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Periodontitis is an inflammatory disease that deteriorates bone supporting teeth afflicting
∼743 million people worldwide. Bacterial communities associated with disease have
been classified into red, orange, purple, blue, green, and yellow complexes based on
their roles in the periodontal pocket. Previous metagenomic and metatranscriptomics
analyses suggest a common shift in metabolic signatures in disease vs. healthy
communities with up-regulated processes including pyruvate fermentation, histidine
degradation, amino acid metabolism, TonB-dependent receptors. In this work, we
examine existing metatranscriptome datasets to identify the commonly differentially
expressed transcripts and potential underlying RNA regulatory mechanisms behind the
metabolic shifts. Raw RNA-seq reads from three studies (including 49 healthy and
48 periodontitis samples) were assembled into transcripts de novo. Analyses revealed
859 differentially expressed (DE) transcripts, 675 more- and 174 less-expressed. Only
∼20% of the DE transcripts originate from the pathogenic red/orange complexes, and
∼50% originate from organisms unaffiliated with a complex. Comparison of expression
profiles revealed variations among disease samples; while specific metabolic processes
are commonly up-regulated, the underlying organisms are diverse both within and
across disease associated communities. Surveying DE transcripts for known ncRNAs
from the Rfam database identified a large number of tRNAs and tmRNAs as well as
riboswitches (FMN, glycine, lysine, and SAM) in more prevalent transcripts and the
cobalamin riboswitch in both more and less prevalent transcripts. In silico discovery
identified many putative ncRNAs in DE transcripts. We report 15 such putative ncRNAs
having promising covariation in the predicted secondary structure and interesting
genomic context. Seven of these are antisense of ribosomal proteins that are novel and
may involve maintaining ribosomal protein stoichiometry during the disease associated
metabolic shift. Our findings describe the role of organisms previously unaffiliated
with disease and identify the commonality in progression of disease across three
metatranscriptomic studies. We find that although the communities are diverse between
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individuals, the switch in metabolic signatures characteristic of disease is typically
achieved through the contributions of several community members. Furthermore, we
identify many ncRNAs (both known and putative) which may facilitate the metabolic
shifts associated with periodontitis.

Keywords: periodontitis, oral microbiome, metatranscriptomics, non-coding RNA, riboswitch, antisense

INTRODUCTION

Afflicting more than three million individuals in the United States
per year, periodontitis is an oral disease characterized by
inflammation of the periodontium (resulting from poor oral
hygiene) that eventually leads to tooth loss. Given the
prevalence of periodontitis, the microbial instigators of the
disease have been studied for decades, with novel technologies
successively contributing toward a better understanding of
the disease and its polymicrobial origins. Cultivation based
methods originally identified anaerobic, Gram negative, rods
deep in the periodontal pocket (dominated by Bacteroides
melaninogenicus and Fusobacterium nucleatum) (Slots, 1977).
Circumventing the limitations of culture-based techniques,
16S rRNA sequencing from the subgingival plaques of 50
individuals with advanced periodontitis revealed eight key
periodontal pathogens: Actinobacillus actinomycetemcomitans,
Bacteroides forsythus (now Tannerella forsythia), Campylobacter
rectus, Eikenella corrodens, Porphyromonas gingivalis, Prevotella
intermedia, Prevotella nigrescens, and Treponema denticola
(Ashimoto et al., 1996), and further screening expanded
the list of periodontal pathogens to include members of
Deferribacteres, Bacteroidetes, OP11, and TM7 phyla, and several
novel species including Eubacterium saphenum, Porphyromonas
endodontalis, Prevotella denticola, and Cryptobacterium curtum
(Kumar et al., 2003).

A subsequent high-throughput DNA hybridization study
of periodontitis progression in 185 individuals revealed six
complexes of disease associated organisms characteristic of
distinct stages of disease progression (red, orange, yellow,
green, blue and purple) (Socransky et al., 1998). The red
complex, comprised of Porphyromonas gingivalis, Treponema
denticola, and Tannerella forsythia, colonizes the biofilm during
late stage periodontitis and is the major pathogenic complex
(Socransky et al., 1998; Ximénez-Fyvie et al., 2000; Holt
and Ebersole, 2005). The orange complex, which is strongly
associated with the red complex, is comprised of a larger
number of species including – Campylobacter gracilis, C. rectus,
C. showae, Eubacterium nodatum, Fusobacterium nucleatum,
Parvimonas micra, Prevotella intermedia, Prevotella nigrescens,
and Streptococcus constellatus. As colonization by the orange
complex progresses, more members of the red complex also
colonize, suggesting that during disease, colonization of the
orange complex directly precedes the red complex (Socransky
et al., 1998; Socransky and Haffajee, 2005). Members of the
other four complexes (purple, blue, yellow, and green) partake
in the initial colonization of the periodontal pocket causing a
cascading effect leading toward the orange and red complexes
(Socransky and Haffajee, 2005).

The advent of metagenomic analysis has further underscored
that periodontitis is a result of polymicrobial synergy and
dysbiosis (Lamont and Hajishengallis, 2015). The mean species
diversity of the microbial community appears to change
drastically between healthy and periodontitis affected states.
However, the precise effect is not well understood. Initial
454-pyrosequencing of 16S rRNA libraries followed by qPCR
of 22 chronic periodontitis samples uncovered higher alpha
diversity and biomass associated with the disease community.
This finding suggests that new dominant taxa emerge, but
the original health-associated community may not be replaced
(Abusleme et al., 2013). However, subsequent meta-analysis
across several studies shows reduced alpha diversity associated
with disease (Ai et al., 2017). Based on fluctuations of relative
metagenome abundances there appear to be a set of marker
species that differentiate healthy, stable, and progressing sites
of periodontitis (Ai et al., 2017). Furthermore, comparison
of 16 metagenomic samples revealed the existence of a core
disease affiliated community (Wang et al., 2013). However, the
keystone pathogens of periodontitis that interfere with host
immune defenses leading to tissue destruction [Porphyromonas
gingivalis (Hajishengallis et al., 2011, 2012; Orth et al., 2011;
Darveau et al., 2012), Prevotella nigrescens, and Fusobacterium
nucleatum (Szafrański et al., 2015)] are not among the identified
marker species that differentiate diseased and healthy samples.
The observed changes in community structure go hand in hand
with an alteration in the functional profile of the community.
Metagenomic surveys of healthy and diseased dental plaques
revealed that genes encoding bacterial chemotaxis, motility,
and glycan biosynthesis and metabolism are over-represented
in disease whereas metabolism of carbohydrates, amino acids,
energy, and lipids, membrane transport, and signal transduction
are under-represented (Wang et al., 2013).

