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Abstract

Human calprotectin (CP) is a metal-chelating antimicrobial protein of the innate immune response. 

The current working model states that CP sequesters manganese and zinc from pathogens. We 

report the discovery that CP chelates iron and deprives bacteria of this essential nutrient. 

Elemental analysis of CP-treated growth medium establishes that CP reduces the concentrations of 

manganese, iron, and zinc. Microbial growth studies reveal that iron depletion by CP contributes 

to the growth inhibition of bacterial pathogens. Biochemical investigations demonstrate that CP 

coordinates Fe(II) at an unusual hexahistidine motif, and the Mössbauer spectrum of 57Fe(II)-

bound CP is consistent with coordination of high-spin Fe(II) at this site (δ = 1.20 mm/s, ΔEQ = 

1.78 mm/s). In the presence of Ca(II), CP turns on its iron-sequestering function and exhibits sub-

picomolar affinity for Fe(II). Our findings expand the biological coordination chemistry of iron 

and support a previously unappreciated role for CP in mammalian iron homeostasis.

Introduction

Transition metal ions are essential nutrients for all organisms.1 In the vertebrate host, 

microbial pathogens must acquire first-row transition metal ions including iron, manganese, 

and zinc, to replicate, colonize, and cause disease.2–6 Metal-ion withholding is an accepted 

mechanism of immunity, often termed nutritional immunity,2,4 and a number of metal-

chelating host-defense proteins are utilized during the early stages of infection to prevent 

microbial acquisition of essential nutrient metals. In humans and other mammals, one of 

these proteins is calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/14 oligomer, 
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calgranulins A and B).4,6–8 Abundant in neutrophils and produced by epithelial cells, CP is 

released at sites of infection and has antimicrobial activity attributed to its ability to 

scavenge manganese and zinc.7–13

CP is a member of the S100 protein family, and the human form exists as either a 

heterodimer (αβ) or heterotetramer (α2β2) of S100A8 (α) and S100A9 (β).14 Each subunit 

contains two EF-hand domains, at least one of which is understood to bind Ca(II), and two 

additional sites for transition metal ions form at the S100A8/S100A9 heterodimer interface 

(Figure 1, Supplementary Results, Supplementary Figure 1).10–13,15,16 Site 1 is a His3Asp 

motif comprised of (A8)His83, (A8)His87, (A9)His20, and (A9)Asp30 (Figure 1b). Site 1 

binds Zn(II) with high affinity and has relatively weak affinity for Mn(II).10,11 Site 2 is an 

unusual histidine-rich site that was first identified as a His4 motif comprising (A8)His17, 

(A8)His27, (A9)His91, and (A9)His95.16 Subsequent structural12,15 and spectroscopic13,15 

investigations of manganese-bound CP revealed that site 2 provides a remarkable 

hexahistidine site for this metal ion with (A9)His103 and (A9)His105 of the S100A9 C-

terminal tail completing an octahedral coordination sphere (Figure 1c). Site 2 binds both 

Mn(II) and Zn(II) with high affinity, and exhibits a thermodynamic preference for 

Zn(II).11–13 Moreover, site 2 is important for the antibacterial activity of CP against a 

variety of Gram-negative and Gram-positive strains.10,12,13 Loss of site 2 (e.g. ΔHis4 or 

AAA mutant, Supplementary Table 1) is reported to be more detrimental to the 

antimicrobial activity of CP than removal of site 1 (ΔHis3Asp).10,12,13 Because site 2 is the 

high-affinity Mn(II) site, the broad-spectrum antimicrobial activity of CP has been attributed 

to Mn(II) deprivation.12 Indeed, a significant body of recent work indicates that various 

human pathogens (e.g. Staphylococcus aureus, Streptococcus pneumoniae, Borrelia 

burgdorferi) must acquire manganese to be virulent.17–20 A robust host-defense mechanism 

to prevent manganese acquisition is therefore important, and to date CP is the only identified 

Mn(II)-sequestering protein in humans.8 Nevertheless, we had difficulty accepting a 

generalized Mn(II)-centric model for the antimicrobial activity of CP.13 The specific metal-

ion requirements vary amongst organisms, and some of the bacterial strains less susceptible 

to the site 2 mutants have minimal metabolic requirements for manganese.10,12,13,21

We therefore hypothesized that chelation of another as-yet unidentified first-row transition 

metal ion at site 2 contributes to the growth inhibitory activity of CP. This hypothesis is 

contrary to prior reports, which concluded that CP does not bind iron or copper.8,12,14 

Nevertheless, the Irving-Williams series,22 a tenet of coordination chemistry, describes the 

relative affinities of a given chelator for divalent first-row transition metal ions (Mn < Fe < 

Co < Ni < Cu > Zn). Although first defined for small-molecule octahedral metal complexes, 

this series is often employed to rationalize the relative divalent metal-ion affinities of 

metalloproteins. The relative Mn(II) and Zn(II) affinities of each CP site (Kd,Mn > Kd,Zn) 

follow this trend,10,11,23 and we expected the nitrogen-rich metal-chelating motifs to 

coordinate first-row transition metals that lie between manganese and zinc in the Periodic 

Table.

To test our hypothesis, we first employed an unbiased approach to evaluate what metal ions 

CP sequesters in the context of microbial growth assays. On the basis of these initial studies 

and subsequent investigations, we uncovered a new dimension of the biological coordination 
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chemistry and growth inhibitory function of CP. Contrary to current understanding, we 

discovered that CP inhibits the growth of multiple bacterial strains, including human 

pathogens, by sequestering iron at the unusual histidine-rich Fe(II) site. Our findings afford 

a new model for the antimicrobial action of CP and indicate a heretofore-unrecognized role 

for CP in mammalian iron homeostasis. Moreover, biochemical and spectroscopic 

investigations of CP reveal high-affinity coordination of ferrous iron at a binding site unique 

amongst known iron-containing proteins, and thereby expand the biological coordination 

chemistry of Fe(II).

Results

CP depletes Fe from bacterial growth medium

To evaluate the metal sequestration properties of CP, we performed a series of metal-ion 

depletion experiments (Figure 2, Supplementary Tables 2–10, Supplementary Figures 2 and 

3). We treated a standard growth medium employed in antimicrobial activity assays with 

CP-Ser or a metal-binding site variant and quantified the amounts of residual Mn, Fe, Co, 

Ni, Cu, and Zn in the medium with and without CP-Ser/variant treatment by inductively 

coupled plasma-mass spectrometry (ICP-MS) or -optical emission spectroscopy (ICP-OES). 

CP-Ser is the heterooligomer of S100A8(C42S) and S100A9(C3S) that we routinely employ 

in metal-binding studies, and this variant exhibits comparable antibacterial activity to native 

CP.10 The metal-binding site variants employed throughout this work have one or more 

metal-chelating residues replaced by Ala (Supplementary Table 1). The CP-Ser ΔHis3Asp 

and ΔHis4 variants are deletion mutants of the His3Asp and His4 binding sites, respectively. 

We define the His4 site as the four His residues of site 2 that reside at the S100A8/S100A9 

interface (Figure 1, Supplementary Table 1). The AAA variant lacks three histidine residues 

at positions 103–105 of the S100A9 C-terminal tail, and the ΔΔ variant has neither the 

His3Asp nor His4 site. Because we discovered that the Mn(II) and Zn(II) affinities of CP as 

well as its antimicrobial activity are enhanced in the presence of excess Ca(II),10,11 we 

prepared medium samples with or without a 2-mM Ca(II) supplement. We also reported that 

β-mercaptoethanol (BME) enhances the antimicrobial activity of both native CP and CP-

Ser,10 and therefore evaluated the effect of this reducing agent on metal depletion. The TSB/

Tris buffer growth medium used in these studies is routinely employed for evaluating the 

antimicrobial activity of CP and contains ~150 nM Mn, ~3 µM Fe, and ~5 µM Zn 

(Supplementary Table 2). The Mn concentration decreased by a factor of 3 (–Ca(II)) or 6 

(+Ca(II)) (Figure 2a), and the Zn concentration decreased by a factor of 50 (−Ca(II) or 

+Ca(II)) (Figure 2b) when the medium was treated with 250 µg/mL CP (±BME). The 

relative Mn and Zn levels obtained for medium treated with CP mutants were consistent 

with two central conclusions from prior Mn(II)- and Zn(II)-binding studies: (i) CP binds 

Zn(II) with high affinity at both sites 1 and 2, and (ii) CP binds Mn(II) with high affinity 

only at site 2.10–12

CP treatment also resulted in depletion of other first-row transition metals in the growth 

medium (Supplementary Tables 2–10, Supplementary Figure 2), consistent with our 

reasoning that one or both interfacial sites accommodate such metals. Most strikingly, 250 

µg/mL CP caused Fe to decrease by a factor of 3 (−Ca, +BME) or 30 (+Ca, +BME) (Figure 
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2c). The Ca(II) dependence indicated that CP binds iron more tightly in the presence of 

Ca(II), in agreement with our prior studies of Mn(II)11 and Zn(II)10 sequestration. The 30-

fold decrease in Fe (+Ca(II)) reduced its concentration in the growth medium to ca. 80 nM. 

