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Background

Trauma is the leading cause of death for individuals between the ages of 1–44 worldwide.[1] In

recent years, improved methods to stop bleeding and optimally resuscitate patients have

increased the overall survival and decreased the morbidity associated with severe hemorrhage

and trauma. [2–4] There are, however, few therapeutic interventions that mitigate intermedi-

ate and long-term outcomes in patients who survive the initial injury, a population whose

numbers have increased with recent successful measures at improving initial survival from

combat-related injury. With few therapeutic options beyond supportive care, trauma-related

mortality and morbidity is an area with unlimited scope for advancement.

A novel, emerging area of investigation that has generated considerable interest is the

potential use of cellular therapies (CT) to prevent secondary injury and promote repair of

injured tissue in trauma.[5] Blood transfusion, having been used since the 19th century, is in

fact the first cell therapy to be utilized in bleeding trauma patients. In the United States Civil

War (1861 to 1865), hemorrhage caused three-fourths of combat-related deaths, [6] and the

first blood transfusion recorded in this setting was conducted by surgeon Edwin Bentley to

treat a soldier with a gunshot wound who required a leg amputation.[7]

In recent years, largely spurred by interest and investment from the US military’s trauma

injury research program, the field of cellular therapeutics and regenerative medicine has

grown rapidly. CT have been investigated preclinically and clinically for applications in

trauma.[5] Although the field is still in its early stages of development, animal and human

studies demonstrate the promise of CT for trauma-induced conditions, such as traumatic

brain injury (TBI), spinal cord injury (SCI), organ failure (Acute Respiratory Distress Syn-

drome [ARDS], Acute Kidney Injury [AKI]), orthopedic trauma, burns, as well as a number of

adverse conditions in the severely injured extremity, including soft tissue damage and ische-

mia reperfusion injury.[5,8–24]

Types of CT and mechanisms of action

A multitude of cell types derived from a variety of tissues are currently under preclinical and

clinical investigation for applications in trauma. CT fall into 2 main categories of cell types:

adult multipotent cells and pluripotent embryonic stem cells (ESCs). Induced pluripotent stem

cells (IPSCs) are a third cell group that are derived from de-differentiated adult cells.[5] Adult

multipotent cells, such as mesenchymal stem cells (MSCs), multipotent adult progenitor cells

(MAPCs), hematopoietic stem cells (HSCs), and bone marrow mononuclear cells (BMMNCs),
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have the capacity to generate a limited number of terminally differentiated cell types.[5] Cur-

rently, there are over 500 clinical trials for MSCs listed on ClinicalTrials.Gov, investigating

their therapeutic potential in a variety of clinical applications and demonstrating an excellent

track record of safety. MSCs are likely to be the first main cell type that will pass regulatory

approval and proceed to commercialization for clinical use in the next few years, both in the

US and worldwide. Pluripotent stem cells such as ESCs or IPSCs have the capacity for continu-

ous self-renewal and can differentiate into any cell type in the body.[25] Clinical use of these

cells typically involves specialized cells that have been derived from ESCs and grown under

defined conditions to produce a particular cell type of interest.[26]

Mechanistically, cell-based therapies have been shown to improve outcomes in preclinical

studies of trauma-related conditions characterized by uncontrolled inflammation, vascular

compromise, and aberrant coagulation: a pathophysiological triad known as the endotheliopa-

thy of trauma (EOT). CT mechanisms of action include the following: (1) producing soluble

factors that regulate the EOT (i.e., growth factors, cytokines, chemokines, microvesicles,

exosomes, and mitochondria) through anti-inflammatory and cell-protective effects [27],

(2) replacing cells that are lost by differentiating and integrating into the damaged tissue

microenvironment, and (3) stimulating regeneration and repair of endogenous injured tissue.