Three metatranscriptomic surveys have provided further
insight directly into metabolic activity during disease progression
(Duran-Pinedo et al., 2014; Jorth et al., 2014; Yost et al., 2015).
Gene ontology enrichment analyses of metatranscriptomes
from progressing and stable periodontitis sites revealed
that members of the red complex up-regulate their TonB-
dependent receptors, aerotolerance genes, iron transport
genes, hemolysins, and CRISPR-associated genes, and enzymes
like proteases and peptidases (Yost et al., 2015). However,
transcripts (for processes such as proteolysis, potassium
transport, and cobalamin biosynthesis) from organisms not
previously associated with disease also show differential
expression, suggesting involvement of additional organisms
(Yost et al., 2015). Functional comparisons of healthy and
aggressive periodontitis sites revealed that upregulation of lysine
fermentation, histidine degradation, and pyruvate metabolism

Frontiers in Microbiology | www.frontiersin.org 2 April 2020 | Volume 11 | Article 482

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00482 April 7, 2020 Time: 17:3 # 3

Ram-Mohan and Meyer Meta Survey of Periodontitis Progression

are common to the diseased individuals (Jorth et al., 2014).
The collective finding of all three metatranscriptomic studies
is the conservation of the community functionality rather than
the specific microbial effecters of disease (Jorth et al., 2014;
Duran-Pinedo et al., 2015; Yost et al., 2015). This finding
emphasizes how understanding of the etiology of disease has
progressed from the red complex instigators, to the keystone
pathogen concept, and to finally toward a polymicrobial
synergy and dysbiosis model (Hajishengallis and Lamont, 2012;
Lamont and Hajishengallis, 2015).

While most of the emphasis of past metatranscriptomic
analysis has been on identifying up-regulated protein coding
regions and organisms associated with these coding regions,
a functional bacterial transcriptome also includes many non-
coding RNAs (ncRNAs). ncRNAs are untranslated, often
structured, elements that are key posttranscriptional regulators
acting on mRNA degradation (Desnoyers et al., 2013), translation
initiation (Urban and Vogel, 2007; Frohlich and Vogel, 2009),
synthesis of ribosomal proteins (Deiorio-Haggar et al., 2013),
and transcription attenuation (Breaker, 2012) in response to
environmental cues. These regulatory elements can be divided
into cis- and trans-acting based on their location on the genome
with respect to the regulated target. Riboswitches are classical
examples of cis-acting ncRNAs that are typically found in the
5′-untranslated regions (5′UTR) immediately upstream of the
regulated gene. ncRNAs are also found antisense to coding
regions and often interfere with transcription (Neufing et al.,
2001) or repress translation (Sayed et al., 2012). Only the
metatranscriptomic study conducted by Duran-Pinedo et al.
screened for differentially expressed ncRNAs in periodontitis.
This study identified 20 Rfam families within a reported 12,097
small RNAs (sRNAs) overrepresented in disease (Duran-Pinedo
et al., 2015). Activities regulated by these ncRNAs include:
amino acid metabolism, carbohydrate metabolism, control of
plasmid copy number, response to stress, and ethanolamine
catabolism (Duran-Pinedo et al., 2015). However, Duran-Pinedo
et al. defined sRNA very broadly as any transcribed, but not
protein-coding, genomic region, and only screened for known
ncRNAs [i.e., those in the Rfam database (Griffiths-Jones et al.,
2003, 2005; Daub et al., 2008; Burge et al., 2013; Nawrocki et al.,
2015)]to identify biologically relevant regions. Thus, it is likely
that there are additional ncRNAs with biological function in the
oral metatranscriptome associated with periodontitis progression
that have not been well-described.

Despite decades studying periodontitis and its microbial
instigators, the overarching mechanism of disease is still
unknown. The organisms, underlying genes, and a short list
of ncRNAs driving the disease have been assessed, but the
underlying common mechanism of disease progression across
the multitude of studies is yet unknown. The current study
was undertaken as a meta-analysis to elucidate the genes and
potential regulatory mechanisms common to the progression
of periodontitis in patients across multiple studies and to
illuminate the extent of variation in functional composition
between individuals. We achieved this by combining existing
RNA-seq read data from three previously published studies
(Duran-Pinedo et al., 2014; Jorth et al., 2014; Yost et al., 2015)

resulting in a total of 97 pooled metatranscriptome datasets
(49 healthy and 48 diseased) to provide increased statistical
support and detect subtle differences between the states and
the studies (Gibbons et al., 2018). In contrast to previous
studies, we also employed a de novo transcript assembly
method rather than aligning the reads to a ‘super genome’
of the ∼400 available oral genomes in the Human Oral
Microbiome Database (HOMD) or limiting our analysis to only
protein coding regions. In addition to screening for known
non-coding RNAs, we also engaged a de novo discovery of
RNA secondary structures in the assembled transcripts. Our
analyses support findings from the earlier studies. We employed
standardized cross-sample normalization and identified the
common differentially expressed genes and known ncRNAs
across 48 disease samples suggesting a shift in metabolic
signatures during progression of periodontitis and identified
many novel putative structured ncRNAs revealing the potential
for riboregulation in periodontal disease.

MATERIALS AND METHODS

Data Sources
Previously published RNA-Seq data (Duran-Pinedo et al., 2014;
Jorth et al., 2014; Yost et al., 2015) was compiled to result in a
total of 49 healthy and 48 disease datasets. Individual fastq files
may be found under BioProject accession number SRP033605 as
Sequence Read Archives (SRAs) and under submission numbers
20130522 and 20141024 in the publication data repository of
HOMD. The Yost et al., 2015 and Duran-Pinedo et al., 2014 data
were collected on an Illumina MiSeq vs2 (2× 150 or 2× 250 cycle
cartridges), the Jorth et al., 2014 data were collected as single-end
50-bp reads on an Illumina HiSeq2000.

Assembly and Annotation of Transcripts
Trinity was run on the 97 read files using the –trimmomatic
flag and default settings to assemble transcripts. Assembly
quality was estimated using the auxiliary scripts as part of
the Trinity software and included calculating the basic contig
statistics, read representation of the assembly, and assessing the
number of full length coding transcripts. Additional filtering of
the assembled transcripts using Transrate (Smith-Unna et al.,
2016) was performed to remove bad contigs. Coding regions
within these transcripts were identified using the default settings
of TransDecoder (Haas et al., 2013), which was also used
for downstream processes such as annotation and binning
of the intergenic regions. The assembled transcripts were
then annotated two ways. First, the microbial source of each
transcript was identified at the species level using BLAST
(Altschul et al., 1990) against a local database of the HOMD
annotated genomes. Second, the transcripts and identified coding
regions were searched against a local Uniprot database using
blastx and blastp, respectively, to determine protein functions.
The transcripts were also screened for protein domains using
hmmscan [from HMMER (Finn et al., 2011)] against the PFam
database (Finn et al., 2014) and rRNA by running RNAMMER
(Lagesen et al., 2007). Hits were filtered for e-value of less than
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1e-104 and the remaining hits were compiled into a SQLite
boilerplate database to generate detailed annotation reports for
each transcript using Trinotate (Haas et al., 2013). Alongside,
the transcripts were also annotated using the KEGG Automatic
Annotation Server (KAAS) (Moriya et al., 2007) to derive KEGG
Orthology (KO) numbers.

