pten cKO is red) and OP scalogram (B,C) at flash intensity of 0.38 cd*s/m2. (D–F) Graphical representation of OP amplitude (D), frequency (E) and
latency (F) across 19 steps (25.22 to 2.86 cd*s/m2). (G–L) Double flash ERG with representative trace (G; wild-type is black; Pten cKO is red) and OP
scalogram (H,I) at flash intensity of 0.38 cd*s/m2. (J–L) Graphical representation of OP amplitude (J), frequency (K) and latency (L) across 10 steps
(25.22 to 2.86 cd*s/m2).
doi:10.1371/journal.pone.0032795.g007
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inner-retinal (bipolar-amacrine-ganglion cell) circuits that mediate

contrast sensitivity in this behavioural paradigm are impaired.

Dscam does not regulate Pten/PI3K signalling in the
retina

Since PTEN is an intracellular signaling molecule, it seemed

likely itself to be regulated by extrinsic signals. For that reason, we

were struck by the similarities between Pten and Dscam mutant

retinas, both of which develop a markedly thickened IPL and

display aberrant fasciculation and mosaic patterning of subsets of

amacrine cells [9,11]. To test for regulatory interactions between

Pten and Dscam, we first determined whether retinal expression of

Dscam was altered in the absence of Pten expression. Dscam is

expressed in amacrine cells and RGCs in the INL and GCL

[9,11], as shown here in P7 wild-type retinas (Figure 9A). In P7

Pten cKO retinas, Dscam transcripts were similarly detected in the

INL and GCL, but expression was also detected in ectopic cells in

the IPL (Figure 9B). Thus, the maintenance of Dscam expression in

Pten cKO retinas was not itself sufficient to prevent amacrine cells

and/or RGCs from aberrantly migrating into the IPL. Moreover,

DSCAM does not prevent amacrine cell processes from fasciculat-

ing in the IPL in Pten cKO retinas, even though DSCAM is

thought to prevent such homotypic adhesion [10].

Next we asked the converse question, examining whether PTEN

protein and/or activity levels were altered in Dscam mutant retinas.

For this purpose we acquired Dscam null mutants, most of which die

immediately after birth [41], contrasting to spontaneous Dscam

mutants, which survive postnatally [9,11,12]. Amacrine cell spacing

and projection defects were not yet apparent in Dscam mutants at

E18.5, as revealed by Pax6, syntaxin and calretinin immunolabeling

(Figure 9C–F). Notably, amacrine cell defects were also not yet

apparent in Pten cKOs at E18.5 (data not shown). Nevertheless, we

reasoned that E18.5 was an appropriate stage to study for our

purposes, as amacrine cells are actively migrating [42] and have

begun to innervate the IPL [43] at this stage in wild-type mice.

Western blot analysis of E18.5 retinal tissue revealed that PTEN,

pPTENSer380, pAktSer473 and pS6 levels were not significantly

different in wild-type and Dscam mutant retinas (Figure 9G–I).

The lack of alterations in PI3K signalling components, including

PTEN, in Dscam mutant retinas, suggests that that PI3K signaling is

not regulated by DSCAM in the retina, at least at E18.5, when

amacrine cells are migrating and the IPL is beginning to form.

Figure 8. Aberrant RGC fasciculation and subcortical visual responses in Pten cKOs. (A–B) Low (A,B) and high (A9,B9) power
photomicrographs of SMI-32 labeling of P21 wild-type and Pten cKO retinal wholemounts. (C–E) Photomicrographs of wild-type and Pten cKO P21
optic nerves (C) and corresponding cross sections stained with hematoxylin-eosin (E). Optic nerve diameters are shown in D. (F,G) AP staining of P21
Pax6::Cre+;Z/AP+ (‘‘wild-type’’; F) and Ptenfl/fl;Pax6::Cre+;Z/AP+ (Pten cKO, G) whole brains with the overlying cortex removed to reveal the visual
pathway. The center of the superior colliculus (SC) is unstained as it is innervated by RGCs in the central retina, where cre activity is low. (H,I)
Behavioural measures of the optokinetic reflex in adult wild-type and Pten cKOs that are either pooled (H) or separated into affected and unaffected
groups (I). Scale bars = 300 mm (A,B), 100 mm (A9,B9), 750 mm (C), 200 mm (E), 2.5 mm (F,G).
doi:10.1371/journal.pone.0032795.g008
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Discussion

