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ABSTRACT

Motivation: Robustness is the capacity of a system to maintain
a function in the face of perturbations. It is essential for the
correct functioning of natural and engineered biological systems.
Robustness is generally defined in an ad hoc, problem-dependent
manner, thus hampering the fruitful development of a theory of
biological robustness, recently advocated by Kitano.
Results: In this article, we propose a general definition of robustness
that applies to any biological function expressible in temporal
logic LTL (linear temporal logic), and to broad model classes and
perturbation types. Moreover, we propose a computational approach
and an implementation in BIOCHAM 2.8 for the automated estimation
of the robustness of a given behavior with respect to a given set
of perturbations. The applicability and biological relevance of our
approach is demonstrated by testing and improving the robustness
of the timed behavior of a synthetic transcriptional cascade that
could be used as a biological timer for synthetic biology applications.
Availability: Version 2.8 of BIOCHAM and the transcriptional
cascade model are available at http://contraintes.inria.fr/BIOCHAM/
Contact: gregory.batt@inria.fr

1 INTRODUCTION
Robustness can be defined as the capacity of a system to maintain
a function in the face of perturbations. Over the years, many
studies have demonstrated theoretically and experimentally that
robustness is a key property of numerous biological processes, and
have proposed mechanisms that promote robustness (e.g. Barkai
and Leibler, 1997; Batt et al., 2007; Chaves et al., 2007; Ciliberti
et al., 2007; Davidson and Levine, 2008; El-Samad et al., 2005;
Gonze et al., 2002; Ingolia, 2004; Shen et al., 2008; Shinar et al.,
2007; Stelling et al., 2004b; von Dassow et al., 2000). Robustness is
now regarded as one of the fundamental characteristics of biological
systems because it allows their correct functioning in presence of
molecular noise and environmental fluctuations. Excellent reviews
have surveyed the role of biological robustness, and discussed
its interesting relations with evolvability of biological systems,
modularity of biological networks and the trade-off between
robustness and fragility (e.g. Kitano, 2004; Stelling et al., 2004a;
Yi et al., 2000). In particular, in the context of synthetic biology,
these are key issues to take into account at the design level.

Intuitively, the notion of robustness seems easy to define.
One considers (i) a particular system, (ii) a particular function
and (iii) a particular set of perturbations, and one assesses how
perturbations affect (or not) the given function. However, with the
notable exception of Kitano (2007), no general formal definition of
robustness has been proposed. The precise definition of robustness is
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generally highly problem-specific. This makes it difficult to discuss
and compare the robustness found in different contexts, or even
in similar contexts but computed using different formal definitions
of robustness. In Kitano (2007), the mathematical foundations of
a theory of biological robustness is proposed, with the aim of
providing a unified perspective on robustness.

Although very interesting from a theoretical point of view,
Kitano’s definition might be too general when applying it to
particular problems. Indeed the definition relies on a so-called
evaluation function, defined using an unspecified, problem-
dependent real-valued performance function. Here, we propose
to define the evaluation function using the newly introduced
notion of violation degree of temporal logic formulae (Fages and
Rizk, 2008). Intuitively, the violation degree reflects the distance
between a particular behavior of the perturbed system, given as
a numerical timed trace, and the expected reference behavior,
expressed by a temporal logic formula. Because (i) temporal
logics are expressive languages to formalize temporal behavior of
dynamical systems and (ii) the violation degree can be automatically
computed, our instantiation of Kitano’s definition is both general and
computational. The main contribution of our work is that we propose
a computational approach for—and an implementation of—the
automatic estimation of the robustness that applies to a broad class
of dynamical properties and a large variety of possible perturbations.
We simply require that the property describing the expected behavior
can be expressed in temporal logic and that the behavior of the
system can be represented by a numerical trace (possibly obtained
by numerical simulation of deterministic or stochastic models).

A second contribution of this work is that we propose two
closely related but different notions of robustness that have
been used indiscriminately in publications, namely the absolute
robustness of a system, representing the average functionality of
the system under perturbations, and the relative robustness with
respect to a given nominal behavior of the system, quantifying the
impact of perturbations on the nominal behavior. We believe that
distinguishing these two notions will help to clarify the analysis of
robustness of biological systems. Undoubtedly, formal definitions
are useful for making this distinction.

The applicability and biological relevance of our approach is
illustrated on the analysis of the robustness of the timed response
of a synthetic transcriptional cascade built in Escherichia coli. This
system presents a high cell-to-cell variability that prevents using
it as a biological timer. We look for parameter modifications that
improve the robustness of a ‘well-timed’ behavior.

The remainder of this article is organized as follows. In the next
section, we provide a brief description of the violation degree notion
introduced in Fages and Rizk (2008). In Section 3, we present the
proposed method for robustness estimation and its implementation in
BIOCHAM 2.8. In Section 4, we detail the application of our method
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to the analysis of the robustness of the synthetic transcriptional
cascade.

2 VIOLATION DEGREE OF TEMPORAL LOGIC
PROPERTIES

We first define the Boolean semantics of linear temporal logic
(LTL) on timed numerical traces (Section 2.1). Then, we show
how using the variable abstraction technique of Section 2.2, we can
define a continuous satisfaction degree for temporal logic formulae
(Section 2.3) better adapted to a quantitative notion of robustness.