Apart from the functional and taxonomic annotations of the
transcripts, we also screened differentially expressed transcripts
for known structured non-coding RNA (ncRNA). ncRNAs were
identified in the transcripts by searching for every covariance
model in Rfam12.2 (Griffiths-Jones et al., 2003, 2005; Daub
et al., 2008; Burge et al., 2013; Nawrocki et al., 2015) using
cmsearch from infernal-1.1.1 (Nawrocki and Eddy, 2013). Hits
with an e value less than 10−4 were collected and all non-
prokaryotic hits (e.g., U1 spliceosomal RNA and Histone3) were
dismissed and the remaining ncRNA hits were included in the
transcript annotations.

Differential Expression and GO Term
Enrichment Analyses
All predicted rRNA transcripts were removed and the expression
of the remaining transcripts was quantified in each dataset
using Salmon (Patro et al., 2015). Salmon uses a two-phase
method employing a quasi-mapping approach as opposed to
a traditional alignment-based method to generate count data
quickly. A combined matrix was then created for the healthy and
disease states with the raw counts for transcript expression. The
matrix of expression counts was imported into R (R Core Team,
2015) and differential expression analysis was carried out using
edgeR (Robinson et al., 2009), the Bioconductor package. Briefly,
the counts per million mapped reads (cpm) were calculated for
each dataset and low expression transcripts (cpm < 0.5) in more
than half of the datasets were removed. Since our interests lie
in screening for the common effectors in the progression of the
disease, we pooled all datasets in each state together (Healthy
and Disease) and use each sample as a replicate to estimate
common dispersals from the trend in expression. Next, cross
sample normalizations using the trimmed mean of M-values
(TMM) method was carried out. This normalized expression of
transcripts in each sample against an arbitrarily chosen reference
sample and excluded outliers. exactTest was run on the filtered
transcripts between the healthy and disease states to identify
the DE transcripts. Only transcripts with a log fold change
(log2FC) ≥ 1 or ≤ -1 with a FDR corrected p value < 0.05 were
considered significant. Gene Ontology (GO) term enrichment
analysis of the DE transcripts was carried out using GOseq
(Young et al., 2010), the Bioconductor R package. Gene lengths,
of the assembled transcripts, were estimated with a perl script
that is a part of the Trinity installation. Enriched and depleted
GO terms estimated in health and disease were considered
significant if the FDR corrected p value ≤ 0.05. The DE genes
were then mapped onto KEGG pathways to precisely locate
the steps that were highly up- or down-regulated. These were
visualized using Pathview (Luo and Brouwer, 2013, 2015), the
Bioconductor package. Further, the major contributing species in
each sample for the enriched processes or pathways was identified

by surveying the individual metatranscriptome read files using
HUMAnN2 (Abubucker et al., 2012).

Functional Taxonomic Makeup of
Disease Samples
In order to establish the functionally active taxonomic makeup
of the disease samples being studied, the metatranscriptomic
reads were subject to MetaPhlAn2 (Truong et al., 2015), a part
of the HUMAnN2 package for analyzing microbiome datasets
(Abubucker et al., 2012). To determine the microbial community
composition that is functionally active in each sample we mapped
all the reads using Bowtie2 (Langmead et al., 2013) to a custom
compiled marker sequence database available with HUMAnN2.
Relative abundances were calculated to identify the prevalent
species in each sample.

Comparison of Expression Profiles
Between Samples
Based on the differential expression analysis, the significant
transcripts were selected from the entire transcript collection and
the expression profile in each of the 49 healthy and 48 disease
samples were compared for these transcripts. Pearson correlation
coefficients ranging between −1 for a negative relationship to
1 for a positive relationship were calculated for each pairwise
observation using the cor function in R.

In silico Identification of Known ncRNAs
and de novo Discovery of Putative
Structured ncRNA
In an effort to identify ncRNAs that might regulate the
progression of periodontitis, the DE transcripts were assayed
for both known and novel structured ncRNAs. Known ncRNAs
deposited in Rfam12.2 (Griffiths-Jones et al., 2003, 2005; Daub
et al., 2008; Burge et al., 2013; Nawrocki et al., 2015) were
identified using cmsearch from infernal-1.1.1 (Nawrocki and
Eddy, 2013). de novo discovery was performed by GraphClust
(Heyne et al., 2012). The intergenic regions were pooled and
the nucleotide sequences extracted. The compiled sequences were
processed two ways – 1) all of the compiled sequences together;
2) blast hits for the sequences against Refseq77 (O’Leary et al.,
2016) were collected and the each set of hits was run separately.
GraphClust, employing infernal-1.0.2 (Nawrocki et al., 2009);
RNAshapes (Steffen et al., 2006); LOCARNA (Will et al., 2007,
2012; Smith et al., 2010); ViennaRNA (Lorenz et al., 2011); and
RNAz (Gruber et al., 2010), was programmed to search for
structures in sliding windows of 150 nucleotides with a shift
of 75 nucleotides.

The predicted putative structures and their covariance models
derived by GraphClust were searched against the entirety of the
Refseq77 genomic database using an in house perl pipeline to
obtain more, phylogenetically distant hits if possible. In short,
the generated covariance model was converted to version 1.1.1
of infernal, calibrated and then searched against the sequence
database. High confidence hits were extracted and realigned with
the original covariance model. The resultant Stockholm file was
then filtered to remove sequences that do not have at least 60%
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of the predicted structure before manual curation on RALEE
(Griffiths-Jones, 2005).

RESULTS

Only a Fraction of the Differentially
Expressed (DE) Transcripts Originate
From Red/Orange Complexes
RNA-Seq data published by earlier studies (Duran-Pinedo et al.,
2014; Jorth et al., 2014; Yost et al., 2015) that surveyed
the community composition as well as the functional profile
variation between healthy and periodontitis affected sites were
collected. Despite many possible differences between the studies –
patient profile; disease severity; methodology used; we initially
combined the datasets in an effort to identify the underlying
commonality across all studies. We accumulated read data
from a total of 49 healthy and 48 diseased samples. The
collected data were split into the two categories - Healthy
with a total of 26,034,228 reads, and Disease with 34,697,369
reads, and concatenated into a combined dataset for de novo
assembly using Trinity (Grabherr et al., 2011; Haas et al.,
2013). This generated a total of 627,752 transcripts with an
average GC content of 49.76%, a median contig length of 298
nucleotides, and an N50 of 420 nucleotides with an overall
alignment rate of 84.67%. Transrate filtering of these resulted
in a total of 479,578 good contigs. Of these, 255,086 coding
sequences were predicted using TransDecoder and ∼43% were
annotated with a GO term.