The acquisition of a functional retinal architecture requires the

coordination of multiple events, including the control of cell

growth, migration, neurite arborization and synaptogenesis. How

these events are coordinated in such a way as to ensure proper

neuronal positioning, both within individual retinal cell popula-

tions and across the retinal layers, is poorly understood. Here we

have identified the PTEN phosphatase as a critical regulator of

retinal tissue morphogenesis, identifying roles for this phosphatase

in mosaically-patterned RGCs, amacrine and horizontal cells. We

found that while Pten restricts the growth of each of these cell types,

it has cell type-specific roles in regulating the radial and tangential

migration and neurite arborization patterns of each cell popula-

tion. In the radial axis, we detected ectopic RGCs and amacrine

cells in the IPL, while in the tangential plane, TH+ amacrine cells

are particularly sensitive to the loss of Pten, displaying defects in the

regularity of their patterned somal distributions, as well as

aberrant fasciculation of their processes. The dendrites of Pten

mutant melanopsin+ ipRGCs likewise show aberrant fasciculation,

but colonize their appropriate strata within the IPL sublaminae.

Similarly, the spacing of calbindin+ horizontal cells is disrupted in

the tangential dimension in Pten mutant retinas but the positioning

of their somata across the radial axis of the retina is not perturbed;

nor is the stratification of their processes affected. Finally, we show

that PTEN/PI3K signaling is not altered in Dscam mutant retinas,

suggesting that PTEN does not function downstream of this

cellular adhesion pathway to regulate amacrine and RGC cell and

neurite spacing, at least during the embryonic period. Taken

together, these data indicate that distinct molecular controls

govern the radial and tangential migration of retinal cell bodies to

their final destinations, where they establish specific arborization

patterns and synaptic connections, and implicate Pten as a critical

component of several of these pathways.

Pten regulates cell and neurite growth in the retina
Pten is a well-known negative regulator of cellular growth, as

evidenced by its designation as a tumor suppressor gene.

Accordingly, in humans, germline Pten mutations are also

associated with hamartoma tumour syndromes (e.g., Lhermitte–

Duclos disease, Cowden syndrome), which are characterized by

tumour-like clusters of overgrown, differentiated cells [44].

Moreover, tissue-specific mutations of Pten in the mouse result in

hyperplasia in multiple organs, including the pancreas, hippo-

campus, neocortex and cerebellum [18,22,45,46]. However, Pten’s

role in growth control is tissue-specific, as it is not required to

prevent overgrowth of thymocytes and fibroblasts [47]. Here we

report that Pten cKO causes RGC, horizontal and amacrine cell

hypertrophy, and suggest that this is due to elevated mTOR

signalling [31]. We also observe a progressive thickening of the

IPL and optic nerve from P7 to adulthood in Pten cKOs,

suggesting a continuity of growth of amacrine/RGC processes,

similar to CNS hyperplastic defects reported in other Pten cKOs

[24,26]. Notably, such overgrowth can be beneficial as optic nerve

regeneration is enhanced when Pten is knocked down in damaged

optic nerves [48], resulting in some re-innervation of the dorsal

LGN [49].

Figure 9. Interactions between Pten and Dscam. (A,B) Distribution of Dscam transcripts in P7 wild-type (A) and Pten cKO (B) retinae. (C–F)
Labeling of E18.5 wild-type and Dscam KO retinae with Pax6 (red)/syntaxin (green; C,D) and calretinin (red; E,F). Blue is DAPI counterstain. (G–I)
Western blotting and densitometry for PTEN and pPTENSer380 (G), total Akt and pAktSer473 (H), and total S6 and pS6Ser235/236 (I) in E18.5 wild-type and
Dscam mutants. gcl, ganglion cell layer; inl, inner nuclear layer; ipl, inner plexiform layer; onl, outer nuclear layer; opl, outer plexiform layer. Scale
bars = 50 mm.
doi:10.1371/journal.pone.0032795.g009
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In the context of normal development, cellular hypertrophy is