Moreover, maximum Fe depletion occurred in the presence of excess BME, suggesting a 

role of the redox environment for this metal. The relative Fe concentrations obtained 

following treatment of the medium with CP mutants indicated that the His6 site, and not the 

His3Asp site, was essential for Fe depletion. In total, this analysis revealed that CP removes 

iron from the growth medium and supported a new hypothesis in which Fe deprivation 

contributes to the antimicrobial activity of CP.

Fe depletion contributes to bacterial growth inhibition

To examine the effect of metal depletion by CP on bacterial growth, we employed CP-

treated medium and a panel of Gram-negative and -positive bacterial strains, all of which 

have a metabolic iron requirement, in growth assays (Figure 3, Supplementary Figures 4 and 

5). We supplemented the CP-treated medium with manganese, iron, and/or zinc, in all 

possible combinations, to achieve the metal concentrations of the untreated medium and 

monitored bacterial growth over a 20-h period. In all cases, maximum growth recovery 

occurred only when the metal supplement contained iron. This phenomenon was most 

striking for the Gram-negative organisms, where Fe supplementation alone was necessary 

and sufficient to restore full growth, but was also the case for the Gram-positive strains 

where both Mn and Fe were required to achieve maximum growth recovery.

In a second series of growth studies, we performed antimicrobial activity assays using 

Escherichia coli and S. aureus and compared the growth inhibitory activities of CP-Ser, 

ΔHis3Asp, ΔHis4 and proteins pre-incubated with 0.9 equiv of iron supplied as an Fe(II) salt 

(Figure 4a,b). Iron pre-incubation attenuated the antimicrobial activity of CP to levels 

comparable to that of ΔHis4 and completely blocked the activity of ΔHis3Asp for both 

species. These experiments further supported the importance of site 2 in the antibacterial 

activity of CP against these two organisms, and showed that addition of Fe(II) blocks the 

activity associated with this site.

In a third series of growth studies, we treated Lactobacillus plantarum with CP-Ser, 

ΔHis3Asp, ΔHis4 or the AAA mutant (Figure 4c,d, Supplementary Figure 6). Unlike the 

organisms described previously, L. plantarum has no metabolic iron requirement.24 The 

Lactobacilli growth medium employed in our experiments is rich in manganese (~100 µM, 

Supplementary Table 11), and full growth inhibition was observed (+Ca(II), ±BME) with 

500 µg/mL (~20 µM) of CP-Ser, ΔHis4 and AAA. In contrast, the antimicrobial activity was 

attenuated completely for ΔHis3Asp. The Lactobacilli growth medium contains ~10 µM 

zinc, and we attribute the growth inhibitory function of CP against L. plantarum to Zn(II) 

sequestration by the His3Asp site (Figure 4e, Supplementary Tables 12 and 13). In total, 

these growth studies revealed that (i) the antimicrobial activity associated with site 2 cannot 

be attributed only to manganese chelation; (ii) CP sequesters iron, which inhibits the growth 

of both Gram-negative and -positive organisms; and (iii) the site dependence will be 

determined by the metal requirements of a given organism as well as the metal-ion 

availability.
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CP blocks bacterial Fe uptake

In a fourth series of growth studies, we examined uptake of the radioactive isotope 55Fe by 

E. coli and Pseudomonas aeruginosa in the absence and presence of CP or the ΔΔ variant 

(Figure 5). This experiment was initiated by transferring bacteria cultured in a minimal 

medium to an uptake assay medium containing ~3 mM BME, ~2 mM Ca(II), and ~3 µM 

FeCl3 (1:9 ratio of 55Fe:unlabeled Fe) with or without 500 µg/mL CP-Ser or the ΔΔ variant. 

These experiments employed a higher inoculum (OD600 = 0.2) than employed for 

antibacterial activity assays (OD600 ~ 0.001; Figure 4a, Supplementary Figure 7), and 500 

µg/mL CP is insufficient to inhibit bacterial growth at this cell density. Over the course of a 

2-h growth period in the uptake medium, the OD600 of the cultures increased from ~0.2 to 

~0.6 (E. coli) or ~0.4 (P. aeruginosa) in the absence or presence of CP-Ser or the ΔΔ variant 

(Figure 5, lower panels). Quantification of 55Fe uptake over time indicated that the presence 

of 500 µg/mL CP-Ser in the medium reduced bacterial 55Fe uptake relative to the untreated 

or ΔΔ-treated cultures following a 2-h incubation (Figure 5, upper panels), by 2- to 3-fold. 

These results establish that supplementation of growth medium with CP-Ser prevents 

microbial Fe uptake, and this effect requires the metal-binding sites.

CP coordinates Fe(II) at the histidine-rich motif

Iron exists in several biologically accessible oxidation states.25 We observed that either 

BME10 or dithiothreitol (DTT) enhanced the antimicrobial activity of CP against E. coli and 

S. aureus, indicating that the effect is not specific to one reducing agent or microorganism 

(Supplementary Figure 8). Taken together with the knowledge that CP sequesters iron, the 

BME/DTT effect provides circumstantial evidence that CP prefers to coordinate Fe(II) over 

Fe(III). To evaluate this notion, we pre-incubated CP-Ser with Fe(II) or Fe(III), performed 

analytical size-exclusion chromatography (SEC), and analyzed the fractions for CP-Ser and 

iron (Figure 6a–c). We observed a SEC peak shift with the addition of Fe(II), but not Fe(III), 

and established that CP retained Fe(II), but not Fe(III), during elution. The residues of the 

His6 site, and not the His3Asp motif, were required for the Fe(II)-induced peak shift (Figure 

6d–f, Supplementary Figures 9–11). These observations provided compelling evidence for 

Fe(II) complexation at the His6 site and, in prior work, we observed analogous trends for 

Mn(II).13

In addition, we employed Mössbauer spectroscopy to confirm Fe(II) coordination by CP at 

the His6 site. The 4.2-K/53-mT Mössbauer spectrum of CP-Ser in the presence of a 

substoichiometric amount of 57Fe(II) sulfate (Figure 6g, vertical bars) displays a broad 

quadrupole doublet. The spectrum is significantly different from that of 57Fe(II) sulfate in 

buffer (Figure 6g, red line), demonstrating that Fe(II) is binding to CP-Ser. Moreover, the 

Mössbauer spectra of 57Fe(II)-bound CP-Ser and ΔHis3Asp (Supplementary Figure 12) are 

essentially indistinguishable, which strongly suggests that Fe(II) is coordinated at the His6 

site. The spectrum can be simulated either as a single quadrupole doublet with an isomer 

shift (δ) of 1.20 mm/s and a quadrupole splitting parameter (ΔEQ) of 1.78 mm/s (Figure 6g, 

blue line) or as two quadrupole doublets [δ1 = 1.18 mm/s, ΔEQ,1 = 1.68 mm/s (87%) and δ2 

= 1.21 mm/s, ΔEQ,2 = 2.32 mm/s (13%)]. The latter analysis is supported by the 160-K 

spectrum, in which the resolution of the two components is enhanced (Supplementary Figure 

13). The large isomer shift value of 1.20 mm/s allows unambiguous assignment of the 57Fe 
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species as high-spin Fe(II) and is consistent with octahedral coordination of Fe(II) by the 

proposed His6 site (Supplementary Figure 14). Although the magnitude of ΔEQ is smaller 

than those typically observed for high-spin Fe(II) complexes,26 smaller values of ΔEQ are 

well-documented for high-spin Fe(II) complexes.27–29

CP binds Fe(II) with unprecedented high affinity

To participate in metal sequestration, CP must chelate the metal with high affinity, and its 

coordination sphere(s) must disfavor dissociation of the metal. Ferrous iron is a labile 3d6 

metal ion, and the few reported Fe(II) affinities for metalloproteins and transcription factors 

are typically low (e.g. Kd ~ 10−6 – 10−5 M).30 To probe the Fe(II) affinity of CP, we 

performed Fe(II) competitions with CP and the Ca(II)-insensitive metal-ion sensor ZP1.31 