Differential expression analyses of the transcripts between
healthy and diseased states using edgeR with counts first
normalized to each dataset and then cross-sample normalized
resulted in a total of 859 DE transcripts with a p value < 0.05
and a log2FC ≥ 1 or ≤ -1 (Supplementary Table S1). Of
these, 675 showed increased expression in diseased samples, and
184 displayed decreased expression. Although such differences
are the result of both up- or down-regulated gene expression
within an organism and frequency changes in members of the
microbial community, we will refer to increased prevalence
transcripts as up-regulated, and decreased prevalence transcripts
as down-regulated throughout this manuscript. The transcripts
are represented by 157 species and strains spanning 52 genera.
Only ∼20% of the up- or down-regulated transcripts originated
from the members of the red or orange complexes and ∼50%
originate from microbes unaffiliated with any specific complexes
(Figure 1A). Interestingly, many unaffiliated microbial species
are closely related to those previously classified into the
microbial complexes and show large counts of DE transcripts.
For example, members of the genus Streptococcus account for
212 of the 859 DE transcripts and span many of the disease
associated complexes. S. constellatus is grouped in the orange
complex; and S. gordonii, S. intermedius, S. mitis, S. sanguinis,
and S. oralis are classified in the yellow complex. However,
S. anginosus, S. australis, S. cristatus, S. infantarius, S. infantis,
S. mutans, S. oligofermentans, S. vestibularis, S, pneumoniae,
S. peroris, S. parasanguinis, and several Streptococcus oral taxa

are unaffiliated with specific complexes yet still contribute
significantly to the DE transcripts.

The up- and down-regulated transcripts originate from 121
and 63 bacterial species, respectively. The ten species with the
largest number of up-regulated transcripts are shown on Table 1,
and the majority are not affiliated with a disease associated
complex. Members of the orange complex account for ∼18%
of the up-regulated transcripts whereas red complex members
account for only ∼4%. Of the down-regulated transcripts, ∼24%
and 16% are derived from Streptococcus sanguinis SK36 and
Streptococcus gordonii Challis CH1, respectively, both of which
are members of the yellow complex. Three transcripts from
Treponema (red complex), and two from Fusobacterium (orange
complex) are the only down-regulated transcripts from either
complex, consistent with the large presence of these pathogenic
bacteria, and the resulting increase in their transcriptome, in
diseased samples.

Differentially Expressed Transcripts
From the Orange and Red Complexes
Show the Greatest Magnitude Changes
Although the red and orange complexes account for only a small
percentage of the differentially expressed genes, the magnitude of
change in expression in these transcripts is drastic (Figure 1B).
The up-regulated red complex transcripts range from a log2FC
of 3.6 to 8.2 with an average expression change of ∼6.1-fold, and
the down-regulated transcripts range from -5.8 to -7.4-fold with
an average drop in expression of∼6.6-fold. Similarly, the change
in expression of the up-regulated transcripts from the orange
complex ranges from ∼1.5 to ∼7.9-fold with an average change
in expression of ∼4.6-fold. Only two transcripts from the orange
complex are down regulated with changes in expression of -2.5
and -2.3-fold. Members of the other complexes do not undergo
such a drastic change in expression. Change in the expression of
transcripts from the blue complex ranges from about 1.2 to 4.8-
fold (average: ∼1.9) and -1.9 to -4.5-fold (average: -2.7); green
complex ranges from 1.8 to 4.8-fold (average: 3.5), with no down-
regulated transcripts; purple complex ranges from 1.4 to 3.9-fold
(average: 2.0), and two down-regulated transcripts with log2FCs
of -2.9 and -2.6, respectively; yellow complex ranges from∼1.2 to
4.4 (average: 2.1), and ∼ -1.2 to -5.1 (average: -2.03). Finally, the
unaffiliated group, with many diverse genera, displays changes
in expression between ∼1.1 to 7.4-fold with an average change
in expression of 2.6-fold, and ∼ -1.5 to ∼ -8.1 with an average
down-regulation of∼ -3-fold.

Expression Profiles of Disease Samples
Are Dissimilar
To assess whether the expression profiles of DE transcripts of
disease samples are similar to one another, correlation between
profiles of individual samples was estimated. The Pearson
correlation coefficient (PCC) was calculated for each pairwise
comparison of samples. The PCC is a measure of the linear
correlation between two variables where the resulting value
between -1 and 1 suggests either a negative linear correlation or
a positive one, respectively. From a heatmap of the correlation
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FIGURE 1 | Distribution of the number and magnitude of differentially expressed (DE) transcripts in the genera represented in the oral microbiome. (A) The number of
DE transcripts originating from different genera. Juxtaposed lines represent different species within a genus that have DE transcripts. Bars are colored based on the
classification of the organism into periodontitis associated complexes (Socransky et al., 1998). Actinomyces and Streptococcus are the genera with the largest
number of different species that undergo differential expression during disease. (B) Magnitude of up- or down-regulation (Log2 fold-change) of the transcripts during
disease. Each point represents a DE transcript and points are colored by the complex in which the organism is classified (Socransky et al., 1998). A large fraction of
the differentially transcripts originate from organisms that are unaffiliated to a specific disease associated complex. Transcripts from members of the red and orange
complexes undergo higher magnitude differential expression.

values (Figure 2), it is immediately apparent that there is no
strong correlation between all the healthy samples. This is
expected as the oral microbiome in each individual is likely to be

highly complex and variant. There is also no strong correlation
in the expression profiles of the disease samples. In fact, samples
tend to cluster based on the study in which they were generated
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TABLE 1 | Species with the largest number of DE transcripts.

Organism Complex % of total up-regulated
transcripts

Actinomyces viscosus C505 Blue ∼11%

Actinomyces oral taxon 175 Unaffiliated ∼7%

Parvimonas micra ATCC 33270 Orange ∼7%

Rothia dentocariosa M567 Unaffiliated ∼6%

Rothia dentocariosa ATCC 17931 Unaffiliated ∼5%

Veillonella parvula DSM 2008 Purple ∼5%

Actinomyces oral taxon 171 Unaffiliated ∼3%

Streptococcus constellatus subsp.
pharyngis SK1060

Orange ∼3%

Fusobacterium nucleatum subsp.
vincentii ATCC 49256

Orange ∼2%

Actinomyces oris K20 Unaffiliated ∼2%

List of top 10 species with the most number of up-regulated transcripts. Includes
information of the microbial complexes these organisms belong to.

in rather than the disease state. However, intra study clustering
is also not absolute, there are instances where samples from
different studies cluster together. This finding is consistent with
the diverse criteria for sample inclusion, collection site, and
methodology across the original studies.

