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THE PERMEABILIY TRANSITION AND F-ATP SYNTHASE

Mitochondria can undergo a Ca2+-dependent increase of inner membrane permeability called
the permeability transition (PT; Hunter et al., 1976). The PT requires Ca2+ accumulation in the
matrix and is due to opening of a regulated channel, the PT pore (PTP) which has also been
studied by electrophysiology and named mitochondrial megachannel (MMC; Kinnally et al., 1989;
Petronilli et al., 1989). The PTP/MMC displays a range of conductance states, which also depend
on the species. In mammals maximal conductance can be as high as 1.2 nS, which corresponds
to a pore with a diameter of about 2–3 nm. The channel is characterized by a variety of lower
conductance states, which may allow selective permeation of small solutes (Szabo and Zoratti,
2014). In mammals the PTP is modulated by binding of cyclophilin D, which favors PTP opening.
The molecular nature of the PTP/MMC is the matter of active investigation and controversy, and
has been specifically addressed in a recent review (Bernardi and Lippe, 2018). The most recent
hypothesis posits that it originates from a conformational change occurring on the F-ATP synthase
after Ca2+ binding, possibly by replacing Mg2+ at the catalytic site (Giorgio et al., 2017). This
proposal has been supported by genetic manipulation of F-ATP synthase (Bonora et al., 2013;
Giorgio et al., 2013), by electrophysiological measurements (Giorgio et al., 2013; Alavian et al.,
2014; Carraro et al., 2014; von Stockum et al., 2015), and by mutagenesis of specific residues of F-
ATP synthase (Giorgio et al., 2017; Antoniel et al., 2018; Guo et al., 2018; Carraro et al., in press).
On the other hand, the Walker laboratory has challenged this hypothesis on the basis of studies
where subunit c (He et al., 2017b) or peripheral subunits b and OSCP (He et al., 2017a) had
been genetically ablated. These studies are important because they provide the first example of
eukaryotic cells where F-ATP synthase subunits have been genetically turned off, thus allowing
the first appraisal of the consequences of F-ATP synthase loss of function (He et al., 2017a,b).
The Authors also used these cells to address the question of whether the PTP is conserved. They
concluded that the PTP was still present in the deletion mutants, and claimed that the idea that F-
ATP synthase is an essential component of the PTP can be ruled out (He et al., 2017a,b). However,
analysis of the data suggests that the PTP has been affected by elimination of subunits c, b and
OSCP, and that the above conclusion needs to be reassessed.

SIZE MATTERS

The PTP size is large enough for the diffusion of sucrose, which is the typical solute used to detect
occurrence of a PT. Long-lasting PTP opening in vitro is followed by solute diffusion with matrix
swelling (Massari and Azzone, 1972). Swelling obviously also occurs in media based on KCl or
other salts, conditions that allow detection of pore(s) of smaller size and/or of lower conductance
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(Ichas et al., 1997). He et al. observed that Ca2+-dependent
mitochondrial swelling took place in permeabilized wild-type
cells as well as in cells obtained after genetic ablation of subunits
b (1b) and OSCP (1OSCP) (He et al., 2017a). However, analysis
of the data reveals that, compared to wild-type cells, the rate of
swelling was reduced to about 20% in the 1b and to 40% in the
1OSCP cells. This finding may not be immediately appreciated
because the ordinate scale of the latter two sets of experiments
was expanded (Figure 5 of He et al., 2017a). The absence
of replicates and of calibration with pore-forming agents like
alamethicin prevents firm conclusions to be drawn from these
experiments. However, decreased swelling rates in KCl would
support the conclusion that in the deletion mutants the PTP size
has become smaller, and close to the exclusion size of hydrated
K+ and Cl−, a difference that would have been even more
dramatic in sucrose-based media. In a second set of experiments
occurrence of PTP opening was determined based on the Ca2+

load required to trigger Ca2+ release after the accumulation of a
train of Ca2+ pulses, the so-called Ca2+ retention capacity (CRC).
In these protocols Ca2+ release (which marks onset of the PT)
is due to depolarization and does not provide information on
the mechanism(s) mediating depolarization itself, which could
result even from selective permeabilization to H+ as seen in Ca2+

release experiments induced by the addition of protonophores
(Bernardi et al., 1984). These experiments are therefore also
compatible with opening of a PTP of smaller size.

