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Abstract
Rapid progress in the development of next-generation sequencing (NGS) technologies in recent years has provided
many valuable insights into complex biological systems, ranging from cancer genomics to diverse microbial
communities. NGS-based technologies for genomics, transcriptomics, and epigenomics are now increasingly focused
on the characterization of individual cells. These single-cell analyses will allow researchers to uncover new and
potentially unexpected biological discoveries relative to traditional profiling methods that assess bulk populations.
Single-cell RNA sequencing (scRNA-seq), for example, can reveal complex and rare cell populations, uncover regulatory
relationships between genes, and track the trajectories of distinct cell lineages in development. In this review, we will
focus on technical challenges in single-cell isolation and library preparation and on computational analysis pipelines
available for analyzing scRNA-seq data. Further technical improvements at the level of molecular and cell biology and
in available bioinformatics tools will greatly facilitate both the basic science and medical applications of these
sequencing technologies.

Introduction
Mapping genotypes to phenotypes is one of the long-

standing challenges in biology and medicine, and a pow-
erful strategy for tackling this problem is performing
transcriptome analysis. However, even though all cells in
our body share nearly identical genotypes, transcriptome
information in any one cell reflects the activity of only a
subset of genes. Furthermore, because the many diverse
cell types in our body each express a unique tran-
scriptome, conventional bulk population sequencing can
provide only the average expression signal for an
ensemble of cells. Increasing evidence further suggests
that gene expression is heterogeneous, even in similar cell
types1–3; and this stochastic expression reflects cell type
composition and can also trigger cell fate decisions4,5.
Currently, however, the majority of transcriptome analysis
experiments continue to be based on the assumption that

cells from a given tissue are homogeneous, and thus, these
studies are likely to miss important cell-to-cell variability.
To better understand stochastic biological processes, a
more precise understanding of the transcriptome in
individual cells will be essential for elucidating their role
in cellular functions and understanding how gene
expression can promote beneficial or harmful states.
The sequencing an entire transcriptome at the level of a

single-cell was pioneered by James Eberwine et al.6 and
Iscove and colleagues7, who expanded the complementary
DNAs (cDNAs) of an individual cell using linear ampli-
fication by in vitro transcription and exponential ampli-
fication by PCR, respectively. These technologies were
initially applied to commercially available, high-density
DNA microarray chips8–11 and were subsequently adap-
ted for single-cell RNA sequencing (scRNA-seq). The first
description of single-cell transcriptome analysis based on
a next-generation sequencing platform was published in
2009, and it described the characterization of cells from
early developmental stages12. Since this study, there has
been an explosion of interest in obtaining high-resolution
views of single-cell heterogeneity on a global scale. Cri-
tically, assessing the differences in gene expression
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between individual cells has the potential to identify rare
populations that cannot be detected from an analysis of
pooled cells. For example, the ability to find and char-
acterize outlier cells within a population has potential
implications for furthering our understanding of drug
resistance and relapse in cancer treatment13. Recently,
substantial advances in available experimental techniques
and bioinformatics pipelines have also enabled research-
ers to deconvolute highly diverse immune cell populations
in healthy and diseased states14. In addition, scRNA-seq is
increasingly being utilized to delineate cell lineage rela-
tionships in early development15, myoblast differentia-
tion16, and lymphocyte fate determination17. In this
review, we will discuss the relative strengths and weak-
nesses of various scRNA-seq technologies and computa-
tional tools and highlight potential applications for
scRNA-seq methods.

Single-cell isolation techniques
Single-cell isolation is the first step for obtaining tran-