obviously not beneficial, and likely contributes to the aberrant

tissue morphogenesis observed in Pten cKO retinas. For instance,

the continual growth of amacrine cells, including their processes,

likely contributes to the aberrant patterning of the IPL we observe

in Pten cKO retinas. Nevertheless, we do not believe that cellular

hypertrophy is primarily responsible for all defects observed in Pten

cKO retinas, for the following reasons: 1) When retinal cell sizes

increase, one would expect a uniform increase in Voronoi domain

size and nearest neighbor distances. Instead, what we observe in

Pten cKO retinas is a decrease in the regularity of these

parameters, indicating that the normal spatial relationships

between TH+ amacrine cells and calbindin+ horizontal cells are

disordered. 2) While ipRGCs also increase in size in Pten cKO

retinas, their dendrites target the correct sublamina in the IPL,

and aberrant dendritic fasciculation is only observed in the

tangential plane. Moreover, RGC axons still target their

appropriate retino-recipient nuclei, the LGN and superior

colliculus, and apparently do so in a normal retinotopic manner,

at least at the gross level.

The cell type-specific effects of Pten in the context of retinal cell

migration and neurite patterning are discussed in more detail in

the following sections.

Pten regulates retinal cell migration in a cell type-specific
manner

Cones, RGCs, horizontal and amacrine cells migrate radially to

form layers, and then disperse in the tangential plane to form non-

random cellular mosaics [33]. Conversely, rod and bipolar cell

migration is only regulated in the radial axis [33]. We found that

some RGCs and amacrine cells were ectopically positioned in the

Pten cKO IPL, consistent with Pten’s known role in regulating

radial migration in other regions of the central nervous system

[17–19]. In contrast, we did not find any evidence for aberrant

positioning of horizontal cells across the depth of Pten cKO retinas.

However, TH+ amacrine cells and calbindin+ horizontal cells were

aberrantly dispersed in the tangential axis in Pten cKOs.

Fundamental differences in how RGC, horizontal and amacrine

cells migrate may explain differences in Pten-dependency. Upon

differentiation, amacrine cells lose their apico-basal contacts and

are thus more sensitive to environmental cues in their migratory

path compared to RGCs, which retain a basal attachment

(presumptive axon) that acts as a ‘‘tether’’ to pull RGCs into the

GCL [1]. Similarly, horizontal cell progenitors lose their apical

and basal contacts and divide in non-apical positions before going

to their final, definitive position, making them more sensitive to

environmental cues [50]. Thus, amacrine cells and horizontal cells

may be most sensitive to the loss of Pten if the loss of this signalling

molecule results in an impaired ability to ‘‘sense’’ the proximity of

like-neighbours, or an inherent inability to follow tangential

migratory cues [51]. This raises the question of what the extrinsic

cue(s) might be that require PTEN to transduce their signal?

Aberrant retinal spacing in Pten cKOs may arise because of

defective intercellular adhesion, a process that Pten regulates in the

retinal pigment epithelium (RPE) [52]. Indeed, the cell spacing

defects in Pten cKO retinas most closely resemble those observed

following the mutation of several adhesion molecules. For

example, mutations in zebrafish N-cadherin also result in hypertro-

phic RGC and amacrine cell bodies and processes that are

aberrantly patterned [53,54]. Here we investigated the relation-

ship between Pten and DSCAM, given the cellular specificity of

Pten cKO phenotypes most closely phenocopy those observed in

Dscam mutants [9–12]. While DSCAM’s role in cell adhesion is

evolutionarily conserved, how it functions has changed. Drosophila

Dscam1 undergoes extensive alternative splicing, resulting in cell

type-specific expression of multiple, unique isoforms that prevent

homophilic (self-self) associations [55,56]. In contrast, mammalian

Dscam is not extensively alternatively spliced, such that neighboring

retinal cells whose dendritic arborizations overlap can express the

same isoform [10,57]. DSCAM therefore cannot act as a direct

repulsive cue during mosaic patterning. Instead, it has been

suggested that the aberrant clustering of amacrine cells and RGCs

in Dscam mutant retinas arises because DSCAM is required to

block unknown adhesive pathways that are normally silenced.

Unmasking of these adhesive pathways in Dscam KOs results in

aberrant mosaicism and neurite fasciculation [10,57].