2.1 Temporal logic semantics of numerical traces
In this article, we consider that the behavior of a biological
system is described by numerical timed traces. These traces can
be obtained either by experimentation on the actual system or
by numerical simulation of stochastic or deterministic models.
Formally, a numerical trace is a finite sequence of tuples describing
system’s evolution with time: T = (s0,s1,...,sn), with si = (ti,xi,ẋi),
(ti)i∈[0,n] being a strictly increasing sequence of time points, and
xi,ẋi ∈R

m being vectors of state variable values and of their
derivatives at time ti. In Figure 1a, a hypothetical evolution of a
protein concentration is represented. The associated trace is T =
((0,6,1.3),(2,8,0.8),...,(24,5,0)).

We use LTL to express dynamical properties of biological
systems. Temporal logics have been developed to specify the
behavior of (usually discrete) dynamical systems (Emerson, 1990).
Typical properties include reachability (the system can reach a given
state), inevitability (the system will necessarily reach a given state),
invariance (a property is always true), response (an event necessarily
triggers a specific behavior) and infinite occurrences of events
(such as oscillations). Illustrative examples of the expressiveness
of temporal logics in systems biology can be found in Antoniotti
et al. (2003); Batt et al. (2005); Bernot et al. (2004); Calzone et al.
(2006) and Chabrier and Fages (2003). LTL formulae are built using
atomic propositions and LTL operators.

In our approach, atomic propositions π express real-valued linear
constraints on time, protein concentrations and their derivatives. The
infinite set of atomic propositions is denoted by �.

LTL operators include the usual logical operators, such as
negation (¬), logical and (∧), logical or (∨) and implication (→),
and specific temporal operators, such as next (X), future (F), globally

(G) and until (U). Xφ, Fφ, Gφ and φUψ , respectively, mean that a
property φ holds at the next time, at some future time, holds for all
future times or holds continuously until another property ψ holds.
These operators can be combined to express complex dynamical
properties. For example, the trace T represented in Figure 1a
satisfies the formula φ1 =F([A]>7∧F[A]<3), expressing that
at some time point, protein A concentration exceeds 7 and later goes
below 3. Because negations can be pushed to atomic propositions
with the usual duality properties of operators, and the set of atomic
propositions is closed by negation, we consider without loss of
generality only negation-free LTL formulae.

The standard semantics of LTL formulae is generally defined with
respect to infinite executions, i.e. infinite traces. Because in our case,
the traces are finite, the usual semantics of LTL has to be adapted.
Let T = (s0,s1,...,sn) be a finite numerical trace, π ∈� be an atomic
proposition and φ, ψ be LTL formulae. Then the semantics of LTL
formulae with respect to finite traces is defined inductively as T |=φ
iff s0 |=φ, and

• si |=π iff si=(ti,xi,ẋi) satisfies π with the usual semantics,

• si |=φ∧ψ iff si |=φ and si |=ψ ,

• si |=φ∨ψ iff si |=φ or si |=ψ ,

• si |=Xφ iff i<n and si+1 |=φ, or i=n and sn |=φ,

• si |=Fφ iff ∃j∈[i,n] such that sj |=φ,

• si |=Gφ iff ∀j∈[i,n], sj |=φ,

• si |=φUψ iff ∃j∈[i,n] s. t. sj |=ψ and ∀k ∈[i,j−1], sk |=φ.

Our semantics of LTL coincides with the standard semantics used
on finite traces completed by a self-loop on the last state (Fages
and Rizk, 2008). This semantics differs from the neutral semantics
of Eisner et al. (2003) for finite traces only for the next operator,
which in their definition is always false on the last state, whereas in
our case it enjoys the duality property ¬Xφ=X¬φ and either Xφ or
X¬φ holds. In practice, the next operator being mainly used to detect
local extrema, this difference of interpretation is not significant.

It is worth noticing that when the numerical trace corresponds
to a discrete representation of a continuous process, the discrete
time semantics that we use may cause that particular events are
‘missed’ independently of the numerical errors that can be made
by the numerical integration method. For example, the formula
F([A]≥10) interpreted on trace T of Figure 1a and expressing that
eventually [A] exceeds 10 might be found true or false depending

Fig. 1. (a) Numerical trace depicting the time evolution of a protein concentration. (b) Satisfaction domain DT ,φ(y) of QFLTL formula φ(y)=F([A]>
y1 ∧F[A]<y2) and trace T , and LTL formulae φ1, φ2 and φ3, represented in formula space. (c and d) Representation of satisfaction domains for three
perturbations p1, p2, and p3. Dpi denotes DTpi ,φ(y). In (c), the intersection of satisfaction domains (shaded) is not empty and Rsds

φ,P =3. The property
φ(ỹ)=φ(3,4)=F([A]>3∧F[A]<4) is satisfied for all perturbations. In (d), the intersection of satisfaction domains is empty and Rsds

φ,P =∞.
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on the integration step and precision. So care must be taken when
checking temporal properties on finite discrete time traces [for a
discussion, see Eisner et al. (2003); Fainekos and Pappas (2007)
and Maler et al. (2008), and references therein].

2.2 From model checking to constraint solving
The Boolean interpretation of temporal logic is not well adapted to
defining a quantitative notion of robustness. Indeed, neither of the
two formulae φ2 =F([A]>12∧F[A]<3) and φ3 =F([A]>14∧
F[A]<3) hold for the trace T of Figure 1a. However, intuitively
φ2 is closer to satisfaction than φ3, since it only requires that [A]
reaches 12 instead of 14.