scriptome information from an individual cell. Limiting
dilution (Fig. 1a) is a commonly used technique in which
pipettes are used to isolate individual cells by dilution.
Typically, one can achieve only about one-third of the
prepared wells in a well plate when diluting to a con-
centration of 0.5 cells per aliquot. Due to this statistical
distribution of cells, this method is not very efficient.
Micromanipulation (Fig. 1b) is the classical method used
to retrieve cells from early embryos or uncultivated
microorganisms18,19, and microscope-guided capillary
pipettes have been utilized to extract single cells from a
suspension. However, these methods are time-consuming
and low throughput. More recently, flow-activated cell
sorting (FACS, Fig. 1c) has become the most commonly
used strategy20 for isolating highly purified single cells.
FACS is also the preferred method when the target cell
expresses a very low level of the marker. In this method,
cells are first tagged with a fluorescent monoclonal anti-
body, which recognizes specific surface markers and
enables sorting of distinct populations. Alternatively,
negative selection is possible for unstained populations. In
this case, based on predetermined fluorescent parameters,
a charge is applied to a cell of interest using an electro-
static deflection system, and cells are isolated magneti-
cally. The potential limitations of these techniques include
the requirement for large starting volumes (difficulty in
isolating cells from low-input numbers <10,000) and the
need for monoclonal antibodies to target proteins of
interest. Laser capture microdissection (Fig. 1d) utilizes a
laser system aided by a computer system to isolate cells21

from solid samples.
Microfluidic technology (Fig. 1e) for single-cell isolation

has gained popularity due to its low sample consumption
and low analysis cost together with the fact that it enables

precise fluid control22. Importantly, the nanoliter-sized
volumes required for this technique substantially reduce
the risk of external contamination. Microfluidics was
initially utilized in a small number of biochemical assays
for the analysis of DNA and proteins23–25. However,
complex arrays have now been developed that permit
individual control of valves and switches26,27, thus
increasing their scalability. Notably, the rapid expansion
of microfluidic technology in recent years has trans-
formed the research capabilities of both basic scientists
and clinicians. Applications of this technology include
long-term analysis of single bacterial cells in a micro-
fluidic bioreactor28 and the quantification of single-cell
gene expression profiles in a highly parallel manner29. A
widely used commercial platform, Fluidigm C1, provides
automated single-cell lysis, RNA extraction, and cDNA
synthesis for up to 800 cells in parallel on a single chip.
This platform offers lower false positives and less bias
than tube-based technologies. However, its major draw-
backs include the number of cells (>1000) required for
capture and the homogeneous size limit of the cells being
analyzed. Another promising technique for single-cell
isolation is microdroplet-based microfluidics30,31, which
allows the monodispersion of aqueous droplets in a
continuous oil phase. The lower volume required by this
system compared to standard microfluidic chambers
enables the manipulation and screening of thousands to
millions of cells at a reduced cost. The commercial
Chromium system from 10× Genomics offers high-
throughput profiling of 3′ ends of RNAs of single cells
with high capture efficiency. Consequently, this high-
throughput processing method enables analysis of rare
cell types in a sufficiently heterogeneous biological space.
However, clinical samples must be handled with caution
in order to establish an appropriate milieu that does not
disturb existing cellular characteristics.
To isolate rare circulating tumor cells (CTCs), for

example, CellSearch (the first clinically validated, Food
and Drug Administration-cleared test) developed a sys-
tem to enumerate CTCs in patient blood samples (Fig. 1f).
This system uses a magnet conjugated with antibodies to
detect CTCs of epithelial origin (CD45− and EpCAM+).

Comparative analysis for scRNA-seq library
preparation
Common steps required for the generation of scRNA-

seq libraries include cell lysis, reverse transcription into
first-strand cDNA, second-strand synthesis, and cDNA
amplification. In general, cells are lysed in a hypotonic
buffer, and poly(A)+ selection is performed using poly
(dT) primers to capture messenger RNAs (mRNAs)
(Fig. 1g). It has been well established that due to Poisson
sampling, only 10–20% of transcripts will be reverse
transcribed at this stage32. This low mRNA capture
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efficiency is an important challenge that remains in
existing scRNA-seq protocols and necessitates a highly
efficient cell lysing strategy.