Interestingly, the aberrantly positioned retinal cells in the Pten

cKO IPL continue to express Dscam, suggesting that the normal

‘‘anti-adhesive’’ properties of DSCAM are not sufficient to prevent

cellular mispositioning, at least in the absence of Pten. Defects in

cell spacing and neuritic differentiation as well as an expanded IPL

similar to those in the Dscam mutant retina have also been detected

in the Bax KO retina, where there is similarly no modulation of

Dscam expression [13]. However, it is important to note that there

are also fundamental differences in the aberrant mosaic patterns

observed in Pten cKO (this study), Dscam KO [9–13] and Bax KO

[13] retinas. Most notably, while we have observed a skewed

distribution towards larger distances between nearest neighbors

and Voronoi domain sizes for both calbindin+ horizontal cells and

TH+ amacrine cells in Pten cKO retinas, these parameters are

instead skewed towards the smaller end in Dscam KO and Bax KO

retinas. That is to say, there is an increased clustering of amacrine

cells in Dscam KO and Bax KO retinas, while conversely; we

observe an overall increase in the spacing of these cells in Pten cKO

retinas (albeit one that similarly degrades mosaic regularity).

Possible causes for the increased distances between homotypic cells

in Pten cKO retinas may include the reduction in horizontal and

amacrine cell numbers, or because these cell types increase in size.

However, it remains formally possible that these defects may also

reflect aberrant migratory properties of Pten mutant retinal cells in

the tangential plane. Indeed, tangential dispersion is a key

determinant in the establishment of horizontal, cholinergic and

ganglion cell mosaics [7], although it appears to play a minimal

role in establishing the mosaics of TH+ amacrine cells [34].

Future studies will be required to establish the precise role that

Pten plays in establishing retinal cell mosaics. Nevertheless, we can

conclude that DSCAM and PTEN may function in independent

pathways as Dscam expression is maintained in Pten cKO retinas,

and PTEN/PI3K protein and activity levels are unperturbed in

Dscam mutant retinas, at least at E18.5. However, PTEN also has

PI3K-independent nuclear functions [58], suggesting that Pten may

function in unknown ways to contribute to Dscam-mediated retinal

cell spacing.

Pten regulates laminar patterning of the IPL
PI3K and PTEN activity are high in the P7 IPL, during the

period when RGC, amacrine cell, and bipolar cell neurites are

actively innervating IPL sublamina in a highly-patterned array.

Accordingly, we found that Pten is required for IPL stratification.

Specifically, the targeting of most amacrine cell processes and

bipolar cell axons to appropriate IPL sublamina is severely

disrupted in Pten cKOs, consistent with recent findings obtained by

a different group using a Chx10::cre driver line [28]. Two

exceptions to this rule are the ipRGC dendrites and TH+

amacrine cell processes, both of which normally targeted

substratum 1 in Pten cKO retinae. This finding was particularly

surprising given the hyper-fasciculation of ipRGC dendrites and

TH+ amacrine cell processes in the tangential plane.
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Dscam and the related IgSF molecules DscamL and Sidekick1/

2 also participate in IPL sublamination [12,14], further supporting

the similarity of PTEN and adhesion molecule function in retinal

patterning. In addition, PlexinA4/Sema6a, Sema5a/Sema5b, and

PlexinA1/PlexinA3 double mutants each display similar, but also

each unique types of IPL patterning deficits to those seen in Pten

cKOs, with the exception that they do not have an expanded IPL

[16]. While intracellular signalling cascades that operate down-

stream of Sema5a, Sema5b, Sema6a or PlexinA1, PlexinA3,

PlexinA4 have yet to be characterized in the retina, PlexinB1/

Sema4D have been shown to regulate PTEN and PI3K activities

in a context-dependent manner [59,60]. It is tempting to speculate

that PTEN activity may be regulated by some combination of

Plexin/Sema receptor signalling in the retina, in such a way as to

control the targeting of amacrine cell processes in the IPL without

affecting their growth.