KNOCK OUT OF F-ATP SYNTHASE

SUBUNITS SEVERELY IMPAIRS

RESPIRATION

As a consequence of the ablation of subunits c, b, and OSCP F-
ATP synthase was not properly assembled and rather originated
a “vestigial” enzyme that did not display dimer formation
after extraction with digitonin. Remarkably, major alterations
were also observed in the respiratory chain with almost no
mature complex I assembly, severe depletion of complex III
and reduction of complex IV. Consistently, respiratory activity
was dramatically decreased to between 10 and 20% of the
rate observed in wild-type cells, and could only be marginally
stimulated by uncoupler (He et al., 2017a,b). Mitochondrial
Ca2+ uptake, which is essential for PTP opening, is driven by
the Ca2+ electrochemical gradient (1µ̃Ca = zF1ψ + RT ln
[Ca2+]i/[Ca2+]o). In respiring mitochondria the driving force
for accumulation is the inside-negative membrane potential
generated by respiration, and Ca2+ uptake takes place on
the uniporter with net charge translocation of 2 (Scarpa and
Azzone, 1970; Wingrove et al., 1984; Kirichok et al., 2004). Ca2+

uptake is charge-compensated by increased H+ pumping by
the respiratory chain, while the buildup of a large 1pH and of
high matrix Ca2+ concentration is prevented by Pi uptake. The
essential point for the present discussion is that the maximal rate
of Ca2+ uptake is limited by the maximal rate of H+ pumping by
the respiratory chain (Bragadin et al., 1979), the latter becoming
rate-limiting when extramitochondrial Ca2+ rises above about
2µM (Nicholls, 1978). Given that the size of the Ca2+ pulses

was 10µM (He et al., 2017a,b) the rate of Ca2+ uptake in the
1c,1b, and1OSCPmitochondria should have been measurably
lower than (rather than identical to) the rate observed in wild-
type mitochondria. It is legitimate to ask whether the marked
respiratory inhibition described for the deletion mutants is
constant over time, or rather compensatory mechanisms exist
that eventually restore at least partial expression of F-ATP
synthase and of the respiratory chain.

A good example is provided by the 1b mutants. The Authors
report the surprising finding that low levels of tryptic peptides
corresponding to sequences of subunit b could still be found
in the null cells. The peptides were derived from a gel region
at 17.5 kDa, which corresponds to truncated subunit b. PCR
amplification of RNA transcripts covering a putative coding
region for these peptides revealed the existence of an alternative
splice site in intron A allowing generation of a truncated subunit
b (residues 67–214) lacking the membrane region (He et al.,
2017a). In summary, the swelling experiments of the Walker
laboratory suggest that deletion of the c and peripheral stalk
subunits may have affected the PTP, which appears to have
become smaller; and contain an internal inconsistency between
inhibition of respiration and rates of Ca2+ uptake, which in
turn raises questions about the CRC measurements. Thus, these
results cannot be used to conclude that the F-ATP synthase does
not take part in formation of the PTP.