For cDNA preparation, an engineered version of the
Moloney murine leukemia virus reverse transcriptase with
low RNase H activity and increased thermostability is

Fig. 1 Single-cell isolation and library preparation. a The limiting dilution method isolates individual cells, leveraging the statistical distribution of
diluted cells. b Micromanipulation involves collecting single cells using microscope-guided capillary pipettes. c FACS isolates highly purified single
cells by tagging cells with fluorescent marker proteins. d Laser capture microdissection (LCM) utilizes a laser system aided by a computer system to
isolate cells from solid samples. e Microfluidic technology for single-cell isolation requires nanoliter-sized volumes. An example of in-house
microdroplet-based microfluidics (e.g., Drop-Seq). f The CellSearch system enumerates CTCs from patient blood samples by using a magnet
conjugated with CTC binding antibodies. g A schematic example of droplet-based library generation. Libraries for scRNA-seq are typically generated
via cell lysis, reverse transcription into first-strand cDNA using uniquely barcoded beads, second-strand synthesis, and cDNA amplification
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typically used in first-strand synthesis33,34. Second strands
can be generated using either poly(A) tailing12,35 or by a
template-switching mechanism36,37. This latter approach
ensures uniform coverage without loss of strand-
specificity compared to the former. The small amount
of synthesized cDNAs is then further amplified using
conventional PCR or in vitro transcription. The in vitro
transcription method38,39 can amplify templates linearly
but is time consuming, as it requires an additional reverse
transcription, which may lead to 3′ coverage biases40.
Smart-seq2 (improved version of Smart-seq)41 generates
full-length transcripts and is thus suitable for the dis-
covery of alternative-splicing events and allele-specific
expression using single-nucleotide polymorphisms42.
Currently, the Illumina platform is widely used (e.g.,
HiSeq4000 and NextSeq500) for the sequencing step.
Particularly, the benchtop MiSeq sequencer provides
rapid turnaround times, yielding ~30 million paired-end
reads in a one day.
In-depth transcriptome analysis requires the profiling of

a large number of cells. To cope with the associated
sequencing costs, previous methods have focused on just
the 5′ or 3′ ends of transcripts36,38. Recently, researchers
have incorporated unique molecular identifiers (UMIs) or
barcodes (random 4–8 bp sequences) in the reverse
transcription step36,38,43. Considering that there are
105–106 mRNA molecules present in a single cell and
>10,000 expressed genes, at least 4-bp UMIs (distin-
guishing 44= 256 molecules) are required. Using this
strategy, each read can be assigned to its original cell by
effectively removing PCR bias and thus improving accu-
racy. These barcoding approaches leverage molecular
counting and demonstrate better reproducibility than
indirect quantification of molecules using sequencing
read-based terminologies, such as RPKM/FPKM (read/
fragment per kilobase per million mapped reads)32,44.
However, current UMI tag-based approaches sequence
either the 5′ or 3′ end of the transcript and are thus not
suited for allele-specific expression or isoform usage. A

comparison of representative scRNA-seq library genera-
tion methods is presented in Table 1.

Computational challenges in scRNA-seq
Although experimental methods for scRNA-seq are

increasingly accessible to many laboratories, computa-
tional pipelines for handling raw data files remain limited.
Some commercial companies provide software tools, such
as 10× Genomics and Fluidigm, but this area remains in
its infancy, and gold-standard tools have yet to be devel-
oped. In the sections below, we will discuss current
bioinformatics tools available for the analysis of scRNA-
seq data.

Pre-processing the data
Once reads are obtained from well-designed scRNA-seq

experiments, quality control (QC) is performed. Of the
existing QC tools available, FastQC (Babraham Institute,
http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) is a popular tool for inspecting quality distribu-
tions across entire reads. Low-quality bases (usually at the
3′ end) and adapter sequences can be removed at this pre-
processing step. Read alignment is the next step of
scRNA-seq analysis, and the tools available for this pro-
cedure, including the Burrows-Wheeler Aligner (BWA)45

and STAR46 are the same as those used in the bulk RNA-
seq analysis pipeline. When UMIs are implemented, these
sequences should be trimmed prior to alignment. The
RNA-seQC47 program provides post-alignment summary
stats, such as uniquely mapped reads, reads mapped to
annotated exonic regions, and coverage patterns asso-
ciated with specific library preparation protocols. When
adding transcripts of known quantity and sequence
(external spike-ins) for calibration and QC, a low-
mapping ratio of endogenous RNA to spike-ins would
be an indication of a low-quality library caused by RNA
degradation or inefficiently lysed cells. A schematic
overview of the single-cell analysis pipeline is described in
Fig. 2.