Titration of ZP1 with Fe(II) under anaerobic conditions resulted in fluorescence quenching 

(Supplementary Figure 15), as expected from prior investigations.31 We determined the 

Fe(II) affinity of ZP1 by using buffers with fixed concentrations of free Fe(II) that spanned 

the 10−7 to 10−16 M range (Supplementary Table 14, Supplementary Figure 16, 

Supplementary Note). These experiments provided Kd1,Fe(II) = 2.2 ± 0.3 pM for ZP1 at pH 

7.0. Addition of Fe(II) to mixtures of ZP1 and CP-Ser in the absence of Ca(II) afforded the 

same fluorescence response as a solution of ZP1 alone, which indicated that CP-Ser (αβ) 

cannot compete with ZP1 for Fe(II) (Figure 7b,c, Supplementary Note). In the presence of 

excess Ca(II), native CP, CP-Ser, and ΔHis3Asp outcompeted ZP1 for Fe(II) (Figure 7a,b, 

Supplementary Figures 17–19, Supplementary Note). Under these same high Ca(II) 

conditions, negligible competition was observed for the ΔHis4 and ΔΔ mutants (Figure 7b), 

and variable degrees of competition for variants harboring mutations in the S100A9 C-

terminal tail region occurred (Supplementary Figure 20).

To further examine the role of the S100A9 C-terminal tail region in Fe(II) coordination, we 

employed the colorimetric iron indicator ferrozine, which is a bidentate ligand that forms a 

1:3 Fe(II):ferrozine complex (Kd,Fe(II) = 3.0 × 10−16 M),32 in competition assays with CP-

Ser and five C-terminal tail variants (Supplementary Table 1, Supplementary Figure 21, 

Supplementary Note). These assays were performed in the presence of 50 equiv of Ca(II). 

The [Fe(II)ferrozine3]2+ complex exhibits an absorbance feature at 562 nm (27,900 M−1 

cm−1),33 and addition of 10 µM CP-Ser or H104A to a solution containing 8 µM Fe(II) and 

300 µM ferrozine resulted in a time-dependent loss of the optical absorption band for 

[Fe(II)ferrozine3]2+ over the course of seven days. The absorption feature at 562 nm 

appeared with subsequent addition of 10 µM Fe(II) (data not shown), which confirmed that 

the ability of ferrozine to detect Fe(II) was not compromised during the experiment. These 

results show that both CP-Ser and H104A sequestered Fe(II) from ferrozine. Amino acid 

substitutions in the S100A9 C-terminal tail region resulted in attenuated competition. The 

AAA and AHA (comprising H103A and H105A) variants were unable to sequester Fe(II) 

from ferrozine, and the single variants H103A or H105A afforded an intermediate behavior 

(Figure 7b). This set of ferrozine competition assays, combined with the ZP1 competitions 

(Supplementary Figure 20), confirms that H103 and H105 in the S100A9 C-terminal tail 

region are essential for Fe(II) sequestration.
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Other human S100 proteins, including S100A12, S100A7, and S100B, participate in the 

homeostasis of transition metal ions, and form homodimers that display sites for transition 

metal binding at the dimer interface.23,34–36 Because CP is the only S100 family member to 

exhibit a His6 site, we reasoned that other S100 proteins are unable to bind Fe(II) with high 

affinity. Indeed, the ability of CP to outcompete picomolar-affinity ZP1 for Fe(II) was 

unique amongst five human S100 proteins evaluated (Supplementary Figure 22, 

Supplementary Note). This result is consistent with our prior study of Mn(II) sequestration 

where CP was the only S100 protein observed to sequester Mn(II) from ZP1.13

Taken together, the ZP1 and ferrozine competition assays (i) confirmed that Ca(II) ions 

modulate the Fe(II) affinity of CP, (ii) revealed that CP houses a remarkably high-affinity 

Fe(II) site consistent with its metal-sequestering function, (iii) implicated H103 and H105 of 

the tail region in Fe(II) complexation, and (iv) established that the Fe(II)-sequestering ability 

of CP is unique amongst human S100 proteins that form metal-binding sites at dimer 

interfaces.

Metal selectivity agrees with the Irving-Williams series

CP binds various first-row transition metal ions with high affinity, consistent with its metal-

sequestering contribution to the innate immune response.9–13 Taken together, reports of its 

Mn(II)- and Zn(II)-binding properties indicate that site 2 coordinates Mn(II) with Kd < 10 

nM and Zn(II) with Kd < 240 pM.9–12,23 In agreement with expectations based on the 

Irving-Williams series (vide supra), CP has a thermodynamic preference for Zn(II) over 

Co(II) and Mn(II).10,11 Based on the Irving-Williams series and relative Mn(II)/Zn(II) and 

Co(II)/Zn(II) affinities of CP, we reasoned that CP will exhibit a thermodynamic preference 

for Fe(II) over Mn(II) and Zn(II) over Fe(II). A series of metal substitution experiments, 

performed in the absence and presence of excess Ca(II), support this notion (Figure 7c–e, 

Supplementary Figure 23).

First, we employed room-temperature electron paramagnetic resonance (EPR) spectroscopy 

to determine whether addition of 0.9 equiv of Fe(II) to a pre-incubated solution of 25 µM 

CP-Ser, 0.9 equiv of Mn(II), and 50 equiv of Ca(II) results in metal substitution at site 2. 

Both Fe(II)- and Mn(II)-CP are EPR silent at room temperature, whereas unbound or “free” 

Mn(II) in solution displays a six-line pattern centered at g=2. We allowed the Mn(II)-CP 

(+Ca(II)) samples with and without added Fe(II) to incubate at room temperature for seven 

days and, at this time point, we observed that addition of Fe(II) to Mn(II)-CP (+Ca(II)) 

resulted in a more intense free Mn(II) signal relative to the Mn(II)-CP only control (Figure 

7c). Quantification of the free Mn(II) signal revealed that the unbound Mn(II) concentration 

increased ~5-fold to ~14 µM when Fe(II) was added to the sample (Figure 7d). This analysis 

indicates that Fe(II) substituted ~60% of Mn(II) that was originally bound to site 2, and that 

both Fe(II)- and Mn(II)-bound CP exist in solution at this time point. To further probe 

Mn(II)/Fe(II) selectivity, we designed a ferrozine assay to monitor changes in the 

concentration of unbound Fe(II) following addition of 0.9 equiv of Fe(II) to a pre-incubated 

solution of ΔHis3Asp and 0.9 equiv of Mn(II) in the absence and presence of 50 equiv of 

Ca(II) (Supplementary Figure 23). In agreement with the conclusions from the room-

temperature EPR study, this experiment revealed a time-dependent decrease in unbound 
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Fe(II) and, in the +Ca(II) condition, showed that ~30% of the Mn(II) was displaced 

following 24 h.

Next, we extended the ferrozine assay to evaluate the consequences of adding 0.9 or 3 equiv 

of Zn(II) to a pre-incubated solution of 25 µM ΔHis3Asp and 0.9 equiv of Fe(II). In 

agreement with our expectations, we observed that incubation of Fe(II)-bound ΔHis3Asp 

with Zn(II) resulted in a time-dependent increase in free Fe(II) in solution (Figure 7e). We 

performed these experiments in the absence or presence of excess Ca(II), which revealed 

that Zn(II) more rapidly substitutes for Fe(II) in site 2 when Ca(II) is omitted from the 

buffer. In total, these experiments demonstrate that the metal selectivity of site 2 agrees with 

the Irving-Williams series.

Furthermore, that ferrozine assays indicate that the kinetics of metal substitution depend on 

Ca(II), and Ca(II)-bound CP effectively entraps various first-row transition metals at site 2 

(Figure 7e, Supplementary Figure 23). Although site 2 has the expected thermodynamic 

preference for Zn(II), we contend that site 2 will be populated with various metals in vivo 

because it will effectively sequester the metal ion that binds first. We reason that this 

scenario occurs in the extracellular space where Ca(II) concentrations are high. Thus, 

kinetics as well as metal-ion availability at a given biological site will contribute to CP 

speciation in the biological milieu.