To provide a formal definition of a continuous degree of
satisfaction of LTL formulae, we first consider quantifier-free
LTL (QFLTL) formulae with free (non-state) real-valued variables
y (Fages and Rizk, 2008). Then, the original model checking
problem is transformed into the following constraint solving
problem: for which values y does φ(y) hold on T? Accordingly,
we define for any trace T the satisfaction domain of φ(y) as the set
of values y for which φ(y) holds:

DT ,φ(y) ={y∈R
q |T |=φ(y)} (1)

In the sequel, φ(y) will denote the QFLTL formula obtained by
variable abstraction from a (QF)LTL formula φ.

Interestingly, an LTL formula can be seen as an instance of a
QFLTL formula obtained by abstracting the constants appearing
in the formula by new variables y∈R

q. For example, to φ1 =
F([A]>7∧F[A]<3), we associate the formula φ(y)=φ(y1,y2)=
F([A]>y1 ∧F[A]<y2). Then we have φ1 =φ(7,3). Moreover,
one can easily check that for our example trace T , DT ,φ(y1,y2) =
{y1 ≤10∧y2 ≥2}, 10 and 2 being, respectively, the maximal and
minimal values of [A] in T .

More generally, this variable abstraction/instantiation process
allows us to view a LTL formula as a point in the QFLTL formula
space R

q, where q is the number of constants appearing in φ (or
the number of constants that are replaced by variables, if not all
constants are abstracted away). In Figure 1b, φ1, φ2, φ3 and DT ,φ
are represented in this formula space.

Given any trace T = (s0,s1,...,sn) and formula φ(y) we showed
in (Fages and Rizk, 2008) that the satisfaction domain DT ,φ(y) can
be computed by induction on T and the subformulae of φ(y) using
the equalities of Proposition 1.

Proposition 1 [Computation of satisfaction domains (Fages and
Rizk, 2008)].

• DT ,φ(y) =Ds0,φ(y),

• Dsi,π (y) ={y∈R
q |π (y) holds with the usual semantics},

• Dsi,φ(y)∧ψ(y) =Dsi,φ(y) ∩Dsi,ψ(y),

• Dsi,φ(y)∨ψ(y) =Dsi,φ(y) ∪Dsi,ψ(y),

• Dsi,Xφ(y) =
{ Dsi+1,φ(y), if i<n,

Dsi,φ(y), if i=n,

• Dsi,Fφ(y) =∪j∈[i,n]Dsj,φ(y),

• Dsi,Gφ(y) =∩j∈[i,n]Dsj,φ(y),

• Dsi,φ(y)Uψ(y) =∪j∈[i,n](Dsj,ψ(y) ∩∩k∈[i,j−1]Dsk,φ(y)).

The atomic propositions in φ(y) being linear constraints on free
variables y, the satisfaction domains are finite unions and inter-
sections of polytopes that can be computed with standard polyhedra
libraries. Although generally efficient, these operations require in
the worst case a time exponential in the formula space dimension.
They are, however, independent on the number of state variables.

2.3 Violation degree
To quantify how far from satisfaction a system’s behavior is, we
introduce the violation degree vd(T ,φ) of a formula φ with respect to
trace T as the distance between the actual specification and validity
domain DT ,φ(y) of the QFLTL formula φ(y) obtained by variable
abstraction:

vd(T ,φ)=dist(φ,DT ,φ(y)).

The violation degree has thus a simple interpretation, since it
quantifies by how much a given LTL formula must be changed to
hold on a given numerical trace.

Considering again our example in Figure 1b and using the
Euclidean distance, we have that vd(T ,φ1)=0, meaning that the
formula is satisfied by T , and vd(T ,φ2)=2 and vd(T ,φ3)=4,
reflecting that T is further from satisfaction of φ3 than of φ2.

We would like to emphasize that abstracting constants by variables
in temporal logic formulae is a means to define a metric on the
set of formulae. All set operations and distance computations are
made in the corresponding metric space, known as the formula
space. It might seem more intuitive to define distances directly
between traces. For example, Fainekos and Pappas (2006) use with
a similar aim—defining a continuous interpretation of temporal
logic formulae on traces—the distance between a given trace T
and the set of traces satisfying a formula φ. One major advantage
of our approach is that the dimensionality of the formula space
(number of abstracted constants) is generally much lower than the
dimensionality of the trace space (trace length). Performing set
operations and distance computation in low-dimensional spaces
may strongly affect the practical applicability of these methods.
In Donaldson and Gilbert (2008) a similar notion of violation
degree has been recently proposed, also based on the definition
of a satisfaction domain of temporal logic formulae. However, the
computation of the (finite) satisfaction domain is made by sampling
the formula space rather than by constraint solving. In this article, we
will use the Euclidean distance. However, many other distances can
be used (e.g. Manhattan or Chebyshev), depending on the desired
interpretation of distance and, as we will see in the next paragraph,
on the desired interpretation of robustness.