Table 1 Comparison of scRNA-seq library preparation methods

Platform Smart-seq MARS-seq CEL-seq Drop-seq

Region Full-length 3′ end 3′ end 3′ end

Target read depth (per cell) (106) (104)–(105) (104)–(105) (104)–(105)

UMI None Yes Yes Yes

Amplification PCR IVT IVT PCR

Feature Isoform

analysis

FACS sorting

Multiplex barcoding

Linear amplification

(pool cDNAs for IVT)

Emulsion

Low cost

scRNA single-cell RNA sequencing, Smart-seq novel full-transcriptome mRNA-sequencing protocol, CEL-seq cell expression by linear amplification and sequencing,
Drop-seq droplet sequencing, IVTin vitro transcription, UMIunique molecular identifier, FACSflow-activated cell sorting, MARS-seqmassively parallel RNA single-cell
sequencing framework
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After alignment, reads are allocated to exonic, intronic,
or intergenic features using transcript annotation in
General Transcript Format. Only reads that map to exo-
nic loci with high mapping quality are considered for
generation of the gene expression matrix (N (cells)×m
(genes)). A distinctive feature of scRNA-seq data is the
presence of zero-inflated counts due to reasons such as
dropout or transient gene expression. To account for this
feature, normalization must be performed; normalization
is necessary to remove cell-specific bias, which can affect

downstream applications (e.g., determination of differ-
ential gene expression).
The read count for a gene in each cell is expected to be

proportional to the gene-specific expression level and cell-
specific scaling factors (random). These nuisance vari-
ables, including capture and reverse transcription effi-
ciency and cell-intrinsic factors, are usually difficult to
estimate and are thus typically modeled as fixed factors.
Although nuisance variables can be jointly estimated with
expression counts for normalization48,49, fits are made to

Fig. 2 A schematic overview of scRNA-seq analysis pipelines. scRNA-seq data are inherently noisy with confounding factors, such as technical
and biological variables. After sequencing, alignment and de-duplication are performed to quantify an initial gene expression profile matrix. Next,
normalization is performed with raw expression data using various statistical methods. Additional QC can be performed when using spike-ins by
inspecting the mapping ratio to discard low-quality cells. Finally, the normalized matrix is then subjected to main analysis through clustering of cells
to identify subtypes. Cell trajectories can be inferred based on these data and by detecting differentially expressed genes between clusters
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only a particular statistical model, and the procedure is
computationally demanding. In practice, raw expression
counts are normalized using scaling factor estimates by
standardizing across cells, assuming that most genes are
not differentially expressed. The most commonly used
approaches include RPKM50, FPKM, and transcripts per

kilobase million (TPM) (Fig. 3a, b)51. RPKM, for example,
is calculated as (exonic read×109)/(exon length×total
mapped read). The only difference between RPKM and
FPKM is that FPKM considers the read count in one of
the aligned mates if paired-end sequencing is performed.
TPM is a modification of RPKM in which the sum of all

Fig. 3 Methods for the quantification of expression in scRNA-seq. a Reads per kilobase (RPK) is defined by multiplying the read counts of an
isoform (i) by 1000 and dividing by isoform length. Reads per kilobase per million (RPKM) is defined to compare experiments or different samples
(cells) so that additional normalization by the total fragment count is integrated in the denominator term, which is expressed in millions. b The metric
TPM takes other isoforms into account, which contrasts with the RPKM metric. This metric quantifies the abundance of isoforms (i) using the RPK
fraction across isoforms. c A schematic example illustrates the difference between the RPKM and TPM measures. TPM is efficient for measuring
relative abundance because total normalized reads are constant across different cells. d However, we should be careful to interpret the fact that
differentially expressed genes can be falsely annotated as a result of overexpression of the other isoforms
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TPMs in each sample is consistent across samples (exonic
read×mean read length×106/exon length×total tran-
script). This approach makes comparisons of mapped
reads for each gene easier than PKM/FPKM-based esti-
mates because the sum of normalized reads in each
sample is the same in TPM (Fig. 3c). These library-size-
based normalization methods may be insufficient, how-
ever, when detecting differentially expressed genes. Con-
sider the case when two genes are being expressed in two
conditions (A and B). In condition A, the two genes are