Discussion

Previous investigations addressing the role of CP in the metal-withholding component of the 

host innate immune response have evaluated its ability to scavenge bioavailable manganese 

and zinc at sites of infection.7–13,37 In this work, motivated by the hypothesis that CP 

chelates other first-row transition metal ions, we first employed an unbiased approach to 

evaluating which metal ions are sequestered by CP in a standard bacterial growth medium. 

The results from our experiments show that CP depletes iron from growth medium, and that 

iron deprivation contributes to its antimicrobial activity against both Gram-negative and 

Gram-positive organisms. Furthermore, our biochemical and spectroscopic investigations 

demonstrate that CP captures Fe(II) at a biologically unprecedented hexahistidine 

coordination motif at the S100A8/S100A9 dimer interface.

Our current results contrast two recent reports, which concluded that CP does not chelate 

iron.8,12 The first study analyzed the ability of CP to deplete select divalent cations from a 

growth medium, and a negligible change in iron concentration (reported as percent atoms in 

solution) was observed whereas the Mn(II) and Zn(II) levels were reduced.8 In that 

experiment, the iron oxidation state and CP speciation were ambiguous. The second 

investigation reported an iron-binding titration monitored by isothermal titration calorimetry 

(ITC) where CP-Ser was titrated with iron citrate and no enthalpy change was observed.12 

Whether the iron was in the Fe(II) or Fe(III) form in this experiment is unclear, and 

stoichiometric Ca(II) was employed. The current work indicates that >20 equiv of Ca(II) are 

required to fully convert CP into its high-Fe(II) affinity form, in agreement with prior 

observations for the high-affinity Mn(II) complex.11 Moreover, when considering metal-

binding equilibrium, the counterion introduces another variable. Although our current work 
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indicates that CP will outcompete citrate for Fe(II) (citrate Kd,Fe(II) ~ 10−8 M),38 citrate will 

affect the metal speciation in solution. Importantly, ferrous iron is susceptible to oxidation 

and strict anaerobic or reducing conditions are needed for maintaining this oxidation state 

over the course of an experiment. These caveats illustrate the complexity of this system and 

the multiple experimental considerations that must be taken into account when studying 

metal-protein interactions, as well as the factors that come into play when working with a 

redox-active metal like iron.

Our report of iron sequestration by CP may be considered from multiple perspectives. From 

the standpoint of metal-binding motifs found in Nature, the histidine-rich site of CP is the 

first example of a biological Fe(II)-His6 site and thereby expands the biological coordination 

chemistry of iron-containing proteins. Because Fe(II) is labile and undergoes rapid ligand 

exchange, the His6 coordination motif provides a remarkable mechanism for sequestering 

Fe(II). On the basis of available binding constants, the Fe(II) affinity of CP far exceeds that 

of characterized proteins that include E. coli Fur and superoxide dismutase.30,39,40 Thus, the 

molecular basis for how CP overcomes the inherent lability of Fe(II) and achieves such tight 

binding warrants further exploration. Guided by recent crystallographic and spectroscopic 

studies of Mn(II) coordination by CP at site 2,15 we propose that the C-terminal tail region 

of S100A9 encapsulates Fe(II) in this site and excludes water molecules from the vicinity of 

the metal center. Moreover, we anticipate that site 2 will chelate Fe(II) in a nearly idealized 

octahedral geometry with coordination by the Nε atoms of each His residue, as observed for 

Mn(II).12,15 Small-molecule Fe(II) hexaimidazole complexes have been structurally 

characterized,41,42 and these coordination complexes may provide helpful benchmarks in 

further studies of Fe(II)-CP.

Our metal depletion studies indicate that CP also chelates Cu and Ni, as expected on the 

basis of the Irving-Williams series. Thus, a role for CP in the homeostasis of other transition 

metal ions is worthy of consideration. Given the propensity of CP to chelate multiple metals 

(e.g. Mn, Fe, Zn) with high affinity, the metallation and speciation of CP in the biological 

milieu, as well as its consequences for metal homeostasis, will depend on metal-ion 

availability in any given microenvironment.

From the perspective of the host/microbe interaction, iron is an essential nutrient for almost 

all microbes, and its sequestration is an established mechanism of innate immunity.2,3 Host-

defense proteins such as lactoferrin and siderocalin interfere with microbial Fe(III) 

acquisition.43,44 To the best of our knowledge, a comparable mechanism to prevent 

microbial Fe(II) uptake is unidentified even though a number of microbes, including human 

pathogens, express feoB, a gene encoding a ferrous iron transporter, when colonizing the 

host.45–48 CP is found in a number of physiological locales, and ferrous iron is prevalent 

under anaerobic conditions.25 We propose that CP is a heretofore-unrecognized contributor 

to mammalian iron homeostasis that serves an Fe(II)-sequestering function in reducing and 

hypoxic microenvironments, and future efforts will address this notion.
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Online Methods

Materials and General Methods

All solvents and chemicals were obtained from commercial suppliers and used as received. 

All aqueous solutions were prepared using Milli-Q water (18.2 MΩ, 0.22-µm filter). Buffers 

for metal-binding studies were prepared with Ultrol grade HEPES (Calbiochem), 

TraceSELECT NaCl (Sigma), and aqueous NaOH (Sigma) in either acid-washed volumetric 

glassware or polypropylene containers, using Teflon-coated spatulas or polypropylene 

pipettes to transfer chemicals. For large-scale preparation, buffers were routinely treated 

with 10 g/L Chelex resin (Bio-Rad) for at least one hour, and the Chelex resin was 

subsequently removed by filtration (0.22 µm). Stock solutions of metal ions were prepared 

from highest purity available CaCl2, (NH4)2Fe(SO4)2·6H2O, FeCl2, FeCl3, and ZnCl2 

(Sigma) in acid-washed volumetric glassware and were transferred to polypropylene 

containers. Working stock solutions of metal ions for experiments were prepared 

immediately before use. All experiments with Fe(II) were conducted anaerobically under a 

N2 atmosphere in a Vacuum Atmospheres Company glove box unless noted otherwise, and 

Fe(II) solutions were prepared using the (NH4)2Fe(SO4)2 salt unless noted otherwise. 57Fe 

metal powder (Isoflex) was dissolved in 2-fold excess of 2-N sulfuric acid, and the 

concentration of the resulting 57FeSO4 solution was determined using the colorimetric 

ferrozine assay. Radiolabeled 55FeCl3 was obtained from PerkinElmer as a solution 

dissolved in 0.5 M HCl, and experiments employing 55Fe were conducted 180–210 days 

after the stock date. Ascorbic acid, an atomic absorption spectroscopy iron standard solution 

(iron(III) nitrate in nitric acid), trichloroacetic acid, ammonium acetate, and ferrozine for the 

Fe quantification assay were purchased from Sigma. Zinpyr-1 (ZP1) was synthesized from 

2’,7’-dichlorofluorescein and di(2-picolyl)amine as described,31 and 2-mM stock solutions 

of ZP1 were prepared in DMSO, aliquoted, and stored at –20 °C. All bacterial strains were 

stored as glycerol stocks at –80 °C. Native and mutant proteins (as well as homodimeric 

S100A7, S100A9(C3S), S100A12, and S100B) were overexpressed and purified as 

described elsewhere,10,11,13 and protein stocks were thawed only once immediately prior to 

use.

Antimicrobial Activity (AMA) Assays

The growth inhibitory activity of CP was tested by following modified literature 

protocols.10,13 At least two different protein stocks and media preparations were employed 

for all assays.

For evaluating the effect of Fe(II) preincubation on the antimicrobial activity of CP against 

Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, bacterial cultures 

were inoculated into 5 mL TSB with 0.25% dextrose from freezer stocks or single colonies 

from agar plates, and incubated at 37 °C on a rotating wheel. At t = 16–20 h, the overnight 

cultures were diluted 1:100 and incubated at 37 °C on a rotating wheel for t = –2.5 h until 

OD600 ~ 0.6 (mid-log phase). The assay medium, a 62:38 (v:v) ratio of 20 mM Tris-HCl, 

100 mM NaCl, 5 mM BME, 3 mM CaCl2, pH 7.5 buffer and TSB with dextrose, was 

prepared using sterile technique. CP samples were buffer exchanged three times into 20 mM 

Tris-HCl, 100 mM NaCl, pH 7.5 using pre-sterilized 0.5-mL 10K MWCO Amicon spin 
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concentrators, and 1.1× concentrated protein stocks (1.1 mg/mL to 68.75 µg/mL) were 

prepared in the medium in the absence and presence of 0.9 eq Fe(II). The Fe(II) stock 

solution was prepared anaerobically and was exposed to the atmosphere during the assay. 