To define the robustness of a behavior, it is more convenient to
reason with a positive notion that describes how good the (possibly
perturbed) system performs, i.e. satisfies a dynamical property. To
do so, we introduce the notion of continuous satisfaction degree of
a formula with respect to a trace T :

sd(T ,φ)= 1

1+vd(T ,φ)
∈[0,1], (2)

where vd is the violation degree previously introduced. The
satisfaction degree is normalized such that it ranges between 0 and
1, with a satisfaction degree equal to 1 when the property is true
and tending toward 0 when the system is far from satisfying the
expected property. For some applications, the satisfaction degree
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might be normalized differently, using a given constant K instead
of the ones in Equation (2).

3 ROBUSTNESS DEFINITIONS AND
COMPUTATIONS

3.1 Absolute robustness
In this article, we mainly use Kitano’s general definition of
robustness. In Kitano (2007), the robustness of a property a of
a system s with respect to a set of perturbations P is defined
as the average of an evaluation function Ds

a of the system over
all perturbations p∈P, weighted by the perturbation probabilities
prob(p):

Rs
a,P =

∫
p∈P

prob(p)Ds
a dp (3)

One should emphasize that this definition is very general and can
be used in many cases. Unfortunately, Kitano does not provide much
information on how to define the so-called evaluation function Ds

a
of the system. This function should determine if the system still
maintains its function under a perturbation and to what degree. The
evaluation function needs to be defined for each specific problem in
an ad hoc manner and re-implemented for the computation of the
robustness.Acentral contribution of this article is to demonstrate that
using the notion of satisfaction degree presented previously, one can
provide a general computational framework based on temporal logic
and Kitano’s definition that can be used to evaluate the robustness
of broad types of dynamical properties and perturbations.

Formally, the robustness of the system is defined as:

Rs
φ,P =

∫
p∈P

prob(p)sd(Tp,φ)dp, (4)

where φ is the specification of the functionality in temporal logic
and Tp is the trace representing the behavior of the system under
perturbation p. This notion of robustness corresponds to a mean
functionality, that is, describes on average how the system behaves
under perturbations. To illustrate this, consider the plots 1 and 2
of Figure 2 that describe the performance Ds

a—or equivalently in
our case, the satisfaction degree—of two hypothetical systems in
the face of perturbations p. Because these two plots have the same
average, the robustness of these two systems would be equal for
evenly distributed perturbations. For example, in a bioengineering
context, if the ‘property’ reflects the quantity of some product
exported by cells, these two systems will indeed produce on average
the same quantity of the desired product.

This notion of robustness has been used in Ingolia (2004), Ma
et al. (2006) and von Dassow et al. (2000) to study the influence
of large parameter variations on the Drosophila segment polarity
pattern formation. Ma et al. (2006) used a Boolean criteria requiring
a ‘pattern penality function’ pen(x(t)) to be below a given threshold
θ∗ =0.0125 at 600 and 800 min. The QFLTL formula φ(θ )=
G(time∈[600,800]→pen(x(t))≤θ ) states that the penalty function
must be below θ in the entire time interval, and the satisfaction
degree of a system’s behavior Tp and φ(θ∗) provides a quantitative
measure of the distance between Tp and the reference behavior.

3.2 Relative robustness
When comparing plots 1 and 2 of Figure 2, it appears that the
consequences of perturbations of the nominal behavior are not the
same, with T0 the nominal behavior. In System 1, perturbations
degrade the system’s performance more severely than in System 2.
So, with a different meaning of robustness, one could say that
System 2 is more robust than System 1. These two robustness
interpretations (as average behavior or as impact of perturbations on
nominal behavior) have been indiscriminately used in the literature
(see e.g. Davidson et al., 2003; von Dassow et al., 2000). To reflect
this second interpretation, let us define the relative robustness of a
system with respect to a nominal behavior as the system’s robustness
divided by its nominal performance, that is, by the satisfaction
degree of the reference behavior.

Rs,p∗
φ,P =Rs

φ,P/sd(Tp∗,φ), (5)

where Tp∗ denotes the unperturbed, nominal behavior of the system.
In Figure 2, one can distinguish the relative robustness of Systems 1
and 2 with respect to their nominal performance, reflecting that the
performance is more impacted by perturbations in System 1 than
in System 2. The performance function of System 3 equals half of
the performance function of System 1. Consequently, these systems
have the same relative robustness with respect to their nominal
performance, although they have different absolute robustness.

Gonze et al. (2002) studied the influence of low molecule numbers
on circadian oscillation periods. Stochastic simulation results are
compared with the behavior of a corresponding deterministic
model. The period is defined as the time interval separating two
successive upward crossings of the mean value of protein or mRNA
concentrations. One can study such oscillations with our approach
using, for example, the QFLTL formula F(x<m∧X(x>m)∧time=
t1 ∧F(x<m∧X(x>m)∧time=t2))∧t2 −t1<b, expressing that the
maximal time between two successive upwards crossing events is
less than b, with m the mean value of x, that needs to be computed
beforehand. More complex temporal behaviors, such as the existence

Fig. 2. Systems having same absolute robustness (1 and 2) or same relative robustness (1 and 3), assuming evenly distributed perturbations. Performance
functions of Systems 1 and 2 have same the average, whereas the performance function of System 3 is half of the one of System 1.
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of 13 mitotic cycles followed by G2 arrest (Calzone et al., 2007),
could be expressed similarly and subsequently analyzed using our
approach.