equally expressed, whereas in condition B, gene B has
two-fold higher expression than gene A. If we convert this
absolute expression into relative expression, one might
conclude that gene A is differentially expressed, although
this effect is only a consequence of its comparison with
gene B (Fig. 3d). As observed previously52, if a particular
set of mRNAs is highly expressed in one condition and
not in the other, non-differentially genes may be falsely
identified as consistently down-regulated.

Fig. 4 Addressing confounding factors in scRNA-seq. a Technical batch effects are a well-known problem in scRNA-seq when the experiment
(condition) is conducted in different plates (environment). Cell-specific scaling factors, such as capture and RT efficiency, dropout/amplification bias,
dilution factor, and sequencing amount, must be considered in the normalization step. b Single-cell latent variable model (scLVM) can effectively
remove the variation explained by the cell-cycle effect. The clear separation is lost in scLVM-corrected expression data using PCA (visualization
adapted from ref. 58). c The expression value y can be modeled as a linear combination of r technical and biological factors and k latent factors with a
noise matrix
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To overcome the inherent problems in within-sample
normalization methods, alternative approaches have been
developed52–54. The trimmed mean of M-values (TMM)
method and DESeq are the two most popular choices for
between-sample normalization. The basic idea behind
these frameworks is that highly variable genes dominate
the counts, thus skewing the relative abundance in
expression profiles. First, TMM picks reference samples,
and the other samples are considered test samples. M-
values for each gene are calculated as the genes’ log
expression ratios between tests to the reference sample.
Then, after excluding the genes with extreme M-values,
the weighted average of these M-values is set for each test
sample. Similar to TMM, DESeq calculates the scaling
factor as the median of the ratios of each gene’s read
count in the particular sample over its geometric mean
across all samples. However, both approaches (TMM,
DESeq) will perform poorly when a large number of zero
counts are present. A normalization method based on
pooling expression values55 were developed to avoid sto-
chastic zero counts which is robust to differentially
expressed genes in the data. The selection of highly
variable genes is sensitive to normalization methods and
therefore affects the analysis of data heterogeneity because
most studies use highly variable genes to reduce dimen-
sionality before clustering analysis. The potential for
combining within-sample and between-sample normal-
ization methods is largely unexplored and still an active
area of research that will require rigorous testing.
After normalization, the next step is to estimate con-

founding factors. We know that observed read counts are
affected by a combination of different factors, including
biological variables and technical noise (Fig. 4). Critically,
the small amount of starting material used in scRNA-seq
may amplify the effects of technical noise. This amplifi-
cation can be effectively countered using spike-ins, such
as the ERCC Spike-In Mix from Ambion56, but some
droplet-based applications43,57 cannot easily incorporate
this system. Unlike conventional bulk RNA-seq, which
compares differentially expressed genes under multiple
conditions, in scRNA-seq experiments, cells from one
condition are generally captured and sequenced (Fig. 4a).
Therefore, batch effects, systematic differences that are
unrelated to any biological variation and result from
sample preparation conditions, are often prominent.
Repeat analysis of multiple cells from a condition would
aid in evaluating technical variability due to batch effects;
however, this approach requires additional costs and
labor. Furthermore, in addition to technical noise, biolo-
gical variables (e.g., state, cycle, size, and apoptosis) may
affect gene expression profiles. Recently, to address this
issue, the scLVM58 method was developed and has been
shown to be useful for removing the variation explained
by latent variables. This method was applied to T cell

differentiation to uncover unknown subpopulations and
enabled the identification of correlated genes crucial for
TH2 cell differentiation, which would have otherwise not
been possible when cell cycle covariates are present
(Fig. 4b). The management of known and unknown
variables can also be addressed with complex statistical
models (Fig. 4c) using linear combinations that incorpo-
rate random noise.