Multipotent cells are optimally oriented towards prevention and repair of injured tissue, and

pluripotent stem cells are ideally suited for cell replacement of lost and injured tissue. In con-

trast to small molecule therapies, CT have the potential to modulate pleotropic therapeutic tar-

gets and thereby address the heterogeneity of disease present in the trauma patient.[22]

Target patient population for CT in trauma

Identifying which cohort of trauma patients would most likely benefit from CT and which

endpoints are best matched to the mechanism of action defined for the particular cell type

under investigation is critical to developing successful clinical trials. In terms of mortality,

there are 3 main cohorts of patients defined by time postinjury. In the first 2 hours after injury,

approximately 25% of the deaths that occur are secondary to hemorrhage.[2] These patients

can be saved by surgery, hemostatic interventions, and optimal resuscitation paradigms and

will not likely benefit from CT. During the second period, between 8 hours and 3 days after

injury, most of the deaths are the result of severe TBI [28]. There is likely a small population of

patients in this group that may benefit from a cell-based therapy, i.e., for the control of cerebral

edema and to limit increases in intracranial pressure (ICP).[2] After 3 days postinjury, the

remaining 25% of deaths occur at a low and continuous rate, extending up to 30 days or more

postinjury.[5] EOT is a key factor in these deaths.[29,30] EOT contributes to the development

of trauma-induced multi-organ failure (MOF), sepsis, ARDS, venous thromboembolic disease

(VTE), and AKI. Aside from supportive care, there are few treatment options for these clinical

endpoints, and based on defined mechanisms of action, these endpoints are likely targets for

amelioration using CT.

Investigation of CT in trauma

Preclinical studies in animal models have provided insight on the potential of various CT

and their mechanisms of action, but no single model can fully recapitulate the complex hetero-

geneity of the disease. While research is advancing in multiple areas of clinical investigation,

including orthopedic trauma and wound healing [5], we focus here on the areas of neuro-

trauma (TBI and SCI) and organ failure (ARDS).

Neurotrauma remains a significant public health concern in both civilian and military

populations worldwide.[31] Although CT have shown promise in treating applications in
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neurotrauma such as TBI and SCI, translatable CT are still in early development. Cell types

investigated in TBI preclinical models include BMMNCs, MSCs, and MAPCs. All 3 of these

cells have demonstrated significant therapeutic effects on regulating blood–brain barrier per-

meability, neuroinflammation, neuroprotection, and neurocognitive outcomes.[19,32–34]

Building on supportive preclinical data, a phase 1 clinical trial investigated intravenous admin-

istration of autologous BMMNCs for the treatment of severe TBI in children, primarily to eval-

uate treatment safety. [35] The trial demonstrated the feasibility, safety, and some evidence of

efficacy for BMMNCs in TBI.[35] Phase 2 studies are now ongoing in both children and adults

with TBI, with a focus on unique trial design and assessment of outcome measures related to

structural imaging of the brains of injured and treated patients.[21,35,36]

SCI involves a myriad of adverse processes that are potential therapeutic targets for CT.

These include increased oxidative stress, inflammation, demyelination, blood–spinal cord bar-

rier permeability, increasing cavity lesion size, glial scarring, and decreased neural connectiv-

ity.[23,37] Cell types investigated in SCI preclinical models of injury include ESCs, MSCs,

neural stem cells (NSCs), olfactory ensheathing glia (OEG), oligodendrocyte progenitor cells

(OPCs), Schwann cells (SC), and activated macrophages[38–40]. There is currently a phase 1/

2a trial for human ESC–derived OPCs, which are transplanted weeks after injury for American

Spinal Injury Association (ASIA)-A patients with complete cervical SCI. These are patients

who lack motor and sensory function in S4–S5 levels. Promising safety outcomes and some

initial reports of efficacy have been recently reported.[26,41]

In the category of organ failure, CT using bone marrow–derived MSCs have been investi-

gated extensively for ARDS. [16,24,42] Preclinical research has demonstrated the effectiveness

of MSCs in decreasing pulmonary vascular permeability, inflammation, and lung edema while

increasing macrophage phagocytosis of bacteria.[22,43,44] Many of these effects have been

shown to be mediated by soluble factors that are secreted by the MSCs postinfusion.[22,44]