Pten’s role in regulating visual physiology and behaviour
By conducting a thorough ERG analysis in Pten cKO mice, we

found that photoreceptor (A-wave) and bipolar cell (B-wave)

function is relatively unaffected in these mutant mice. However,

further analyses using a continuous Morlet analysis of ERG

responses over a wide range of stimulus intensities allowed us to

define the dynamics of OP firing in Pten cKO mice. These studies

revealed a dysregulation of light-driven phase locking in Pten cKO

mice, which we infer to mean that Pten is required for the

synchronous firing of amacrine cells. In contrast, a recent study in

a different conditional Pten cKO model reported no changes in

OPs with the exception of increased amplitudes only under

photopic adaptation, possibly because they only performed limited

amplitude measurements of filtered ERG traces (50–170 Hz) at a

single flash strength [28]. Other studies have similarly suggested

that Pten regulates neural circuitry function. For instance, in vivo

knockdown of Pten in adult mouse hippocampus results in an

increased excitatory drive onto dentate granule cells [61]. Another

study has shown that Pten also regulates proper long-term

potentiation and depression in the hippocampus, independently

of its effects on cell morphology and migration [62]. Interestingly,

Dscam null mutants similarly display a loss of synchronous firing of

pre-inspiratory neurons in the medulla, the site of the rhythm

generator that controls respiration, accounting for the premature

death of these animals [41]. However, while the ERG of dark-

adapted mice was previously tested in spontaneous Dscam mutants

[11], it remains to be determined whether OPs or OKRs are

aberrant in them.

In addition to the aberrant retinal physiology in Pten cKO mice,

we further suggest that these defects in amacrine cell function also

influence visual behaviour. Indeed, evoking an OKR is dependent

upon image-processing by directionally selective RGCs [40], the

activity of which is influenced by amacrine cells [63], and we

found that approximately half of Pten cKO mice display OKR

defects. These OKR defects are unlikely due to a perturbation of

the visual pathway outside of the retina. Indeed, despite the

striking increase in Pten cKO optic nerve diameter, gross overall

connectivity (i.e., RGC targeting of the SC and LGN) of the visual

pathway was apparently unaffected by the loss of this signaling

molecule. Future experiments will be needed to determine what

underlies the increased optic nerve thickness in Pten cKO mice,

whether it arises due to an increase in numbers of RGC axons,

hypertrophy of individual RGC axons, increased fasciculation, or

enhanced myelination.

It is currently unknown why some Pten cKO mice have an

apparently normal capacity to respond to motion of a global stripe

pattern, a behaviour that depends on inner-retinal circuitry

(bipolar-amacrine-ganglion cell), which was strikingly disrupted

in these mutants. However, we suggest that the disruption in IPL

patterning in Pten cKO retinas is likely due to the progressive

overgrowth of amacrine cell processes and RGC dendrites, and it

may be that prior to their overgrowth, these neurons establish

some appropriate connections. Future experiments will be needed

to determine if some Pten cKO mice still contain some level of

appropriate connectivity and/or physiological activity between

specific populations of amacrine cells and RGCs that would allow

for proper OKR responses.

In summary, we have identified cell type-specific functions for

Pten in regulating migration and neurite arborization in a subset of

retinal RGCs, horizontal cells and amacrine cells. This is an

unexpected level of cellular specificity, given that PTEN and other

signalling molecules are thought to be ubiquitously expressed and

to have pleiotropic functions. Instead, our data support specific

roles for Pten in individual retinal cell populations, specifically

those that form retinal mosaics. However, within each of these cell

populations, Pten may have multiple roles, regulating not only cell

growth, but also migration, neurite arborisation and neuronal

function. The future goal will be to determine how PTEN function

is regulated and functions within each of these cell populations to

carry out each of its precise roles.

Materials and Methods

Animals
All animal procedures were compliant with the Guidelines of

the Canadian Council of Animal Care (CCAC) and were

approved by the University of Calgary Animal Care Committee

under animal protocol M08006. Pax6::cre [29] and Z/AP [30]

transgenes were maintained on a CD1 background and genotyped

as described. The Ptenfl allele was maintained on a mixed C57/

Bl6/SV129 background and genotyped as described [18]. The

Dscam mutant allele was genotyped as described [41].

RNA in situ hybridization, immunofluorescence, histology
and electron microscopy

RNA in situ hybridization was performed as previously described

[64] using a Dscam probe. Section immunofluorescence was

conducted as previously described [42]. For staining of retinal

flatmounts, eyes were dissected and the cornea, RPE, lens and

blood vessels were removed before flattening the retina (GCL up)

on NucleoporeH track-etched membranes (Whatman #110409).

Flattened retinae were fixed with 1 ml of 4% paraformaldehyde

(PFA)/16phosphate buffered saline (PBS) for 1 hour at 4uC, and

washed briefly in 16 PBS before blocking and incubation in 1u
antibody in blocking solution for 5–7 days at 4uC on a rocker.