The OD600 ~ 0.6 bacterial cultures were diluted 1:56, and in a flat-bottom 96-well plate 

(Corning), each well was filled with 10 µL of bacterial culture and 90 µL of protein solution. 

Each condition was evaluated in duplicate per trial. The plates were sealed with Parafilm 

and incubated at 30 °C, 150 rpm. At t = 20 h, the OD600 values were measured using a plate 

reader, and the duplicate measurements were averaged for each trial. The bacterial cultures 

were agitated by shaking or pipetting to resuspend the cultures to homogeneity prior to the 

OD600 measurement. The mean OD600 values and SEM are reported (n = 6).

For evaluating the effect of dithiothreitol (DTT) as the reducing agent in the AMA assays 

against E. coli ATCC 25922 and S. aureus ATCC 25923, overnight and 1:100 dilution 

bacterial cultures were grown as described above. The buffer for the assay medium 

contained 2.5 mM DTT instead of 5 mM BME. Protein samples were buffer exchanged as 

above, and 10× concentrated protein stocks (10 mg/mL to 625 µg/mL) were prepared in 

medium ±BME/DTT ±Ca(II). The OD600 ~ 0.6 bacterial cultures were diluted 1:500 into 

medium ±BME/DTT ±Ca(II), and 10 µL of the 10× protein stock and 90 µL of the 1:500 

dilution culture were added to each well in triplicate. The plates were sealed with Parafilm 

and incubated at 30 °C, 150 rpm, and the OD600 was measured at t = 20 h as described 

above. Three independent trials were conducted, and mean OD600 values and standard error 

are reported (n = 3).

The AMA assays against Lactobacillus plantarum WCSF1 were conducted as described 

above and employed a modified AMA medium. The medium was composed of a 62:38 (v:v) 

ratio of 20 mM Tris-HCl, 100 mM NaCl, ±5 mM BME, ±3 mM Ca(II), pH 7.5 buffer and 

MRS medium (CRITERION). The overnight and 1:100 dilution cultures were incubated at 

30 °C, 150 rpm.

Metal Analysis

To remove contaminating trace metals, 50-mL Falcon tubes and 15-mL 10K MWCO 

Amicon spin concentrators were washed with 300 µM EDTA (1×) and Chelex-treated 

MilliQ water (3×). The materials were then air dried and sterilized by UV-irradiation (t > 15 

min) prior to use.

AMA media ±BME ±Ca(II) were prepared using sterile technique. Protein samples were 

buffer exchanged into 20 mM Tris-HCl, 100 mM NaCl, pH 7.5 using 0.5-mL Amicon spin 

concentrators, and 2.5 mL of 10× concentrated protein stocks (1.25 or 2.5 mg/mL) were 

prepared using AMA media ±BME ±Ca(II). The media solutions were prepared in the 

washed 50-mL Falcon tubes. Untreated (0 µg/mL CP) and CP-treated (125 or 250 µg/mL) 

media samples were diluted to 25 mL with AMA media ±BME ±Ca(II) and incubated at 30 

°C, 150 rpm. At t = 20 h, media samples were filtered in the 15-mL Amicon spin 

concentrators. The flow through samples were collected and transferred to new, washed 50-

mL Falcon tubes. The tubes were sealed with Parafilm, and samples were shipped to and 

analyzed at the Microanalysis Laboratory at the University of Illinois at Urbana-Champaign. 

The concentrations of Mn, Co, Ni, Cu, and Zn were quantified by inductively coupled 
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plasma-mass spectrometry (ICP-MS), and the metal concentrations of Mg, Ca, and Fe were 

quantified by inductively coupled plasma-optical emission spectroscopy (ICP-OES). At least 

three independent preparations of media were analyzed for each sample, and analysis of the 

untreated media +BME ±Ca(II) was conducted during each trial as a control. The mean 

concentrations (µM and ppm) and the standard error of the mean (SEM) are reported (n ≥ 6).

Western Blot

To ensure that CP during treatment of growth medium did not pass through the filter, 

Western blot analysis was employed on CP-treated medium and flow through samples. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the CP-Ser 

samples was performed on a glycine gel (15% acrylamide). The proteins were transferred to 

a nitrocellulose membrane following the manufacturer’s procedure (BioRad). The 

S100A8(C42S) and S100A9(C3S) subunits were blotted with polyclonal goat IgG of human 

calgranulin A (sc-8112) and B (sc-8114), respectively (Santa Cruz Biotechnology). The 

antibodies were blotted with infrared dye-labeled donkey anti-goat IgG (LI-COR 

Biosciences), and the blot was visualized using a LI-COR Odyssey Scanner.

Metal-Substitution Bacterial Growth Assays

For the growth assays with Acinetobacter baumannii ATCC 17978, E. coli ATCC 25922, E. 

coli ATCC 43895 (O157:H7), Klebsiella pneumoniae ATCC 13883, Pseudomonas 

aeruginosa PAO1, Bacillus cereus ATCC 14579, S. aureus ATCC 25923, and S. aureus 

USA300 JE2, bacterial cultures were inoculated from freezer stocks into 5 mL TSB with 

dextrose and incubated overnight at 30 °C, 150 rpm (B. cereus) or 37 °C on a rotating wheel 

(all other species). At t = 16–20 h, the overnight cultures were diluted 1:100 and incubated 

at 30 °C, 150 rpm (B. cereus) or 37 °C on a rotating wheel (all other species) for t = 2–4.5 h 

until OD600 ~ 0.6 (mid-log phase). AMA media +BME +Ca(II) was treated with 250 µg/mL 

CP-Ser as described previously for the preparation of the ICP-MS samples, and the OD600 ~ 

0.6 bacterial cultures were diluted 1:500 into CP-treated or untreated AMA medium. 

Solutions of 15 µM Mn(II), 300 µM Fe(II), and 500 µM Zn(II) were prepared and filter-

sterilized (0.22 µm), and 1 µL of each solution was added to each well of a 96-well plate in 

all possible combinations. The Fe(II) stock solution was prepared anaerobically and exposed 

to the atmosphere during dilution into the wells. To each of these wells, 100 µL of bacterial 

culture was added. The plates were sealed with Parafilm and incubated at 30 °C, 150 rpm, 

and the OD600 was measured every 4 h until t = 20 h. Each condition was conducted in 

triplicate, and the OD600 values were averaged per trial. Three independent trials were 

conducted, and the mean OD600 values and standard error are reported (n = 3). To confirm 

that metal supplementation did not affect the growth of bacteria cultured in untreated 

medium, this procedure was conducted for the eight bacterial strains with freshly prepared 

AMA medium with addition of Mn, Fe, Zn, or Mn/Fe/Zn. Two independent trials were 

conducted, and the mean ± SDM are reported (n = 2).

For the growth assays with L. plantarum WCFS1, the above procedure was performed with 

the following modifications. L. plantarum cultures were grown at 30 °C, 150 rpm in MRS 

medium. A modified AMA medium composed of Tris buffer and MRS medium (vide supra) 

was treated with 250 µg/mL CP-Ser. Bacterial cultures diluted 1:500 were supplemented 
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with 10 µM Mn(II) and/or 10 µM Zn(II) from filter-sterilized 1 mM M(II) stock solutions. 

The OD600 was measured at t = 8 h and 20 h.

55Fe Uptake Assays

Cultures of E. coli ATCC 25922 and P. aeruginosa PAO1 from single colonies or frozen 

stocks were grown in M9 minimal medium (1× M9 salts, 2 mM MgSO4, 100 µM CaCl2, 

0.25% (w/v) glucose, and 0.2% (w/v) casein) at 37 °C on a rotating wheel for 16–20 h. 