3.3 Robust satisfaction degree
Using the notion of satisfaction domain, we can also define the
distance from robust satisfaction of a property φ with respect to
a set of perturbations P as dist(∩pDTp

,φ). This distance reflects the
minimal change in the formula such that it holds for all perturbations.
Then, we define the robust satisfaction degree as:

Rsds
φ,P = 1

1+dist(∩pDTp,φ)
(6)

This notion allows us to distinguish whether it is possible to
relax the specification to have it satisfied for all perturbations
or not. In the case of Figure 1c, one can guarantee that the
system always presents a (possibly suboptimal) behavior. Moreover,
the closest property φ(ỹ) robustly satisfied (i.e. such that ỹ=
argminy∈∩pDTp

dist(∩pDTp
,φ)) can provide interesting hints for the

system’s design: because ỹ= (3,4), it suggests that only the first
value in φ (i.e. the maximum of [A] in T) needs to be modified.

In Batt et al. (2007), an approach is presented to check
that a (model of a) synthetic transcriptional cascade satisfies a
given input/output steady state property for sets of parameters.
More precisely, it was required for all parameters in a given
set, that if the inducer concentration is low (uaTc<100), then
at steady state the fluorescence is low (xeyfp<500), and if
the inducer concentration is high (uaTc>400), then so is the
steady state fluorescence (xeyfp>500000). When considering
the QFLTL formula φ(m,M)=uaTc<100→FG(xeyfp<m)∧uaTc>

400→FG(xeyfp>M), it is additionally possible to find the set of
properties satisfied by all parameters. This can be done by computing
the intersection of all satisfaction domains ∩pDTp,φ . The robust
satisfaction degree of the property φ(m,M) provides an indication
of how close to robust satisfaction our requirement is.

3.4 Implementation
For the computation of Rs

φ,P , Rs,p∗
φ,P and Rsds

φ,P , one needs
to distinguish whether the set of perturbations is finite (e.g.
gene knockouts) or infinite (e.g. normally distributed parameter
variations). In the first case, the values can be computed exactly,
whereas in the second case, they can be estimated by sampling the
perturbation set for sufficiently many perturbations.

The following algorithm is implemented in version 2.8 of the
freely available tool BIOCHAM, a modeling environment for the

Algorithm 1 Robustness computation
input: a model f , (QF)LTL formulae φ and φ(y), a set of perturbations
P and their probabilities, a nominal behavior p∗
output: robustness estimates Rφ,P , Rp∗

φ,P , and Rsdφ,P
1: for every perturbation p∈P∪{p∗} do
2: Tp := Compute_trace(f ,p)
3: DTp,φ(y) := Compute_sat_domain(Tp,φ(y))
4: end for
5: Rφ,P :=∑

p∈P prob(p)(1+dist(DTp,φ(y),φ))−1

6: Rp∗
φ,P :=Rφ,P ∗(1+dist(DTp∗ ,φ(y),φ))

7: Rsdφ,P := (1+dist(∩p∈PDTp,φ(y),φ)))−1

Fig. 3. Synthetic transcriptional cascade. (a) TetR represses lacI , LacI
represses cI and CI represses eyfp. aTc controls the repression of lacI by
TetR. The fluorescence of the protein EYFP is the output. (b) Graphical
representation of a ‘well-timed’ behavior: fluorescence remains below 103

until time t1, exceeds 105 after time t2 and switches between low and high
levels in �t time. One expects that t1>150, t2<450 and �t<150. Crosses
represent experimental data from Hooshangi et al. (2005).

analysis of biological systems (Calzone et al., 2006). Given an
ODE model f , a set P of perturbations of initial conditions or
parameters, and (QF)LTL properties φ and φ(y), the tool computes
the robustness, the relative robustness and the robust satisfaction
degree of the property with respect to the given perturbations.
The computation of the trace Tp is done by numerical integration.
The computation of the satisfaction domain DTp,φ(y) is made by
induction on the formula structure, using for each subformula
a direct implementation of the definition. Polytopes operations
are implemented in BIOCHAM using a standard polyhedral
library (Bagnara et al., 2008).

4 APPLICATION TO ROBUSTNESS ANALYSIS OF
A TRANSCRIPTIONAL CASCADE

We consider the design of a synthetic transcriptional cascade that
could be used for the temporal sequencing of events in synthetic
biology applications. This cascade has been build by Hooshangi
and colleagues (2005) and here we investigate the robustness of a
desired behavior, and the possibilities to make it more robust. To do
so, after having introduced the system, we formalize the expected
behavior, develop a model of the system taking into account the
observed variability and apply the method presented previously to
investigate the robustness of the desired property.

4.1 System description
We consider a cascade of transcriptional inhibitions built in
E. coli (Hooshangi et al., 2005). The network is represented in
Figure 3a. It is made of four genes: tetR, lacI , cI and eyfp that
code, respectively, for three repressor proteins, TetR, LacI and CI,
and the fluorescent protein EYFP. The fluorescence of the system,
due to the protein EYFP, is the measured output. The system can
be controlled by the addition or removal of a small diffusible
molecule, aTc, in the growth media. More precisely, aTc binds to
TetR and relieves the repression of lacI . The aTc concentration thus
serves as a controllable input to the system. It is intuitively clear
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Fig. 4. (a) ODE model of the transcriptional cascade. The concentrations of protein LacI, CI, EYFP and of aTc are denoted by xlacI , xcI , xeyfp and uaTc,
respectively. The concentration of the constitutively expressed protein TetR is assumed constant. (b) Reference parameter values p∗ and (c) parameter
distributions modeling system’s variability. σ is a noise intensity parameter vector.