The lack of correlation in the expression profiles can be
attributed to the variation in the community composition
of the samples. The functionally active genus and species
level composition of each disease sample (using the entire
metatranscriptomes) show distinct involved communities in each
sample (Figure 3A). The differences are apparent not only
in variations in the relative abundances of active members
between communities, but also in the presence/absence of
members of each genus and species. Assessing the top 50 most
functionally abundant genera in the entire dataset (Figure 3A),
only 17 genera are commonly found in >50% of the samples
(Figure 3B). Members of the Streptococcus genus were most
frequently detected (∼96% of the disease samples). Members of
genera Rothia and Veillonella were the next commonly detected
bacteria in the disease samples (∼92%). Despite their strong
association with pathogenicity, members of the Porphyromonas,
Tannerella, Fusobacterium, and Treponema genera were only
detected in ∼65%, ∼56%, ∼52%, and ∼52% of the disease
samples, respectively. Similarly, at the species level, of the
100 most abundant species in the entire dataset, only 14
species were found in >50% of the disease samples. Unlike
the genus level, no single Streptococcus species is detected
in a majority of the samples. However, Rothia dentocariosa,
Actinomyces viscosus, Porphyromonas gingivalis, Tannerella
forsythia, Veilonella parvula, and Fusobacterium nucleatum are
well represented. The analyses also find highly active viruses in
the periodontal pockets including Tobamovirus, Endornavirus,
Gammaretrovirus, Potyvirus, and Mastadenovirus. It should also
be noted that samples originating from Jorth et al., 2014
were pooled across multiple sites, while those from Yost et al.
and Duran-Pinedo et al. originate from individual sites. This
likely explain the apparent broad species representation in the
3 samples originating from Jorth et al. (Figure 3A). Thus,

FIGURE 2 | Correlation in expression of differentially expressed (DE)
transcripts among individual samples. Expression of the DE transcripts (from
the pooled dataset) was calculated for in each individual sample and the
pair-wise correlation between samples based on these transcripts computed
and a heatmap generated to represent the correlation. Red is high correlation
(PCC = 1) while blue is a negative correlation (PCC = -1). Clustering of
samples based on the similarity in expression is represented on top (since this
is a pairwise comparison, only the column dendrogram is represented).
Samples are further annotated by state – disease or healthy, and by
origination study. Clustering of disease samples across different origination
studies based on expression is not observed. Possible clustering of samples
based on the origination study suggests inherent differences between studies
and may be attributed to many variables such as inclusion criteria, disease
progression, or sampling and sequencing methodologies.

the discrepancy in correlation of expression of DE transcripts
between disease samples is likely a result of the drastic variation
in the functionally active taxa among samples, and is not likely
purely due to differences between originating studies.

Specific Metabolic Processes Are
Enriched in Disease
To identify the biological processes that are enriched in the
DE transcripts, GO term enrichment analyses using GOseq was
conducted. This analysis revealed that biological processes that
involve only one organism are significantly less expressed in
disease including lipid metabolic processes, hydrolase activity,
and peptidase activity in individual organisms. The analyses
also revealed an enrichment of genes categorized under the
umbrella biological process of localization (e.g., transporter
proteins, protein localization to cell surface). These are likely
involved in establishment of pathogen localization in the pocket,
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FIGURE 3 | Prevalence of functionally active taxa across disease samples. Screening for the functionally active microorganisms in the disease samples. (A) Heatmap
of the 50 most functionally active genera from the overall dataset identified from the metatranscriptomes using HUMAnN2 (Abubucker et al., 2012). Gradient of color
represents the abundance of the genus in a disease sample. Dendrograms represent hierarchical clustering of samples (column) and genera (rows) representing the
similarity in the taxonomic composition between the samples and relative abundance of various genera, respectively. (B) Frequency distribution of the genera
identified in at least 24 of the 48 disease samples. Streptococcus, Rothia, and Veillonella were found active in 40 out of the 48 disease samples. Porphyromonas,
Tannerella, and Fusobacterium were found active in 30 samples or fewer.

as periodontitis progresses by the successive localization of
various microorganisms in the pocket, until the members of
the red complex arrive to drive pathogenesis. Other enriched
processes include transport (cation, organic substance, nitrogen
compounds, proteins, amino acids), biosynthesis (nitrogen
compounds, aromatic compounds, and RNA), metabolism
(catabolism of organic substances, glycolytic processes, pyruvate
and amino acid metabolism), transcription, and translation.

Metatranscriptomics Supports the
Polymicrobial Nature of Periodontitis
The polymicrobial nature of a periodontal infection is readily
apparent in the diversity of microorganisms observed to be
the sources of the DE transcripts. Mapping the DE transcripts
on to KEGG pathways using Pathview revealed communities
working in unison to provide a functional shift in disease.
For example, mapping the increased prevalence transcripts on
to the KEGG pathway for pyruvate metabolism (ko00620)
showed both strongly and weakly increased expression genes
in the pathway. Surprisingly, annotating these transcripts by
their microbial sources revealed DE transcripts originating from
members of several complexes (Figure 4). Different steps along
the pathway were increased or decreased in prevalence within
distinct organisms of the community.

To further assess this observation, the microbial contributors
to the pyruvate pathway in each individual disease sample were

identified using HUMAnN2. The variation observed in the
species contributing to pyruvate metabolism in different samples
is striking (Figures 5A,B). Up-regulation of genes involved in
the fermentation of pyruvate to acetate and lactate were detected
in 38/48 disease samples (Figure 5A). Other than four samples
where Streptococcus tigurinus and two samples where Rothia
aeria are the sole contributors in the pathway, the remaining
44 samples show a combination of various species contributing
to the pathway, a community effort. Similarly, genes involved
in the fermentation of pyruvate to isobutanol were up-regulated
in 46/48 disease samples (Figure 5B). Again, other than the 8
samples that display a single organism as the sole contributor to
this pathway - Streptococcus tigurinus (2 samples), Streptococcus
mitis (2 samples), Rothia dentocariosa (4 samples), the remaining
show a combination of organisms contributing to the pathway.
This phenomenon is not unique to the pyruvate metabolism
pathways. Similar patterns emerge when mapping the DE
transcripts to the glycolysis/gluconeogenesis pathway, TCA cycle,
lysine biosynthesis pathway, and butanoate metabolism to list a
few. In contrast, upregulation of the one carbon pool by folate
pathway is driven solely by the members of the orange complex,
the zinc/manganese/iron transporters are up-regulated only in
the members of the orange complex, and the fermentation of
lysine to butanoate is achieved only by Fusobacterium nucleatum
and Fusobacterium periodonticum in 17/48 disease samples.
Nonetheless, most metabolic pathways that are enriched under
disease conditions seem to have multiple contributing species
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FIGURE 4 | Pyruvate metabolism during disease. Rendering of the KEGG pathway of pyruvate metabolism annotated with the DE transcripts and the microbial
complexes from which they originate. Differential expression is represented by the black rectangle around the KEGG Orthology term. Background color for the KEGG
orthology term represents the microbial complex of the organism that showed differential expression. The pathway as a whole is up-regulated, but the individual
genes are up-regulated in diverse species supporting polymicrobial synergy during periodontitis.

fulfilling the metabolic niche within a single diseased sample, and
different steps along the pathway show increased prevalence due
to various contributory species.