Overnight cultures were diluted 1:100 into 10 mL of fresh M9 medium and incubated at 37 

°C on a rotating wheel until OD600 ~ 0.6. Aliquots of cultures (1 mL) were transferred to 

microcentrifuge tubes and pelleted by centrifugation (3,000 rpm, 7 min, 4 °C). Cells were 

resuspended with 1 mL of uptake assay (UA) medium (62% (v/v) of 20 mM Tris-HCl, 100 

mM NaCl, 5 mM BME, 3 mM CaCl2, pH 7.5; 38% (v/v) M9 medium; supplemented with 

2.7 µM FeCl3 and 0.3 µM radiolabeled 55FeCl3) with no protein, 500 µg/mL CP-Ser, or 500 

µg/mL ΔΔ. The cells were transferred to plastic 15-mL culture tubes, and 3 mL of UA 

medium with or without protein was added to each tube to afford 4-mL cultures. The 

cultures were incubated at room temperature without shaking. At t = 30, 60, 90, and 120 

min, a 500-µL aliquot of each culture was transferred to a plastic disposable cuvette to 

measure the OD600. At each time point, 50-µL aliquots of these cultures were transferred to 

0.22-µm cellulose acetate centrifuge tube filters (Corning, Inc.). The bacteria were washed 

with 500 µL of ice-cold wash buffer (50 mM Tris-HCl, 100 mM NaCl, pH 7.5) by 

centrifugation (3,000 rpm, 1 min, 4 °C) three times to remove extracellular 55Fe. The 

washed cells were resuspended with a final 500 µL of wash buffer, and the contents of the 

filter were transferred to liquid scintillation vials containing 9.5 mL of Emulsifier-Safe 

liquid scintillation fluid. The radioactivity of the cells was measured using a Beckman LS 

6500 scintillation counter averaging the counts per minute (CPM) over three minutes. The 

amount of bacterial 55Fe uptake (reported as nmol of 55Fe per mL of bacteria) was 

calculated using a calibration curve of CPM vs. standard solutions of 55FeCl3 (0–300 pmol). 

The background radioactivity of the medium and bacteria before supplementation of 55Fe (t 

= 0) was also measured. The mean ± SEM are reported (n = 4)

Analytical Size-Exclusion Chromatography (SEC)

Analytical SEC experiments were conducted on an ÄKTA purifier with a Superdex 75 

10/300 GL column (GE Healthcare Life Sciences) housed at 4 °C. The calibration of the 

column using a low-molecular-weight calibration kit (GE Healthcare Life Sciences) and 

SEC elution protocol are described elsewhere.4 Protein samples (20 µM, 300 µL) were 

buffer exchanged into 75 mM HEPES, 100 mM NaCl, pH 7.0 buffer prior to experiments. 

All Fe(II) samples were prepared anaerobically, sealed in microcentrifuge tubes during 

incubation, and exposed to air immediately before injection onto the SEC column. Protein 

samples were loaded into a 100-µL loop, and to ensure that the total volume in the loop was 

transferred to the column, a 500-µL volume was injected. The protein was eluted over 1 

column volume of running buffer (75 mM HEPES, 100 mM NaCl, pH 7.0). For samples 

containing Ca(II), the running buffer contained 2 mM CaCl2.
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Ferrozine Fe Quantification Assay

The concentrations of Fe in protein samples were determined following a modified literature 

protocol.49 Standards (0 to ~60 µM Fe, 200 µL) were prepared by serial dilution in 

microcentrifuge tubes using an atomic absorption spectroscopy iron standard solution 

(iron(III) nitrate in nitric acid). To each sample, 200 µL of 1.5 mM ascorbic acid (dissolved 

in 0.2 M HCl) and 200 µL of 0.4 M trichloroacetic acid were added, and the resulting 

solution was heated to 98 °C for 10 min to denature the protein. The solutions were 

centrifuged to pellet the precipitate (10 min, 13,000 rpm). A 200-µL aliquot of the 

supernatant was transferred to a new microcentrifuge tube, to which 400 µL of 1.3 M 

ammonium acetate and 200 µL of 6.17 mM ferrozine were added. The solutions were 

allowed to incubate for > 5 min at room temperature, and the absorbance at 562 nm was 

measured.

Protein samples (400 µM, 200 µL) in the absence and presence of 5 equiv of Fe(II) or Fe(III) 

were prepared. The analytical SEC protocol described previously was performed on these 

samples, and 0.5-mL fractions were collected in polypropylene tubes. The CP concentration 

in each fraction was determined by absorbance (ε280 = 18,450 M−1 cm−1), and 200 µL of the 

fraction was treated and analyzed as described above. The concentration of Fe in the protein 

samples was determined employing a standard curve over the concentration range of 0–60 

µM Fe.

Optical Absorption and Fluorescence Spectroscopy

Quartz cuvettes with 1-cm path lengths (Starna) were rinsed with 20% nitric acid and 

thoroughly washed with Milli-Q water prior to use. Protein samples were buffer exchanged 

into 75 mM HEPES, 100 mM NaCl, pH 7.0 buffer. Optical absorption spectroscopy was 

performed employing a Beckman Coulter DU 800 spectrophotometer with a Peltier 

temperature controller. Fluorescence spectroscopy was performed employing a Photon 

Technologies International QuantaMaster 40 fluorometer outfitted with a continuous xenon 

source for excitation, autocalibrated QuadraScopic monochromators, a multimode PMT 

detector, and a circulating water bath. The emission spectra were recorded and integrated 

using the FelixGX software package. Absorbance and emission spectra were measured at 25 

°C.

Mössbauer Spectroscopy

CP samples were buffer exchanged (75 mM HEPES, 100 mM NaCl, pH 7.0) and 

concentrated to ~2.3 mM. A 370-mM CaCl2 stock solution was prepared and deoxygenated. 

A 100-mM 57Fe(II) stock solution was prepared by dissolving 57Fe metal in 1 M H2SO4 and 

diluting the solution with deoxygenated buffer (75 mM HEPES, 100 mM NaCl, pH 7.0). In 

microcentrifuge tubes inside the anaerobic glove box, 400-µL solutions of 600 µM CP, 500 

µM 57Fe(II), and 12 mM Ca(II) were prepared in 90% (v/v) 75 mM HEPES, 100 mM NaCl, 

pH 7.0 and 10% (v/v) glycerol. After 6 h of incubation under anaerobic conditions at room 

temperature, 300 µL of the protein solutions were transferred to Mössbauer cups. The 

samples were placed in an anaerobic cooling chamber chilled with liquid N2 for 10 min for 

freezing. The cups housing frozen samples were then quickly stored in insulation vials, and 
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the filled vials were removed from the glove box and transferred to a storage dewar 

containing liquid N2. The samples were stored on dry ice or at −80 °C until analysis.

Mössbauer spectra were recorded on an alternating constant acceleration Mössbauer 

spectrometer equipped with a Janis SVT-400 variable-temperature cryostat. The external 

magnetic field at the sample was oriented parallel to the γ-beam. The Mössbauer isomer 

shifts are referenced relative to the centroid of the spectrum of α-iron at room temperature. 

Simulations of Mössbauer spectra were carried out using WMOSS spectral analysis software 

package (www.wmoss.org, SEE Co., Edina, MN).

Mn(II) Substitution Experiment Monitored by EPR Spectroscopy

Continuous-wave room-temperature electron paramagnetic resonance (EPR) spectroscopy 

was employed to monitor the displacement of Mn(II) from CP by Fe(II). Spectra were 

obtained using a Bruker EMX spectrometer outfitted with an ER 4199HS cavity and a 

Bruker Biospin flat quartz cell. Solutions (400 µL) of either 22.5 µM MnCl2 in buffer (75 

mM HEPES, 100 mM NaCl, pH 7.0) or 25 µM CP-Ser, 1.25 mM CaCl2, and 22.5 µM 

MnCl2 with and without the addition of 22.5 µM (NH4)2Fe(SO4)2 were incubated in an 

anaerobic glove box at room temperature for 7 days. Each sample was removed from the 

glove box, and immediately transferred to the flat cell. The sample was exposed to air during 

this time. The room-temperature EPR spectrum was recorded (20-mW microwaves at 9.83 

GHz, 1.0-mT modulation amplitude). Using the software SpinCount, the free Mn(II) 

concentration of each sample was calculated by scaling the inner four lines of the EPR 

spectrum to that of a 100-µM Mn(II) solution prepared using an atomic absorption standard 

(Fluka) and measured under identical spectrometer conditions. Three independent trials were 

conducted, and the mean ± SDM are reported (n = 3).

Fe(II) Substitution Experiment Monitored by Ferrozine

Samples (1.5 mL) of 25 µM CP-Ser ΔHis3Asp in the absence and presence of 50 equiv of 

Ca(II) were prepared in 2.0-mL microcentrifuge tubes in the glove box (75 mM HEPES, 100 

mM NaCl, pH 7.0). Either Fe(II), Zn(II), or Mn(II) (0.9 equiv) was added, and the mixture 

was incubated for 30 min. A second metal ion (either 0.9 or 3.0 equiv) was added to the 

solution. At t = 1, 2, 6, and 24 h after addition of the second metal ion, a 300-µL aliquot of 

the sample was removed from the glove box and immediately transferred to a 0.5-mL 10K 

MWCO Amicon spin concentration (Millipore). The sample was centrifuged for 5 min 

(13,000 rpm, 4 °C). The protein remained in the filter, and 100 µL of the flow through 

solution containing unbound metal ions was collected. A 100-µL aliquot of the flow through 

was added to 395 µL of buffer (75 mM HEPES, 100 mM NaCl, pH 7.0) and 5 µL of a 100-

mM ferrozine solution (1 mM final concentration). The absorbance at 562 nm was measured 

after a 5-min incubation. The concentration of unbound Fe(II) was calculated using a 

standard curve. Additional control samples such as CP-Ser ΔΔ incubated with Fe(II) were 

also measured following the same protocol. Details of each experimental condition, such as 

metal concentration and order of metal addition, are described in the text where relevant. 