Fig. 5. (a) Temporal evolution of the fluorescence following addition of aTc. Crosses, dotted line and solid line represent experimental data from Hooshangi
et al. (2005), predictions obtained using the ODE model with reference parameters p∗, and average of 5000 numerical simulations of the ODE model with
log-normally distributed parameters, respectively. (b) Temporal evolution of the coefficient of variation of the fluorescence following addition of aTc. Crosses
and solid line represent coefficient of variations obtained from experimental data in Hooshangi et al. (2005) and from 5000 numerical simulations of the
ODE model with log-normally distributed parameters with mean p∗, respectively. (c) Numerical simulations of the ODE model with log-normally distributed
parameters with mean p∗. (d) Distribution of satisfaction degrees for 5000 numerical traces of the perturbed transcriptional cascade model. The corresponding
robustness is R̂φ,P =0.9.

that the output (i.e. the fluorescence) of the system at steady state
will be low for low inputs (i.e. aTc concentration), and high for
high inputs. Moreover, it has been shown that the time response
of the system to an inducer addition is characterized by a rapid
increase of the fluorescence, preceded by a significant lag phase.
Unfortunately, a high cell-to-cell variability has also been observed.
The heterogeneity of the cell responses makes it difficult to use
this system as a biological timer, for example for developmental
programs as suggested in Hooshangi et al. (2005). In this context,
as for many synthetic biology applications, having even a low
proportion of cells sending a signal too early or too long might
compromise the correct functioning of the whole system. Our goal
here is to precisely investigate the possibilities to obtain a robustly
‘well-timed’system, that is to ensure that all cells will indeed change
state in a given time window.

4.2 Specifying the expected behavior
Here, we consider that the system is well-timed if the fluorescence
remains below 103 for at least 150 min, then exceeds 105 after at
most 450 min, and switches rapidly from low to high levels, that
is, in less than 150 min. These specifications are consistent with
the experimentally observed behavior of the cell population. These
specifications are graphically represented in Figure 3b and can be
formalized in temporal logic as follows:

φ(t1,t2)= G(time< t1 →[EYFP]<103)
∧ G(time> t2 →[EYFP]>105)
∧ t1>150∧t2<450∧ t2 −t1<150

which is abstracted into

φ(t1,t2,b1,b2,b3)= G(time< t1 →[EYFP]<103)
∧ G(time> t2 →[EYFP]>105)
∧ t1>b1∧t2<b2 ∧t2 −t1<b3

for the computation of validity domains and satisfaction degree in a
given trace.

4.3 Modeling the system’s variability
There are many ways to model cell variability (see for example
Manninen et al., 2006). Our goal here is to construct a simple
model such that the predicted behavior and standard deviation are
in agreement with the available experimental data. We first develop
a simple ODE model similar to Batt et al. (2007) but using Hill
functions, with parameters fitted to experimental data (Figures 4a
and b). These parameter reference values are denoted by p∗ in the
sequel. Second, we consider various ways to model cell variability,
including stochastic differential equations with either additive
or multiplicative noise and random parameter variations with
(log)normal distributions. We have obtained a good qualitative and
quantitative agreement between the predicted and observed mean
and standard deviation for log-normally distributed parameters, as
shown in Figure 5a and b. So we selected these log-normal parameter
distributions as our ‘perturbation model’. Using either stochastic
differential equations or normally distributed parameters, we have
not been able to find an agreement between model predictions and
experimental observations (data not shown). This could be partially
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Fig. 6. Numerical simulations of the ODE model with 5000 log-normally
distributed parameters with mean p̃. (a) Temporal evolution of the
fluorescence following addition of aTc. (b) Temporal evolution of the
coefficient of variation of the fluorescence. Crosses and solid line represent
coefficient of variations obtained from experimental data in Hooshangi et al.
(2005) and from numerical simulations, respectively.

explained by the very high cell-to-cell variability. In particular, the
observed coefficient of variation reaches 1.4 at some time point,
meaning that the standard deviation is higher than the mean.

4.4 Improving robustness of the desired behavior
Having specified the ‘well-timed’behavior and found an ODE model
and a perturbation model, we wondered whether the system is
robustly well-timed, and to what degree. When considering 5000
log-normally distributed parameter values in the 16 D parameter
space, we estimated the robustness of the system as R̂φ,P =0.9:
the specification is not robustly satisfied. As expected, the property
holds for the reference parameter values p∗ (i.e. sd(Tp∗ ,φ)=
1), and consequently the robustness and absolute robustness are

equal (R̂p∗
φ,P =0.9). The distribution of the satisfaction degree is

represented in Figure 5d, showing that although the majority of
timed traces satisfies the specification, this is not always the case.
On average, each numerical simulation lasts 150 ms, and each
satisfaction degree computation lasts 50 ms (∼500 time points/trace;
Dual Core, 2 GHz, 2 GB RAM). For this application and in all our
computations, the limiting factor is numerical simulation.