MSCs have been investigated in a multicenter, phase 1/2a, randomized, placebo-controlled

trial of nontrauma-related ARDS. This trial reported safety in dose escalation studies; cur-

rently, the Phase 2a trial is complete, but results have yet to be reported.[42] Recently, the

Department of Defense (DOD) has funded a multicenter, randomized, placebo-controlled

trial starting in late 2017 in the US for trauma-induced ARDS. This study will be the first to

clinically investigate the use of MSCs for ARDS in trauma patients. Overall, definitive evidence

on the clinical safety and efficacy of CT in trauma is not yet available, but with the completion

of many of these current and planned trials, the next 5 years should bring answers to many

questions.

Current challenges for CT in trauma

Challenges remain with regard to the translation of CT into practice. For example, the assess-

ment of which cell types and cell sources are most likely to improve outcomes of severe injury

is still in its early stages. Additionally, research and development is needed to characterize dif-

ferent processing methods, doses, route, and timing of administration. Advances in each of

these categories are needed to inform the effective design and conduct of clinical studies.

Another critical area of development is the reliable production of clinical-grade cells in suffi-

cient quantities for trials and eventual licensure. A fact underscoring the relatively nascent

state of clinical work in this area is the absence of a Food and Drug Administration (FDA)- or

European Medicines Agency (EMA)-approved, commercially-derived CT for trauma or criti-

cal care medicine, but even if FDA or EMA clearance were to be obtained for any of the MSC-

based therapies, current sources of clinical-grade cells would probably not be sufficient to

meet demand. Optimal methods to support large-scale cell expansion and processing of the
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various cell products is still in development. Each cell type requires its own specific conditions

for optimal growth, which may also be disease application–dependent.

Regulatory challenges also exist for CT. The regulatory roadmap is still under development

at European and US regulatory agencies.[45–48] Regulatory concerns specific to trauma in the

US include consent issues pertaining to exception from informed consent (EFIC) under the

US Code of Federal Regulations Title 21 Part 50, which would likely be needed for clinical tri-

als in trauma in which CT would have to be administered at early time points when direct con-

sent of the patient is not possible. Informed consent issues comprise one of several challenges

pertaining to optimal clinical trial design in trauma. For example, a lack of success in TBI trials

[49–51] may be attributed to suboptimal trial design compounded by the heterogeneity of the

disease and the need to identify modifiable outcome measures.[52] Addressing similar issues

will be key to the clinical advancement of CT in trauma.

Finally, adequate and reliable sources of medical research funding are required to support

preclinical and human subject research. In the US, some states have started agencies, such as

the California Institute of Regenerative Medicine (CIRM), that aim to support regenerative

medicine research efforts. The National Institutes of Health (NIH) and the DOD have also

embarked on specific endeavors to support foundational, applied, and clinical study of CT for

the treatment of trauma-related conditions. Although injury is a leading cause of death and

disability in the US, research funding for this condition and investigation of therapies focused

on mitigating its impact are low in comparison to the support aimed at cancer and infectious

and cardiovascular diseases [3].

Looking towards the future for CT in trauma

Increasing awareness of the promise of CT, and the impossibility of developing a single drug

to address the heterogeneous states of trauma and injury, led the DOD to initiate a “state of the

science” meeting in 2015 [5]. Subsequent publications on the topic led to discussion, planning,

and programming of a portion of the DOD’s trauma and injury research funding towards this

topic. These focused efforts resulted in multiple research awards to civilian and DOD research

groups, supporting both clinical and preclinical work; the hope is that new knowledge and

materiel products stemming from this investment will advance the field and improve survival

and recovery of those injured in military and civilian settings. CT have demonstrated a unique

and exciting potential to limit the sequelae of severe injury and, in doing so, improve survival

and recovery. Committing to this topic area and working in a coordinated fashion, civilian

and military researchers, clinicians, and funding organizations can realize this potential.
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