WHAT WE HAVE LEARNED FROM

SITE-DIRECTED MUTAGENESIS

Several sites have been defined by chemical modification with
relatively selective sulfhydryl, histidine and arginine reagents that
confer PTP regulation by the membrane potential, matrix pH,
divalent cations, quinones, and oxidative stress. Identification of
these sites is a formidable challenge but also a unique opportunity
to (dis)prove our hypothesis on the identity of the PTP. Indeed,
site-directed mutagenesis of specific residues should modify the
properties of the PTP in a predictable manner, a task that is
made easier by the availability of structures of F-ATP synthase of
increasing resolution (Abrahams et al., 1994; Stock et al., 1999;
Rubinstein et al., 2003; Strauss et al., 2008; Baker et al., 2012;
Davies et al., 2012; Daum et al., 2013; Allegretti et al., 2015; Jiko
et al., 2015; Zhou et al., 2015; Hahn et al., 2016; Vinothkumar
et al., 2016; Guo et al., 2017).

Residue T163 in the β subunit of mammalian F-ATP synthase
is essential for the binding of Mg/ADP to the catalytic site
(Rees et al., 2012). Mg2+ can be replaced by other divalent
metals (Selwyn, 1968; Pedersen et al., 1987), and binding of
Ca2+ allows ATP hydrolysis without measurable H+ pumping
(Papageorgiou et al., 1998). InRhodospirillum rubrum the relative
affinity for Ca2+ and Mg2+ could be modulated with a T159S
mutation at the β subunit (the position equivalent to T163 in
mammals), which led to decreased Ca2+-ATPase and increased
Mg2+-ATPase activities (Nathanson and Gromet-Elhanan, 2000;
Du et al., 2001). We have found that a partial T163S substitution
in HeLa cells increases Mg2+-ATP and prevents Ca2+-ATP
hydrolysis with a matching decreased sensitivity of the PTP to
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Ca2+, resistance to cell death and decreased apoptosis (Giorgio
et al., 2017). One of the most remarkable features of the PTP is
its absolute dependence on matrix Ca2+, and these findings are
consistent with the idea that the PTP is triggered by Ca2+ binding
at the F-ATP synthase catalytic site.

Previous studies had identified a role of Arg residues in the
regulation of the PTP through the use of selective reagents
such as phenylglyoxal (PGO; Johans et al., 2005). The effects of
PGO are species-specific, and we recently identified R107 of F-
ATP synthase subunit g as the unique PTP-modulating target
of PGO in yeast. Remarkably, expression of human subunit g
in yeast transferred the “human” PTP phenotype, suggesting
that species-specificity depends on differences in the primary
structure of F-ATP synthase (Guo et al., 2018). The importance
of the e and g subunits in formation of the yeast channel
is also supported by our recent finding that their deletion
abrogated the high-conductance channels in mutants where
dimerization was enforced by copper-dependent formation of
dimers through oxidation of C23 of subunit a (Carraro et al.,
in press).

Perhaps the most intriguing feature of the PTP is its inhibition
by matrix H+, which is marked at pH 6.7 and leads to complete
channel block at pH 6.5 (Nicolli et al., 1993; Antoniel et al.,
2018). Based on protection with diethylpyrocarbonate and partial
reversal with hydroxylamine, we had concluded that PTP block
is mediated by reversible protonation of matrix-accessible His
residues (Nicolli et al., 1993). We have recently identified
H112 of the OSCP subunit as the unique His responsible for

the PTP block by H+. Indeed, H112Q and H112Y mutations
completely prevented the inhibitory effects of acidic pH both
in PTP-dependent swelling measurements in mitochondria
and in single-channel patch-clamp recordings in mitoplasts
(Antoniel et al., 2018). Remarkably, the mutations had no
consequences on oligomycin-sensitive and uncoupler-stimulated
respiration, indicating that the F-ATP synthase was normally
assembled.

At variance from knock out experiments, our mutagenesis
approach turned out not to be disruptive for F-ATP synthase
assembly and catalysis, nor to have detectable effects on
respiration and cell viability. We are confident that future work
will allow a better understanding of how the energy-conserving
enzyme can turn into an energy-dissipating device, a hypothesis
that stands and that will be further tested by mutagenesis of Cys
residues and by analysis of the channel activity of highly purified
preparations from bovine heart.
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