As said earlier, for most synthetic biology applications, a more
robust timer would be needed. Can we find other parameters so
as to improve the robustness of the system with respect to similar
parameter perturbations? To do so, we use the state-of the-art non-
linear optimization tool CMAES that uses a covariance matrix
adaptation evolution strategy (Hansen and Ostermeier, 2001), with
the robustness as optimization criteria (i.e. as fitness function). We
found the following parameter values: p̃=(κ0,κ,γ,θ,η), with

p̃=((2.30,4.20,3.78),(1234.5,514.5,5174.3),(0.024,
0.015,0.012),(1647.2,662.8,936.4),(4.8,3.7,8.4))

The comparison between original parameters p∗ and so-called
optimized parameters p̃ reveals that the EYFP production rate and
the Hill coefficients η have been significantly increased. Given that
one wants to ensure a fast transition between the low and high states,
these parameters were obvious targets for optimizations. Because
tuning Hill coefficients is experimentally difficult, we looked for
and found parameters with unchanged Hill coefficients that ensure
a robust well-timed behavior.

Numerical integrations illustrate that the expected behavior is
indeed more robustly obtained (compare Figures 5c and 6a).

Interestingly, the coefficient of variation suggests that cell-to-cell
variability will be significantly decreased when the time constraints
hold (for time<150) and is significantly increased otherwise (for
150< time<450, see Figure 6b). It would be interesting to study
whether this feature appears systematically for parameter variations
improving the robustness of the desired behavior. This could reveal
trade-offs between robustness and fragility (Kitano, 2004).

4.5 Parameter influence on robust behavior
To obtain a more comprehensive picture of the variations of the
robustness of the expected behavior, we sample the parameter space
for large parameter variations, and for each parameter, we compute
the robustness.

More precisely, we consider grids on the parameter space centered
on the reference parameter values p∗ and corresponding to ±10-fold
parameter variations of either two parameters (κeyfp and γ ; 2D

grids) or eight parameters (κ0, κ , γ , and uaTc; 8D grids). Then,
for each grid point—taken as reference value for relative robustness
computations—we estimate the robustness of the network behavior
when all 16 parameters vary. Note that we consider the initial aTc
concentration as a parameter. The γ parameter corresponds to a
scaling factor of all degradation parameters γlacI , γcI and γeyfp,
with γ ∗ =1. It is used to assess the impact of growth rate variations,
affecting similarly all protein dilution rates, and consequently, all
degradation rates. Robustness is estimated based on 50 perturbations
(i.e. parameters), or less in case of fast convergence.

For the 2D grid, results can be visually displayed. In Figure 7,
the satisfaction degree, the robustness and the relative robustness
are represented in the (κeyfp,γ ) parameter space. It appears that the
constraints on γ are much tighter than the constraints on κeyfp. Both
for the satisfaction degree and for the robustness, γ has to remain in
a narrow interval, whereas κeyfp simply has to exceed some value.
This result can be explained by the fact that high production rates of
the fluorescent protein helps the system to have a fast and marked
response, whereas variations in protein degradation rates γ have
subtle effects on the behavior, since it lowers the concentration of
the fluorescent protein and of its repressor. It seems that the nominal
behavior, and even more the average behavior, is rather fragile to
growth rate variations.

The robustness landscape appears like a blurred version of the
satisfaction degree landscape. This corresponds to the fact that
parameter variations corresponding to cell-to-cell variability used
for computing the robustness are generally smaller than parameter
perturbations considered when exploring the parameter space.
However, one should also stress that the robustness takes into
account parameter variations in all dimensions and with particular
distributions (here log-normal, with various noise intensities σ ).
Thus, Figure 7b is not merely a blurred version of Figure 7a.

In Figure 7c, it appears that the relative robustness that quantifies
how different the average behavior is from the nominal one,
efficiently identifies regions where the satisfaction degree changes
significantly. In the context of system design, this information
is of great interest. This could be compared with the sensitivity
of satisfaction degree with respect to parameter perturbations.
However, contrary to the sensitivities, the relative robustness takes
into account a given perturbation model.

The preceding analysis is naturally not possible when considering
parameter variations in higher dimensions. To carry the analysis on
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Fig. 7. (a) Satisfaction degree, (b) robustness and (c) relative robustness represented in the (κeyfp,γ ) parameter space.

Table 1. First and most significant second order sensitivity indices defined
for the robustness with respect to large parameter variations and computed
on 8D grids.

First order sensitivity indices Second order sensitivity indices

Sγ 20.2% Sκeyfp,γ 8.7%

Sκeyfp 7.4% SκcI ,γ 6.2%

SκcI 6.1% S
κ0
cI ,γ

5.0%

S
κ0
lacI

3.3% S
κ0
cI ,κeyfp

2.8%

S
κ0
cI

2.0% SκcI ,κeyfp 1.8%

SκlacI 1.5% S
κ0
eyfp,γ

1.5%

S
κ0
eyfp

0.9% S
κ0
cI ,κcI

1.1%

SuaTc 0.4% S
κ0
cI ,κlacI

0.5%

Total first order 40.7 % Total second order 31.2 %

8D grids, we use a variance-based global sensitivity method (Saltelli
et al., 2004). When a measure (in our case the robustness) is affected
by variations of several parameters, one can statistically assess the
importance of the variations of each parameter by computing its
sensitivity index:

Si = Var(E(R |Pi))

Var(R)
∈[0,1]

These sensitivity indices and higher order sensitivity indices
quantify how the variations of a parameter Pi or a group of
parameters contribute to the variance of R.