Three independent trials were conducted, and the mean ± SDM are reported (n = 3).

Nakashige et al. Page 15

Nat Chem Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.wmoss.org


Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Research on Fe(II)-CP in the Nolan Laboratory (E.M.N.) was supported by the Office of the Director of the NIH 
(1DP2OD007045), the MIT Center for Environmental Health Sciences (NIH P30-ES002109), the Sloan 
Foundation, and the Kinship Foundation (Searle Scholar Award). T.G.N. is a recipient of the NSF Graduate 
Research Fellowship. Any opinion, findings, and conclusions or recommendations expressed in this material are 
those of the author(s) and do not necessarily reflect the views of the NSF. We thank Rudiger Laufhutte for 
performing the ICP-MS and ICP-OES analyses, and Professor JoAnne Stubbe and members of her laboratory for 
guidance on the 55Fe experiments and for providing the facilities to work with radioactivity. We acknowledge the 
Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) for providing the S. aureus USA300 JE2 
strain of the Nebraska Transposon Mutant Library (NTML) supported by NIAID/NIH grant 
HHSN272200700055C.

References

1. Bertini, I.; Gray, HB.; Stiefel, EI.; Valentine, JS. Biological inorganic chemistry: structure and 
reactivity. University Science Books; 2007. 

2. Weinberg ED. Nutritional immunity: host’s attempt to withhold iron from microbial invaders. J. 
Am. Med. Assoc. 1975; 231:39–41.

3. Fischbach MA, Lin H, Liu DR, Walsh CT. How pathogenic bacteria evade mammalian sabotage in 
the battle for iron. Nat. Chem. Biol. 2006; 2:132–138. [PubMed: 16485005] 

4. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat. 
Rev. Microbiol. 2012; 10:525–537. [PubMed: 22796883] 

5. Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013; 13:509–519. 
[PubMed: 23684303] 

6. Diaz-Ochoa VE, Jellbauer S, Klaus S, Raffatellu M. Transition metal ions at the crossroads of 
mucosal immunity and microbial pathogenesis. Front. Cell. Infect. Microbiol. 2014; 4:1–9. 
[PubMed: 24478989] 

7. Sohnle PG, Collins-Lech C, Wiessner JH. The zinc-reversible antimicrobial activity of neutrophil 
lysates and abscess fluid supernatants. J. Infect. Dis. 1991; 164:137–142. [PubMed: 2056200] 

8. Corbin BD, et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 
2008; 319:962–965. [PubMed: 18276893] 

9. Kehl-Fie TE, et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide 
defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe. 2011; 10:158–
164. [PubMed: 21843872] 

10. Brophy MB, Hayden JA, Nolan EM. Calcium ion gradients modulate the zinc affinity and 
antibacterial activity of human calprotectin. J. Am. Chem. Soc. 2012; 134:18089–18100. 
[PubMed: 23082970] 

11. Hayden JA, Brophy MB, Cunden LS, Nolan EM. High-affinity manganese coordination by human 
calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. 
J. Am. Chem. Soc. 2013; 135:775–787. [PubMed: 23276281] 

12. Damo SM, et al. Molecular basis for manganese sequestration by calprotectin and roles in the 
innate immune response to invading bacterial pathogens. Proc. Natl. Acad. Sci. U.S.A. 2013; 
110:3841–3846. [PubMed: 23431180] 

13. Brophy MB, Nakashige TG, Gaillard A, Nolan EM. Contributions of the S100A9 C-terminal tail to 
high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J. Am. Chem. Soc. 
2013; 135:17804–17817. [PubMed: 24245608] 

14. Vogl T, Leukert N, Barczyk K, Strupat K, Roth J. Biophysical characterization of S100A8 and 
S100A9 in the absence and presence of bivalent cations. Biochim. Biophys. Acta. 2006; 
1763:1298–1306. [PubMed: 17050004] 

Nakashige et al. Page 16

Nat Chem Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Gagnon DM, et al. Manganese binding properties of human calprotectin under conditions of high 
and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance 
spectroscopic analysis. J. Am. Chem. Soc. 2015; 137:3004–3016. [PubMed: 25597447] 

16. Korndörfer IP, Brueckner F, Skerra A. The crystal structure of the human (S100A8/S100A9)2 
heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can 
determine specific association of two EF-hand proteins. J. Mol. Biol. 2007; 370:887–898. 
[PubMed: 17553524] 

17. Zaharik ML, Finlay BB. Mn2+ and bacterial pathogenesis. Front. Biosci. 2004; 9:1035–1042. 
[PubMed: 14977526] 

18. Papp-Wallace KM, Maguire ME. Manganese transport and the role of manganese in virulence. 
Annu. Rev. Microbiol. 2006; 60:187–209. [PubMed: 16704341] 

19. Jacobsen FE, Kazmierczak KM, Lisher JP, Winkler ME, Giedroc DP. Interplay between 
manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics. 
2011; 3:38–41. [PubMed: 21275153] 

20. Aguirre JD, et al. A manganese-rich environment supports superoxide dismutase activity in a 
Lyme disease pathogen Borrelia burgdorferi. J. Biol. Chem. 2013; 288:8468–8478. [PubMed: 
23376276] 

21. Lisher JP, Giedroc DP. Manganese acquisition and homeostasis at the host-pathogen interface. 
Front. Cell. Infect. Microbiol. 2013; 3:1–15. [PubMed: 23355975] 

22. Irving H, Williams RJP. The stability of transition-metal complexes. J. Chem. Soc. 1953:3192–
3210.

23. Brophy MB, Nolan EM. Manganese and microbial pathogenesis: sequestration by the mammalian 
immune system and utilization by microorganisms. ACS Chem. Biol. 2015; 10:641–651. 
[PubMed: 25594606] 

24. Archibald FS, Fridovich I. Manganese and defenses against oxygen toxicity in manganese and 
defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 1981; 145:442–451. 
[PubMed: 6257639] 

25. Frey PA, Reed GH. The ubiquity of iron. ACS Chem. Biol. 2012; 7:1477–1481. [PubMed: 
22845493] 

26. Münck, E. Physical methods in bioinorganic chemistry: spectroscopy and magnetism. Que, L., Jr, 
editor. University Science Books; 2000. p. 287-319.

27. Greenwood, NN.; Gibb, TC. Mössbauer spectroscopy. Springer; 1971. 

28. Asch L, Adloff JP, Friedt JM, Danon J. Motional effects in the Mössbauer spectra of iron(II) 
hexammines. Chem. Phys. Lett. 1970; 5:105–108.

29. Bossek U, et al. Exchange coupling in an isostructural series of face-sharing bioctahedral 
complexes [LMII(µ-X)3M(II)L]BPh4 (M = Mn, Fe, Co, Ni, Zn; X = Cl, Br; L=1,4,7-
trimethyl-1,4,7-triazacyclononane). Inorg. Chem. 1997; 36:2834–2843. [PubMed: 11669919] 

30. Cotruvo JA Jr, Stubbe J. Metallation and mismetallation of iron and manganese proteins in vitro 
and in vivo: the class I ribonucleotide reductases as a case study. Metallomics. 2012; 4:1020–1036. 
[PubMed: 22991063] 

31. Walkup GK, Burdette SC, Lippard SJ, Tsien RY. A new cell-permeable fluorescent probe for Zn2+ 

J. Am. Chem. Soc. 2000; 122:5644–5645.

32. Gibbs CR. Characterization and application of ferrozine iron reagent as a ferrous iron indicator. 
Anal. Chem. 1976; 48:1197–1201.