Known Structured Non-coding RNA Are
Present in the DE Transcripts
In an effort to identify possible regulatory mechanisms associated
with disease, a screen for known ncRNAs in the DE transcripts
was carried out using Infernal 1.1.1. This screen returned a total
of 635 hits. All non-prokaryotic hits (e.g., U1 spliceosomal RNA,
Histone3) were removed leaving 181 known structured ncRNAs
in the assembled transcripts (Figure 6). The two predominant
classes of ncRNA identified are tRNAs and tmRNAs, which
constitute 41% and 19% of the identified ncRNAs identified.
These are critical RNA molecules responsible for essential
bacterial function, and display both up- and down-regulation

depending on the organism. These differences may reflect
a change in community members rather than a change in
functionality of the community. In addition, the 6S RNA
(constituting 3% of the ncRNAs identified) is up- or down-
regulated in various unaffiliated genera, and up-regulated in
a member of the orange complex – the genus Eubacterium.
There were also ncRNAs displaying only increased prevalence.
RNase P bacterial classes A and B together represent ∼9%
of DE ncRNAs. Class A RNaseP originates from members
of the blue, orange, and red complexes and unaffiliated
organisms, whereas class B only originates from unaffiliated
members of genus Streptococcus, consistent with the phylogenetic
distribution of the two RNase P classes. The bacterial small
signal recognition particle (SRP) RNA (∼3% of DE ncRNAs)
is also only up-regulated, predominantly by members of the
orange complex, namely – Fusobacterium, Parvimonas, and
Peptostreptococcus.
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FIGURE 5 | Contributors to pyruvate metabolism during disease. Relative contributions of different bacteria in the two pyruvate metabolism pathways in different
samples. (A) Relative contributions of various organisms in the fermentation of pyruvate to acetate and lactate in each disease sample. Top 15 contributing
organisms are listed by name and the rest are grouped as others. Columns are annotated by the study they come from. Different organisms perform similar functions
in different disease samples maintaining the functional signature despite the community composition. (B) Relative contribution of various organisms in the
fermentation of pyruvate to isobutanol. Again, functional signature is maintained despite differences in the organisms carrying out fermentation in the different
samples.

The cobalamin riboswitch is the most predominant regulatory
RNA identified (3% of DE ncRNAs). Transcripts containing the
cobalamin riboswitch from Tannerella and Porphyromonas (red
complex), Veillonella (purple complex), and Corynebacterium
(unaffiliated) are up-regulated, and transcripts from a species of
Streptococcus of the yellow complex are down-regulated. These
cobalamin riboswitches are associated with different genes in the
different organisms. The riboswitch is found upstream of the
4-hydroxybutyryl-CoA dehydratase gene (adenosylcobalamin
biosynthesis) in Tannerella; upstream of a hypothetical protein
in Porphyromonas; upstream of methylmalonyl-CoA mutase
large subunit gene (adenosylcobalamin dependent enzyme) in
Veillonella; upstream of a transferase gene in Corynebacterium;

and upstream of the ATP:cobalamin adenosyltransferase gene
(adenosylcobalamin biosynthesis) in Streptococcus. Other
riboswitches identified in the DE transcripts include the FMN,
glycine, lysine, SAM, and the cyclic di-AMP riboswitch (Nelson
et al., 2013). Apart from the ncRNAs listed above, many bacterial
small RNAs (sRNAs) were also identified from a variety of genera
in very low quantities. Various ribosomal protein regulatory
elements were also more prevalent in the disease associated
transcripts. These include the L10 leader from Fusobacterium sp.;
the L17 downstream element from a yellow complex member of
the genus Streptococcus; the L21 leader in an unaffiliated member
of the Streptococcus genus; the S15 leader in Parvimonas sp.; and
the L20 leader in Parvimonas sp., Veillonella sp., and a yellow
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FIGURE 6 | Known ncRNAs identified in differentially expressed transcripts. Known ncRNA identified in DE transcripts, and the genus from which the ncRNA
originates. Triangles colors correspond to the organism’s microbial complex, orientation depicts whether the transcript was up- or down-regulated, and the size
indicates the magnitude of log2 fold change. tRNA and tmRNA are the most abundantly identified ncRNAs. No known ncRNAs were identified in a large number of
DE transcripts.

complex member of Streptococcus. Although a variety of known
ncRNAs including riboswitches and small RNAs were identified
in the DE transcripts, the majority of DE transcripts display no
secondary structures of known function.

Novel Putative Non-coding RNA in the
DE Transcripts
The large number of DE transcripts containing no previously
described secondary structured RNA (Figure 6) were analyzed
using GraphClust to discover novel putative ncRNA structures.
This resulted in a total of 224 putative ncRNAs in the up-
regulated transcripts and 126 ncRNAs in the down-regulated
transcripts. Each of these was manually curated to remove
structures with minimal covariation in the predicted base pairing,
or lacking a defined genomic context. Of these ncRNAs, 9

putative ncRNAs from the up-regulated and 6 putative ncRNAs
from the down-regulated transcripts were scanned against the
genomic database Refseq77 using cmsearch (Infernal 1.1.1) to
identify additional homologs and determine the phylogenetic
distribution of the putative regulatory element. Alignments for
each of the 15 putative ncRNAs were analyzed using R-scape
(Rivas et al., 2016a,b) to estimate statistical support for the
predicted base pairs. Although the most of the putative ncRNAs
were identified upstream of the same gene across taxa, like
dihydroxyacetone kinase and the nitrogen fixation gene, many
were found to be antisense upstream or downstream of the
putatively regulated gene. A subset of the identified putative
novel ncRNAs and their phylogenetic distribution are described
below (Figure 7).

Of the 224-predicted putative ncRNAs in the up-regulated
transcripts, 9 sense and antisense putative ncRNAs were chosen
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FIGURE 7 | de novo discovered ncRNAs in differentially expressed transcripts. Transcripts that showed no known ncRNAs were subjected to de novo RNA structure
discovery using Graphclust (Heyne et al., 2012). Potential ncRNAs were manually curated and a subset of ncRNA were chosen based on predicted secondary

(Continued)
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FIGURE 7 | Continued
structure and evidence for covariation in the base pairing and/or conserved genomic context. Significance of the covariation in predicted base pairs was further
tested using R-scape (Rivas et al., 2016a,b). Red * indicate base pairs with E ≤ 0.05 and yellow ** indicate base pairs with E ≤ 1. (A) Novel putative ncRNAs
discovered in the up-regulated transcripts. Consensus sequence and secondary structure of each ncRNA after scanning against Refseq77 and removing hits that
did not share at least 60% of the secondary structure. Covarying base pairs are shaded. (B) Novel putative ncRNAs discovered in down-regulated transcripts
produced as described above for the up-regulated transcripts. (C) Phylogenetic distribution of novel putative ncRNAs in the Bacterial domain. The points represent
the percentage of genomes in which the ncRNA was found compared to the genomes in Refseq77 within a phylum. 13 of the 16 novel ncRNAs were found in a
fraction of all the Firmicutes genomes. ncRNA-26 (antisense of ribosomal protein S19) and ncRNA-94 (antisense of ribosomal protein S13) are the most widely
distributed across the Bacterial domain.