Cell type identification
Characterization of the numerous cells in the human

body is a daunting task. As Kacser and Waddington59

noted in his metaphor for cellular plasticity, cells possess
an enormous “landscape” of potential states that they can
adopt over the course of development and in disease
progression. However, few reliable markers exist for any
given cell type, and hidden diversity remains even with
well-established markers (e.g., cluster of differentiation
(CD) markers in immune cells). To avoid the “the curse of
dimensionality,” dimension reduction is typically per-
formed after read count normalization in scRNA-seq
experiments. Principal component analysis (PCA) is a
widely used unsupervised linear dimensionality reduction
method. By projecting cells into 2D space, we can easily
visualize samples with increased interpretability (Fig. 5).
Additional non-linear dimensionality reduction methods,
such as t-distributed stochastic neighbor embedding (t-
SNE)60, multidimensional scaling, locally linear embed-
ding (LLE), and Isomap61–63, can also be utilized. t-SNE is
implemented in the popular Cell Ranger pipeline (10×
Genomics) and in Seurat (http://satijalab.org/seurat/) in
the R package. Although LLE and Isomap demonstrate
superior performance for microarray data64, these meth-
ods should be further evaluated in the context of scRNA-
seq datasets. We further caution that dimension reduction
may result in the loss important biological information.
Clustering is another useful method to detect low-

quality cells by specifically identifying clusters that are
enriched in mitochondrial (mt) genes. This approach is
based on a study suggesting that mtDNA genes are
upregulated65 and cytoplasmic RNA is lost when the cell
membrane is ruptured. Once partitioning has been com-
pleted, the next step is to identify marker genes that are
differentially expressed between different clusters. The
simplest statistical model for count data would be Pois-
son, which uses only one parameter (variance=mean).
To account for various sources of noise in single-cell data,
however, a better fit can be obtained by using a Negative
Binomial model (variance=mean+ over-
dispersion×mean2; for most genes, overdispersion is >0).
Alternatively, error models can be fitted to account for
technical noise (e.g., dropout). The single-cell differential
expression analysis platform66 uses a mixture of two
probabilistic processes: one for transcripts that are
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properly amplified and correlated with their abundance
and another for transcripts that are not amplified or
detected. Notably, although mixture models provide
advantages over unimodal models, heterogeneous cell
distribution often produces bimodal distributions3.

Inferring regulatory networks
The elucidation of gene regulatory networks (GRNs)

can enhance our understanding of complex cellular pro-
cess in living cells, and these networks generally reveal
regulatory interactions between genes and proteins

Fig. 5 Applications of scRNA-seq computational approaches. Cells are living in a dynamic context interacting with their surrounding
environment. PCA can be used to identify known and unknown cell clusters. Cell hierarchy reconstruction can be performed after 2D projection of
normalized gene expression profiles. Decoding the regulatory network integrates pseudotime-inferred trajectories and clustering gene expression
information in 2D space
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(Fig. 5)67,68. It should be noted that GRN determination is
not the final outcome of a biological study, but rather an
intermediate bridge connecting genotypes and pheno-
types. Previously, microarray-based bulk RNA-seq was
utilized to uncover these networks69,70, although scRNA-
seq has been more recently applied for this purpose71.
Single-cell genomics have made it easier to infer GRNs, as
typical experiments allow the capture of thousands of cells
in one condition, which increases statistical power.
However, GRN determination remains challenging due to
intracellular heterogeneity and the vast number of
gene–gene interactions.
Numerous computational algorithms have been devel-

oped to address the massive amount of gene expression
data generated from bulk population analysis and uncover
GRNs72. These methods can be categorized into machine
learning-based73–75, co-expression-based76, model-
based77,78, and information theory-based approaches.
Co-expression-based approaches are perhaps the simplest
method for identifying putative relationships, but these
approaches are unable to model the precise dynamics of
cellular systems. Model-based inference, such as Bayesian
networks, uses many parameters and is time consuming.
Additionally, probabilistic graphical models require
searching for all possible paths for many genes, which is
an NP-hard problem79. More recently, information
theory-based methods utilizing mutual information and
conditional mutual information have gained popularity
because they are assumption-free and can measure non-
linear associations between genes80.
From a single-cell view, the stochastic features of a

single cell must be properly integrated into GRN models.
As noted above, technical noise is difficult to distinguish
from true biological variability, and the remaining varia-
bility is still poorly understood. However, the asynchro-
nous nature of single-cell data, as well as the presence of
multiple cell subtypes, may provide the inherent statistical
variability required to detect putative regulatory rela-
tionships. Several notable methods have been developed
to identify GRNs from single-cell data81–83, and these
have been successfully applied to T cell biology, providing
novel insights from co-expression analysis data84.