We consider 8D grids defined as follows. Each grid is defined
by three parameter values (p1

i ,p
2
i and p3

i ) in each dimension.
These values—or more precisely their log—are obtained by
dividing evenly the parameter domain [ln(pi/10),ln(10pi)] in three
subintervals and by choosing randomly a value in each subinterval.
The first and most significant second-order sensitivity indices are
given in Table 1. They correspond to average values obtained on
three similarly defined grids (∼20 hr per 8D grid).

The analysis of the first-order sensitivity indices corroborates our
previous finding that γ variations have a very strong impact on the
robust behavior of the cascade. The variations of this parameter alone
are responsible for 20% of the robustness variations. In contrast, aTc
variations seem to have a very low impact on the cascade behavior.
Although it might seem in contradiction with the ultrasensitivity

of the input/output behavior (Hooshangi et al., 2005), it simply
indicates that the aTc concentrations used for inducing the cascade
are high enough to make the network insensitive to even large aTc
variations.

A surprizing outcome of this analysis is the very different
importance of variation in the basal and regulated EYFP production
rates, κ0

eyfp and κeyfp (Table 1). Given that the specification imposes
similar constraints on the ‘low’ and ‘high’ EYFP levels, and that
these levels are under mild approximations proportional to the ratio
κ0

eyfp/γeyfp and κeyfp/γeyfp, respectively, one could have expected

similar sensitivity indices for κ0
eyfp and κeyfp. In fact the low EYFP

levels also depend—and in a non-linear way—on the steady state
value of CI, itself proportional to κcI/γcI . Because κcI variations
have strong effects on robust behavior of the cascade, our results
suggest that when uninduced, the basal production of EYFP is due
to an incomplete repression of the promoter by CI, explaining the
high effect of κcI variations, rather than a constitutive leakage
of the promoter, explaining the low effect of κ0

eyfp variations.
This hypothesis is also consistent with the second-order sensitivity
indices we found: SκcI ,γ >Sκ0

eyfp,γ
.

The analysis of second-order sensitivity indices indicates that joint
variations of production and degradation rates play a significant role
in robustness variations. This comes with no surprise, since as said
earlier, the ratios κi/γi largely determine the steady state levels of
the proteins.

5 DISCUSSION
We have presented a general and computational framework for the
definition of the robustness of biological functions with respect to a
set of perturbations. This framework is general because it applies
(i) to any biological function expressible in the temporal logic
LTL, an expressive language for specifying dynamical behaviors
widely used in computer science and engineering, and (ii) to
any perturbation set, provided that the behaviors of the perturbed
system can be obtained as numerical timed traces, for example by
numerical integration of ODEs. In this setting, the computation
of robustness is fully automated and is implemented in the free
software BIOCHAM (Calzone et al., 2006). When formalizing the
robustness notion, we found that several definitions can be proposed.
One can notably distinguish absolute robustness, quantifying
the average performance of a perturbed system, from relative
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robustness, quantifying performance degradation/improvement due
to perturbations.

To illustrate the applicability of our approach and demonstrate
its biological relevance, we considered the possibility to improve
the robustness of the timed response of a transcriptional cascade
to an addition of inducer. The significant cell-to-cell variability
makes it difficult to use this system as a reliable biological timer for
synthetic biology applications. We found parameter modifications
for which a desired timed behavior is robustly obtained. Moreover,
we explored the impact of possibly large parameter variations on the
robustness of the desired behavior. Using global sensitivity analysis,
we obtained several interesting results that could potentially help for
the optimization of the system.

Central to our approach is the notion of satisfaction degree
of temporal logic formulae. In systems and synthetic biology,
many computational approaches use a rather simple measure of
the performance of the system, either for parameter searching,
robustness computation or local and global sensitivity analysis.
Finding a relevant measure of the system performance limits the
applicability of the above-mentioned approaches. Examples of such
measures are the gain of a response, and the perturbation of a
steady state or of the period of oscillations (Felix and Wagner,
2008; Feng et al., 2004; Gonze et al., 2002). In contrast, using
the satisfaction degree as a performance measure allows us to take
advantage of the expressivity of temporal logics and consequently to
significantly broaden the applicability of these techniques. In Rizk
et al. (2008), we showed that using the satisfaction degree, one
can efficiently find parameter values for which complex dynamical
behaviors are observed. In this article, we show how using the
same notion, one can define and estimate the robustness of any
dynamical behavior expressible in LTL with respect to a set of
perturbations, and how one can apply global sensitivity analysis
to find the effect of parameter variations on the robustness of
any LTL specification of an expected behavior. Other approaches
have been proposed that use temporal logic to define robustness of
biological systems (Batt et al., 2007; Shen et al., 2008). However,
these approaches use a Boolean interpretation of temporal logic that
is not well-adapted to defining a quantitative notion of robustness.

The relations between robustness and evolvability, and between
robustness and modularity have been extensively studied in systems
biology (Ciliberti et al., 2007; Kitano, 2004). In synthetic biology,
however, not much work has focused on robustness analysis.
For obvious reasons, achieving a robust behavior despite cell
variability and environmental fluctuations is a central issue in
synthetic biology. Because large synthetic networks are very likely
to be modular (Chin, 2006; McDaniel and Weiss, 2005), one could
envision an approach in which each module is designed to robustly
present a given behavior such that one has some guarantee that
when included in a more complex system the module still functions
as expected. In this context, input/output robustness (Shinar et al.,
2007) and insulation (Vecchio et al., 2008) are notions of particular
interest.
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