(Figure 7A) based on their secondary structure and genomic
context (Supplementary File S1). Three of these ncRNAs appear
to act as 5′-UTR cis regulators. The first, ncRNA-161, was
identified in a transcript from Streptococcus anginosus CCUG
39159 (logFC of ∼2.9). This ncRNA is in the beginning of
dihydroxyacetone kinase and is found only in the Firmicutes
(Figures 7A,C), almost exclusively in Streptococcus with the
exception of Bacillus sp. 1NLA3E. Our second candidate ncRNA-
116, was found upstream of the rnfA gene in Fusobacterium
nucleatum ATCC 25586. This nitrogen fixation gene involved
in electron transport to nitrogenase (Schmehl et al., 1993)
was found to have a fold change of ∼4.3 between healthy
and disease samples. Furthermore, the putative riboregulator is
more highly distributed, appearing in a diverse group of phyla
including Firmicutes, Proteobacteria, Bacteroidetes, Spirochaetes,
Thermotogae, and Fusobacteria (Figure 7C). The third candidate,
ncRNA-66, was identified upstream of a hypothetical protein
in Actinomyces oral taxon 175 F0384 that had a logFC of
∼1.42 and upstream of a hypothetical protein in Rothia
dentocariosa ATCC 17931 with a logFC of ∼1.41. Survey
of the phylogenetic distribution revealed that ncRNA-66 was
found distributed upstream of NAD-dependent dehydrolase,
UDP-glucose-4-epimerase, and hypothetical proteins across the
Actinobacteria and Spirochaetes (Figure 7C).

In addition to potential 5′UTR ncRNAs discussed above,
our analyses also found four up-regulated putative cis-antisense
regulators associated with ribosomal protein genes. Our first
candidate, ncRNA-196, was identified in three up-regulated
transcripts, located downstream and antisense of the ribosomal
protein S15 coding region. Two of these transcripts belonged to
strains of Rothia dentocariosa – M567 and ATCC 17931 with
logFC of ∼2.35 and 1.7, respectively, while the third transcript
belonged to Streptococcus oral taxon 071 73H25AP displayed a
logFC of 3.15. This putative ncRNA was found to be distributed
through Firmicutes and Actinobacteria – mostly in the genus
Streptococcus and in Bacillus megaterium WSH-002 within the
Firmicutes; and Rothia dentocariosa in the Actinobacteria. Our
second candidate, ncRNA-20 is another example of a putative
cis antisense regulator of a ribosomal protein, S14. It was
found in four up-regulated transcripts, three of which were
from the genus Actinomyces and one from Rothia; Actinomyces
oral taxon 175 F0384 displayed a logFC of ∼2.21; Actinomyces
oris K20: ∼1.5; and Actinomyces naeslundii MG1: ∼1.5; Rothia
dentocariosa M567: ∼1.8. Surveying Refseq77 revealed that this
ncRNA is distributed across the Actinobacteria, Deinococcus-
Thermus, and Firmicutes. A third candidate, ncRNA-3, is found
cis-antisense of ribosomal protein L20 and represented in two

transcripts, both from the genus Streptococcus – Streptococcus
peroris ATCC 700780 and Streptococcus cristatus ATCC 51100
with a fold change of∼1.69 and∼1.66, respectively. Phylogenetic
distribution of this ncRNA spans the Firmicutes, Proteobacteria,
and Bacteroidetes. Finally, we identified a putative ncRNA
antisense of ribosomal protein S19 (ncRNA-26). This ncRNA was
found in three highly up-regulated transcripts from Tannerella
forsythia (logFC ∼7.5), Fusobacterium nucleatum (logFC ∼4.0),
and Veillonella parvula (logFC ∼2.3). It is widely distributed in
the Bacterial domain. Of these antisense ncRNAs for ribosomal
proteins, we find additional evidence for expression of ncRNA-
196 and ncRNA-3 in our recent study of the Streptococcus
pneumoniae TIGR4 transcriptional profile (Warrier et al., 2018).

We also find up-regulated putative antisense ncRNAs
associated with a variety of other processes. Our first candidate,
ncRNA-9 is associated with the elongation factor G gene, fusA,
that is differentially expressed in Streptococcus oligofermentans
and Streptococcus anginosus. It is narrowly distributed and
is identified only in ∼6% of the Firmicutes genomes in
Refseq77. A second example is ncRNA-8, which is antisense and
downstream of the cell cycle protein gpsB. We find ncRNA-8
in Streptococcus infantarius ATCC BAA-102 with the transcript
having a logFC of ∼2.5. ncRNA-8 is narrowly distributed to only
Firmicutes and Tenericutes.

We also identified six promising antisense ncRNAs in the
down-regulated transcripts (Figures 7B,C). Many of these also
putatively regulate ribosomal proteins. ncRNA-118 was identified
antisense of ribosomal protein S9 in Streptococcus mutans UA
159 (down-regulated by ∼−1.48 fold). This putative ncRNA
is narrowly distributed across Refseq77 and is identified only
in Firmicutes and Tenericutes (Figure 7C). A second example
is ncRNA-73, which is antisense to the beginning of the
ribosomal protein S1 coding region in Actinomyces oral taxon
180 F0310 (down-regulated ∼−1.6 fold). Surveying the bacterial
genomes in Refseq77 revealed that this ncRNA is unique to the
Actinobacteria. A third example is the putative ncRNA antisense
of ribosomal protein S13, ncRNA-94, which was identified in
Granulicatella adiacens ATCC 49175 (down-regulated ∼−1.6
fold). ncRNA-94 is widely distributed across the Bacterial domain
and is absent only in certain phyla such as Acidobacteria,
Claocimonetes, and Deferribacteres.

In addition to ribosomal proteins, we also find down-regulated
transcripts antisense to genes involved in sugar metabolism.
ncRNA-56 was identified in the Klebsiella pneumoniae located
antisense to the beginning of the beta-galactosidase gene, and is
extremely down-regulated (-6.8 fold). Surveying its distribution,
ncRNA-56 is found in the genomes of other Actinobacteria,

Frontiers in Microbiology | www.frontiersin.org 13 April 2020 | Volume 11 | Article 482

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00482 April 7, 2020 Time: 17:3 # 14

Ram-Mohan and Meyer Meta Survey of Periodontitis Progression

Firmicutes, Proteobacteria, and Tenericutes. We also find two
antisense ncRNAs putatively regulating different steps of
glycolysis. ncRNA-38 was discovered antisense and overlapping
the beginning of the down-regulated phosphoglycerate mutase
gene. It was found in a fraction of the Firmicutes, Fusobacteria,
and Proteobacteria (Figure 7C). The other putative regulator
of glycolysis is ncRNA-68, which is found antisense and
overlapping the translational start of glyceraldehyde-3-phosphate
dehydrogenase. However, ncRNA-68 was found only in the
Firmicutes. By applying de novo discovery pipelines on the
DE transcripts, we have identified several promising sense and
antisense putative regulators of bacterial ribosomal proteins and
other metabolic genes that are associated with periodontitis as
reflected in their expression in the healthy vs. disease samples.