It is worth emphasizing that the detection of regulatory
relationships should be possible in a reasonable timescale,
as transcriptional changes do not persist forever. Further,
the directionality between genes in identified networks
must be validated and refined with perturbation studies or
temporal data in order to infer causality.

Cell hierarchy reconstruction
Individual cells are continually undergoing dynamic

processes and responding to various environmental sti-
muli. Some of these responses are fast, whereas others can
be much slower and can occur over the course of many
years (e.g., pathogenesis). This dynamic process is parti-
cularly reflected in a cell’s molecular profile, including
RNA and protein content. To study genome-scale
dynamic processes in bulk cells, the cells must be syn-
chronized using sophisticated techniques85. In single-cell
systems, however, cells are unsynchronized, which
enables the capture of different instantaneous time points
along an entire trajectory. We can then apply algorithms
to reconstruct dynamic cellular trajectories with respect
to differentiation or cell cycle progression (Table 2).
The concept of “pseudotime” was introduced in the

Monocle16 algorithm, which measures a cell’s biological
progression (Fig. 5). Here, the notion of “pseudotime” is
different from “real time” because cells are sampled all at
once. Maximum parsimony is the basic principle that
infers cellular dynamics and has been widely used in
phylogenetic tree reconstruction in evolutionary biol-
ogy86,87. Monocle initially builds graphs in which the
nodes represent cells and the edges correspond to each
pair of cells. The edge weights are calculated based on the
distance between cells in the matrix obtained from
dimensionality reduction using independent component
analysis (ICA). The minimum spanning tree (MST)
algorithm is then applied to search for the longest back-
bone. The main limitation of these methods is that the
constructed tree is highly complex, and therefore, the user
must specify k branches to search. A more advanced
version, Monocle288, has been recently proposed; this
version is much faster and more robust than Monocle and
incorporates unsupervised data-driven approaches

Table 2 Comparison of trajectory inference methods using scRNA-seq

Methods Dimensionality reduction Main strategy Required input Environment

SCUBA pseudotime t-SNE Principal curve None Matlab

Monocle ICA and MST Differential expression Time points R (Bioconductor)

Waterfall PCA, K-means and MST Clustering cells None R

Wishbone PCA, Diffusion maps, Boostrap k-NNG Ensemble Starting cell Python

scRNA single-cell RNA sequencing, SCUBA single-cell clustering using bifurcation analysis, t-SNE t-distributed stochastic neighbor embedding, ICA independent
component analysis, MST minimum spanning tree, PCA principal component analysis, k-NNG k-nearest neighbor graph
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Fig. 6 Many facets of scRNA-seq applications. a Intratumor heterogeneity poses challenges in cancer genomics. scRNA-seq can tackle this
problem by effectively identifying subgroups based on responsiveness in various contexts. b Liquid biopsy provides exciting opportunities, and
scRNA-seq of CTCs could provide novel insights into biomarker characterization. c scRNA-seq can infer lineage information from the early
developmental stage and can identify novel differential markers
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utilizing reversed graph embedding techniques. For cases
in which temporal information is available, supervised
learning-based approaches can be more accurate. Single-
cell clustering using bifurcation analysis (SCUBA)89, for
example, implements bifurcation analysis and has been
used to recover lineages during early development in
mouse embryos from gene expression profiles at multiple
time-point measurements.
scRNA-seq has also been successfully applied to