Subsequent steps and antibodies were as described for section

immunostaining [42]. Primary antibodies for immunostaining

were to: PTEN (1:100, Cell Signalling #9559), TH (1:50, Santa

Cruz #sc-14007), melanopsin (1:2500 wholemount, 1:5000 frozen

sections, Advanced Targeting Systems #AB-N38), SMI-32 (1:250,

Covance #SMI-32R), calbindin-D (1:500, Sigma #C-9848),

ChAT (1:250, Chemicon #AB144P). For birthdating studies,

intraperitoneal injections of 100 mg/g body weight BrdU (Sigma)

were performed on timed staged pregnant females. For BrdU

immunolabeling, sections were treated with 2 N HCl for 15 min at

37uC prior to processing. For histological staining, whole eyes

were placed in Bouin’s fixative and processed for paraffin

sectioning and hematoxylin-eosin staining as described [65]. AP

and b-gal staining was performed as described [30]. For EM, eyes

were dissected and processed as described [66].
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Western blotting
Retinae were lysed and Western blots performed as previously

described [42]. Primary antibodies were to: pAktSer473 (1:1000,

Cell Signalling #4060), total Akt (1:2000, Cell Signalling #9272),

PTEN (1:1000, Cell Signalling #9559), pS6Ser235/236 (1:1000, Cell

Signalling #4856), S6 (1:1000, Cell Signalling #2217), b-actin

(1:5000, Abcam #8227), GAPDH (1:5000, Cell Signalling

#2118).

ERG analyses
For ERG analyses, briefly, animals were dark-adapted for one

hour and prepared for recordings under dim red light. Stimulation

and acquisition were achieved by a commercial system (Espion E2

from Diagnosys LLC; flash duration 10 ms, bandpass filtering

0.3 Hz–3 Khz). ERGs were conducted as previously described

[67,68]. Scotopic intensity responses consisted of single flash

presentations at 19 increasing flash strengths from 25.22 to 2.86

log cds/m2. For double flash ERGs, a probe flash (covering 21.6

to 2.9 log cds/m2) was presented 0.8 s after a conditioning flash

(1.4 log cds/m2). Finally, photopic intensity responses (30 cd/m2

background light) consisted of 11 increasing flash strengths ranging

from 21.6 to 2.9 log cds/m2. In addition to analysis of the a- and

b-waves (amplitude and implicit time), three properties of the OPs

(amplitude, frequency and latency) were quantified using Morlet

wavelet transform [69].

Optokinetic Testing
Optokinetic testing was conducted as described [40]. Briefly,

mice were placed on a platform centered in a chamber surrounded

by four 2170 monitors, and the reflexive optokinetic response

(OKR; head-turning) was elicited by a virtual-cylinder sine-wave

grating moving leftward or rightward at constant velocity

(OptoMotryTM, Cerebral Mechanics Inc., Lethbridge, AB,

Canada). The drift speed was constant at 12 degrees/second (d/

s), contrast (Michelson contrast) ranged from 0 to 100%, and

spatial frequencies ranged from 0.019 to 0.4 cycles/degree (c/d).

Contrast threshold was defined as the lowest contrast at which an

OKR could be elicited reliably by a grating of a given spatial

frequency; contrast sensitivity was defined as the reciprocal of

contrast threshold, in arbitrary units (100/[threshold % contrast]);

and acuity was defined as the highest spatial frequency that

reliably elicited an optokinetic response at 100% contrast (spatial

frequency at contrast sensitivity = 1).

Measurements and statistical analysis
Photomicrographs of cells expressing cell type-specific marker(s)

were used to count cell number/field. In all experiments, cells

were counted from a minimum of 3 retinas. Somal areas of

immunolabeled cells were calculated using Photoshop CS3 (Adobe

Systems, San Jose, CA). The Delunay-Voronoi plugin for Image J

(http://rsbweb.nih.gov/ij/) was used for collecting the X-Y

coordinates of TH+ amacrine and calbindin+ horizontal cells.