33. Stookey LL. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 1970; 42:779–
781.

34. Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB. The crystal structures of human 
S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerization. J. 
Mol. Biol. 2009; 391:536–551. [PubMed: 19501594] 

35. Brodersen DE, Nyborg J, Kjeldgaard M. Zinc-binding site of an S100 protein revealed. Two 
crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free 
states. Biochemistry. 1999; 38:1695–1704. [PubMed: 10026247] 

Nakashige et al. Page 17

Nat Chem Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Ostendorp T, Diez J, Heizmann CW, Fritz G. The crystal structures of human S100B in the zinc- 
and calcium-loaded state at three pH values reveal zinc ligand swapping. Biochim. Biophys. Acta. 
2011; 1813:1083–1091. [PubMed: 20950652] 

37. Liu JZ, et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth 
in the inflamed gut. Cell Host Microbe. 2012; 11:227–239. [PubMed: 22423963] 

38. Königsberger LC, Königsberger E, May PM, Hefter GT. Complexation of iron(III) and iron(II) by 
citrate. Implications for iron speciation in blood plasma. J. Inorg. Biochem. 2000; 78:175–184. 
[PubMed: 10805173] 

39. Mills SA, Marletta MA. Metal binding characteristics and role of iron oxidation in the ferric uptake 
regulator from Escherichia coli. Biochemistry. 2005; 44:13553–13559. [PubMed: 16216078] 

40. Mizuno K, Whittaker MM, Bächinger HP, Whittaker JW. Calorimetric studies on the tight binding 
metal interactions of Escherichia coli manganese superoxide dismutase. J. Biol. Chem. 2004; 
279:27339–27344. [PubMed: 15082717] 

41. Carver G, Tregenna-Piggott PLW, Barra A-L, Neels A, Stride JA. Spectroscopic and structural 
characterization of the [Fe(imidazole)6]2+ cation. Inorg. Chem. 2003; 42:5771–5777. [PubMed: 
12950228] 

42. Nistor A, Shova S, Cazacu M, Lazar A. Hexakis(1H-imidazole-κN3)iron(II) sulfate–1H-imidazole 
(1/2). Acta Crystallogr. Sect. E Struct. Rep. Online. 2011; 67:m1600–m1601.

43. Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents 
bacterial biofilm development. Nature. 2002; 417:552–555. [PubMed: 12037568] 

44. Flo TH, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by 
sequestrating iron. Nature. 2004; 432:917–921. [PubMed: 15531878] 

45. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC. Feo – transport of ferrous iron 
into bacteria. BioMetals. 2006; 19:143–157. [PubMed: 16718600] 

46. Stojilijkovic I, Cobeljic M, Hantke K. Escherichia coli K-12 ferrous iron uptake mutants are 
impaired in their ability to colonize the mouse intestine. FEMS Microbiol. Lett. 1993; 108:111–
115. [PubMed: 8472918] 

47. Konings AF, et al. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic 
infection in cystic fibrosis lungs. Infect. Immun. 2013; 81:2697–2704. [PubMed: 23690396] 

48. Velayudhan J, et al. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a 
high-affinity ferrous iron transporter. Mol. Microbiol. 2000; 37:274–286. [PubMed: 10931324] 

Methods-only references

49. Carter P. Spectrophotometric determination of serum iron at the submicrogram level with a new 
reagent (ferrozine). Anal. Biochem. 1971; 40:450–458. [PubMed: 5551554] 

Nakashige et al. Page 18

Nat Chem Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. CP houses two transition-metal binding sites at the S100A8/S100A9 interface
(a) CP heterodimer from the structure of the Mn(II)-, Ca(II)-, and Na(I)-bound 

heterotetramer (PDB: 4XJK).15 S100A8 is shown in green. S100A9 is shown in blue. The 

calcium ions are shown as yellow spheres. The sodium ions are shown as purple spheres. 

The manganese ion is shown as a magenta sphere. The amino acid residues at the metal 

binding sites are shown as orange sticks. (b) The His3Asp motif (site 1) is comprised of 

(A8)His83, (A8)His87, (A9)His20, and (A9)Asp30. (c) The His6 motif (site 2) is comprised 

of (A8)His17, (A8)His27, (A9)His91, (A9)His95, (A9)His103, and (A9)His105.
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Figure 2. CP depleted metals from bacterial growth medium
Metal analysis of Mn (a), Zn (b), and Fe (c) concentrations in CP-treated and untreated 

growth medium (250 µg/mL CP, ~3 mM BME) in the absence (white bars) and presence 

(gray bars) of a 2-mM Ca(II) supplement (mean ± SEM, n ≥ 3).
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Figure 3. Metal supplementation growth studies
Growth curves of Gram-negative bacteria Acinetobacter baumannii (a), laboratory and 

enterohemorrhagic strains of Escherichia coli (b,c), Klebsiella pneumoniae (d), and 

Pseudomonas aeruginosa (e), and Gram-positive bacteria Bacillus cereus (f) and 

Staphylococcus aureus (g,h) cultured in medium (+Ca(II), +BME) treated with CP-Ser (250 

µg/mL) and supplemented with 0.15 µM Mn(II), 3 µM Fe(II), and/or 5 µM Zn(II) (mean ± 

SEM, n ≥ 3).
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Figure 4. The antimicrobial activity of CP against E. coli, S. aureus, and L. plantarum
(a,b) Antibacterial activity of CP-Ser, ΔHis3Asp, and ΔHis4 preincubated with 0.9 equiv of 

Fe(II) against E. coli and S. aureus (t = 20 h, mean ± SEM, n = 6). (c,d) Antibacterial 

activity of CP against L. plantarum in the absence and presence of 2-mM Ca(II) and 3-mM 

BME supplements (t = 20 h, mean ± SEM, n = 3). (e) Growth of L. plantarum in medium 

treated with CP-Ser (500 µg/mL) supplemented with 10 µM Mn(II) and 10 µM Zn(II) (mean 

± SEM, n = 3).
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Figure 5. Inhibition of bacterial iron acquisition by CP
Uptake of radiolabeled 55Fe by E. coli (a) and P. aeruginosa (b) treated with 500 µg/mL 

CP-Ser (squares) or ΔΔ (diamonds) compared with untreated bacteria (circles). The upper 

panels show the amount of 55Fe uptake per mL of bacterial culture over the 2-h experiment. 

The lower panels indicate the corresponding OD600 values of the cultures at each time point. 

The mean ± SEM values for 55Fe and OD600 are shown (n = 4).
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Figure 6. Hexahistidine Fe(II) coordination by CP
(a–c) Analytical SEC chromatograms of CP-Ser (400 µM) incubated with no metal, 5 equiv 

of Fe(II), and 5 equiv of Fe(III), and quantification of Fe and CP in eluent fractions. (d–f) 
Analytical SEC chromatograms of CP (20 µM) incubated with 10 equiv of Fe(II). 

Chromatograms for CP αβ (no metal) and α2β2 (+Ca(II)) are provided for reference. Peak 

intensities are normalized to 1. (g) The 4.2-K/53-mT Mössbauer spectrum of 57Fe(II)-bound 

CP-Ser (black vertical bars). Simulation using the parameters described in the main text is 

shown as the blue line, and the Mössbauer spectrum of Fe(II) sulfate in 50 mM Tris, pH 7.5 

recorded under the same conditions is shown as the red line.
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Figure 7. CP binds Fe(II) with remarkably high affinity in a Ca(II)-dependent manner
(a) ZP1 (1 µM) emission response to 3.5 µM Fe(II) in the absence (circles) and presence 

(squares) of 4 µM CP-Ser with addition of Ca(II). The red markers represent the 200-µM 

Ca(II) samples spiked with 4 µM Fe(II) (mean, n = 2). (b) ZP1 (1 µM) emission response to 

Fe(II) in the presence of 4 µM CP with or without 50 equiv of Ca(II) (mean ± SDM, n = 3). 

(c) Room-temperature EPR spectra of Mn(II) (black), CP-Ser in the presence of 50 equiv of 

Ca(II) and 0.9 equiv of Mn(II) (red), and CP-Ser in the presence of 50 equiv of Ca(II) and 

0.9 equiv of Mn(II) with the addition of 0.9 equiv of Fe(II) (blue). (d) The concentration of 

free Mn(II) determined by room-temperature EPR (mean ± SDM, n = 3). (e) The 

concentration of unbound Fe(II) in ΔHis3Asp samples containing 0.9 equiv of Fe(II) after 

addition of 0.9 equiv of Zn(II) with and without 50 equiv of Ca(II) (mean ± SDM, n = 3). 

Control samples containing 25 µM protein, 0.9 equiv of Fe(II), and/or 50 equiv of Ca(II) are 

described in the right panel.
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