reconstruct lineages during in vivo neurogenesis90,91. One
adaptation of this technique, Div-Seq, bypasses the need
for tissue dissociation by directly sequencing isolated
nuclei. As enzymatic dissociation is known to disrupt
RNA composition and compromise integrity, studying
cells from complex tissues (e.g., brain) would have been
impossible without this modification. Initial approaches
for trajectory inference were based on linear paths; how-
ever, recent work has integrated the concept of branch-
ing92, which may be crucial for understanding dynamic
cell systems. Lander and colleagues93 have recently pro-
posed a more flexible probabilistic framework and utilized
this approach to reconstruct known and unknown cell
fate maps during the reprogramming of fibroblasts to
induced pluripotent stem cells. We expect that additional
biological insights gleaned from cell lineage determination
or from experiments involving the perturbation of reg-
ulators at branching points will be valuable for enhancing
our understanding of complex cellular systems. Even
though the primary focus of this article is RNA-seq-based
methods, we also note that cellular hierarchy can also be
reconstructed from proteomic94,95 or epigenomic
measures96.

Potential applications and future prospects
scRNA-seq is revolutionizing our fundamental under-

standing of biology, and this technique has opened up
new frontiers of research that go beyond descriptive stu-
dies of cell states. One can imagine numerous exciting
medical applications that can utilize this technology.
Tumor heterogeneity is a common phenomenon that can
occur both within and between tumors, and we expect
that scRNA-seq can be applied to illuminate unknown
tumor features that cannot be discerned from conven-
tional bulk transcriptomic studies. For example, this
technique could be used to assess transcriptional het-
erogeneity during the development of drug tolerance in
cancer cells97 and to analyze the expression profiles of
specific pathways (Fig. 6a). In this way, scRNA-seq may
help generate models of cancer evolution. Additionally,
this technique could also be applied to reconstruct clonal
and phylogenetic relationships between cells by modeling
transcriptional kinetics98.
Recently, the analysis of CTCs in blood has heralded a

golden age of the “liquid biopsy,” highlighting the

potential to utilize this DNA as a clinical diagnostic
marker (Fig. 6b). It is likely that scRNA-seq can be used to
discover coding mutations and fusion genes from CTCs.
We further anticipate that RNA can be assessed as a part
of routine clinical evaluation, and parallel measurements
of both genomic and transcriptomic information in the
same cell could elucidate the phenotypic consequences of
DNA and RNA variants.
Lineage tracing is a long-standing fundamental question

in biology aimed at understanding how a single-celled
embryo gives rise to various cells types that are organized
into complex tissue and organs (Fig. 6c). As a proof-of-
concept, researchers at Caltech have recently developed a
method using the sequential readout of mRNA levels in a
single cell to reconstruct lineage phylogeny over many
generations99. Another interesting potential application of
scRNA-seq includes identifying genes involved in stem
cell regulatory networks. We are just now starting to
understand how stem cells are triggered to become
functional cells, which is information that is essential for
understanding the basic biological processes underlying
human health and diseases.
As sequencing costs decrease, it will be possible to

routinely analyze more than a million cells within the next
5 years100. The Human Cell Atlas101, which aims to map
35 trillion cells from the human body, has already started
a few pilot studies. The initial plan is to sequence all RNA
transcripts in 30 million to 100 million cells and then use
gene expression profiles to classify and identify new cell
types. It is anticipated, for example, that scRNA-seq of
highly diverse immune system cells will deepen our
understanding of their inherent heterogeneity, particu-
larly regarding lymphocyte behavior. A study from the
Broad Institute has further highlighted the utility of
scRNA-seq by uncovering a subset of 18 seemingly
identical immune cells that show stark differences in gene
expression patterns from cell to cell14. Several emerging
scRNA-seq studies have focused on deepening our
understanding of cells in the brain102,103. It is likely that
the information gleaned from these analyses can be uti-
lized to identify novel pathways involved in neuro-related
diseases, providing new therapeutic targets for biomarker
discovery. We envision that future applications of scRNA-
seq in biology and biomedical research will also provide
novel insights into physiological structure–function rela-
tionships in various tissue and organs. Ultimately, with
improvements in the availability of standardized bioin-
formatics pipelines, this work will reveal novel insights
into biological systems and create new opportunities for
therapeutic development.
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