These were exported to a customized program that computed the

Voronoi tessellation of the field and the near neighbour distances

of each individual cell (excluding cells with Voronoi domains that

intersected the boundaries of a field), from which the regularity

indices of the distribution of Voronoi areas and nearest neighbour

distances were calculated (mean/standard deviation) [8]. Statisti-

cal significance for cell counts, cellular area, cellular spacing,

western blotting densitometry, and optic nerve thickness were

calculated using two-way Student’s t-tests using GraphPad Prism

Software version 5.0 (GraphPad Software Inc., La Jolla, CA). All

analyses were performed on a minimum of three eyes/genotype,

and 3–10 photomicrographs/eye. See Tables S1, S2, S3, S4 for

details and exact p-values for all tests. Analyses for ERGs was

performed using repeated measures ANOVA (rmANOVA) in

SPSS 17.0 (SPSS Inc. Chicago, IL, USA) with mouse genotype

(wild-type versus Pten cKO) being used as the between-subject

factor for either a main statistical difference or an interaction

effect. See Table S3 for details and exact p-values for all tests.

OKR behavioural analyses were carried out using a Mann-

Whitney U-test for pooled wild-type versus Pten cKO mice and a

linear mixed model (LMM) was used to analyse data when Pten

cKO mice were placed in affected or unaffected categories.

Genotype is included in the model as a fixed factor with 3 levels

(wild-type versus affected or unaffected Pten cKO) in OKR data

analysis. Post-hoc pair-wise comparison between genotypes was

carried out using Least Significant Difference (LSD) with p-values

adjusted for multiple comparisons. See Table S4 for details and

exact p-values for all tests. All graphs were generated using

GraphPad Prism Software version 5.0 with error bars representing

the standard error of the mean (s.e.m.).

Supporting Information

Figure S1 Ectopic RGC and amacrine cells in Pten cKO
retinae. (A–D) Brn3a (A,B) and Pax6 (C,D) immunostaining of

P7 retinal cross-sections in wild-type (A,C) and Pten cKO (B,D)

retinas. Blue is DAPI counterstain. gcl, ganglion cell layer; inl,

inner nuclear layer; ipl, inner plexiform layer; onl, outer nuclear

layer; opl, outer plexiform layer. Scale bars = 50 mm.

(TIF)

Figure S2 Apoptosis is unaltered in Pten cKO retinae.
(A–L) Active caspase-3 immunostaining at E15.5 (A–D9), P0 (E–

H9) and P7 (I–L9) in wild-type (A–B9,E–F9,I–J9) and Pten cKO (C–

D9,G–H9,K–L9) retinas. Blue is DAPI counterstain. gcl, ganglion

cell layer; inl, inner nuclear layer; le, lens; onbl, outer neuroblast

layer; onl, outer nuclear layer; re, retina. Scale bars = 300 mm

(A,C), 600 mm (E,G,I,K).

(TIF)

Figure S3 Scotopic, photopic and double-flash ERG
analysis of A-waves and B-waves in adult Pten cKO
mice. (A–H) Scotopic A-wave amplitudes (A) and implicit times

(B) in wild-type and Pten cKO mice. Scotopic B-wave amplitudes

(C) and implicit times (D) in wild-type and Pten cKO mice.

Photopic B-wave amplitudes (E) and implicit times (F) in wild-type

and Pten cKO mice. Double-flash B-wave amplitudes (G) and

implicit times (H) in wild-type and Pten cKO mice (wild-type is

black; Pten cKO is red).

(TIF)

Figure S4 Photopic ERG oscillatory potential responses
in Pten cKO animals. (A–F) Photopic ERG representative trace

(A; wild-type is black; Pten cKO is red) and representative OP

scalograms (B,C) at the flash intensity of 2.86 cd*s/m2. (D–F)

Graphical representation of OP amplitude (D), frequency (E) and

latency (F) across 11 steps (21.63 to 2.86 cd*s/m2).

(TIF)

Table S1 Comparison of retinal cell sizes in wild-type and Pten

cKO retinae.

(DOC)

Table S2 Analysis of horizontal and amacrine cell spacing and

wholemount cell counts in P21 wild-type and Pten cKO retinal

flatmounts.

(DOC)
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Table S3 Analysis of electroretinogram responses in adult wild-

type and Pten cKO mice.

(DOC)

Table S4 Analysis of optokinetic contrast sensitivity responses in

adult wild-type and Pten cKO mice.

(DOC)
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