DISCUSSION

Here we present a meta study of three existing sets of
metagenomes and metatranscriptomes (Duran-Pinedo et al.,
2014; Jorth et al., 2014; Yost et al., 2015) related to oral
health and disease to identify commonality in the progression
of periodontitis. Although more commonly performed with
multiple metagenomes, combined metatranscriptomics analyses
enable us to increase statistical support for the findings that
are made, as well as understand the commonalities between
different studies. From our analyses we find that nearly ∼50% of
DE transcripts were from bacteria not previously classified into
disease associated complexes (Figure 1), and only 20% originate
from organisms of the red and orange complexes. This mimics
previous findings that showed putative virulence factors were up-
regulated in larger numbers of bacteria that did not belong to the
red or orange complexes (Yost et al., 2015). However, despite the
small number of DE transcripts originating from the members of
the red and orange complexes, these transcripts show the greatest
magnitude of up- or down-regulation.

Healthy samples do not cluster based on the transcript
expression, and this is not surprising since mature communities
are extremely diverse and often show variations between
individual sites within the oral cavity (Marsh, 2006). However,
similar expression patterns are also not observed across the
disease samples. This lack in correlation among the disease
samples is somewhat surprising since previous work suggested
that the disease associated microbiota are more similar than
health associated communities (Jorth et al., 2014). In this
case such differences may also be attributed to differences in
sample inclusion criteria and collection sites, batch effects, and
methodological biases, of individual studies. However, these are
unlikely to be the only reasons for such lack in correlation.
Meta-analyses of RNA-seq data from four studies comprising
of 6-13 tissues each from 11 vertebrate species using similar
cross sample normalization methods revealed clustering of
samples by tissue rather than study or species (Sudmant et al.,
2015). This suggests that true commonality between studies can
be inferred by these meta-analyses despite any batch effects
and methodological biases that might exist. To support this,
when comparing individual datasets, no single organism, even

at the genus level, was functionally active in all the disease
samples suggesting inherent variability between communities.
Our analyses also find highly active viruses in the periodontal
pocket (Figure 3A) of many disease samples. However, all but the
Mastadenovirus are plant related and may reflect the individual’s
diet during the sampling. This observed large variety in the
functionally active bacterial community composition supports
the polymicrobial nature of periodontitis.

Previous metatranscriptomics analyses identified a metabolic
shift in disease associated communities toward increased
nucleotide biosynthesis, iron acquisition, cobalamin transport,
and fermentation of lysine, histidine, and pyruvate (Jorth
et al., 2014; Yost et al., 2015). Our own GO term enrichment
analyses from the pooled datasets mimics these findings
suggesting that these functional shifts are common during
the progression of periodontitis. Further exploration of the
differentially expressed steps along the pyruvate metabolism
pathways using KEGG Orthology showed that different enzymes
are differentially expressed in diverse organisms. Even within
individual metatranscriptomes, we identified a large degree of
diversity in the organisms contributing to pyruvate fermentation
(Figures 4, 5A,B). Thus, our analysis supports a model where
a variety of different bacteria may drive the metabolic process,
supporting the polymicrobial dysbiotic nature of the periodontal
disease (Darveau, 2010; Hajishengallis and Lamont, 2012; Rosier
et al., 2014; Szafrański et al., 2015). Furthermore, our findings also
support the notion that periodontitis occurs despite idiosyncratic
differences between individuals as long as the community
undergoes a switch in its functional and metabolic signals
(Dabdoub et al., 2016).

Bacterial metabolic processes are finely controlled. Bacterial
non-coding RNAs (ncRNAs) modulate posttranscriptional gene
expression genes in response to environmental cues (Breaker,
2012) using a variety of mechanisms including: impacting
mRNA decay rate (Desnoyers et al., 2013), regulating translation
initiation (Urban and Vogel, 2007; Frohlich and Vogel, 2009),
and biosynthesis of ribosomal proteins (Deiorio-Haggar et al.,
2013). Given the switch in the functional and metabolic signal
during periodontal disease, we searched for putative ncRNAs
to drive such changes. Surveying the DE transcripts for known
ncRNAs revealed trends similar to those previously observed
(Duran-Pinedo et al., 2015) with tRNAs and tmRNAs the most
abundant ncRNAs identified in the DE transcripts (Figure 6). We
also identified several other ncRNAs including 6S, bacterial small
signal recognition particle, and the cobalamin, FMN, glycine,
lysine, and SAM riboswitches, ribosomal protein leaders, and
bacterial RNase P class A and B. However, no known ncRNAs
were identified in a large majority of DE transcripts.

De novo discovery of ncRNAs in DE transcripts lacking known
ncRNAs revealed many novel, putative structured elements.
Manual curation of these revealed promising ncRNAs identified
sense and antisense to coding regions. Some of the promising
ncRNAs and their phylogenetic distributions are presented
in Figure 7, several of which have many predicted base-
pairs with statistical support. We find putative sense ncRNAs
upstream or near the 5′-end of metabolic genes and antisense
ncRNAs corresponding to metabolic genes and many ribosomal
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protein genes including S1, S9, S13, S14, S14, S19, and L20.
Despite a suite of well-characterized RNA cis-regulators for
ribosomal protein genes (Deiorio-Haggar et al., 2013; Fu
et al., 2013, 2014; Slinger et al., 2014; Babina et al., 2015),
remarkably there is a dearth of evidence for wide-spread
antisense regulation. Only two examples have been described
to our knowledge: a sB induced (stress-induced) transcript
has been identified in B. subtilis that is anti-sense to rpsD,
resulting in downregulation of rpsD transcript and presumably
S4 expression (Mars et al., 2015), and an antisense ncRNA
spanning 14 genes of a ribosomal protein operon protects the
transcript by hiding RNase E sites providing the Prochlorococcus
MED4 RNA an enhanced half-life during phage infection
(Stazic et al., 2011). The seven putative antisense ncRNA we
discovered are likely novel regulators of bacterial ribosomal
proteins that might conform to the aforementioned mechanisms
of actions or have completely novel mechanisms but are likely
worthy of further study in the future as potential targets
for antimicrobials treating or preventing periodontitis. This
combination of known and novel putative ncRNAs regulating
metabolic processes and translational machinery likely facilitate
the progression of the disease.
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