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ABSTRACT
There has been an increase in the mortality rate and morbidity of kidney cancer (KC)
with kidney renal clear cell carcinoma (KIRC) being the most common subtype of
KC. GRAMD1C (GRAM Domain Containing 1C) has not been reported to relate
to prognosis and immunotherapy in any cancers. Using bioinformatics methods,
we judged the prognostic value of GRAMD1C expression in KIRC and investigated
the underlying mechanisms of GRAMD1C affecting the overall survival of KIRC
based on data downloaded from The Cancer Genome Atlas (TCGA). The outcome
revealed that reduced GRAMD1C expression could be a promising predicting factor
of poor prognosis in kidney renal clear cell carcinoma. Meanwhile, GRAMDIC
expression was significantly correlated to several tumor-infiltrating immune cells
(TIICs), particularly the regulatory T cells (Tregs). Furthermore, GRAMD1C was most
significantly associated with the mTOR signaling pathway, RNA degradation, WNT
signaling pathway, toll pathway and AKT pathway in KIRC. Thus, GRAMD1C has the
potential to become a novel predictor to evaluate prognosis and immune infiltration
for KIRC patients.

Subjects Bioinformatics, Genomics, Oncology, Urology
Keywords Kidney renal clear cell carcinoma, Biomarkers, Bioinformatics, TCGA, Immune
infiltrate, GRAMD1C

INTRODUCTION
In all malignancies of adults worldwide, among which around 2% to 3% are afflicted
by kidney cancer (KC) (Ferlay et al., 2010; Torre et al., 2015). Meanwhile, the highest
incidence amongst all the urinary system tumors is the case of kidney cancer. There has
been an increase in the mortality rate and morbidity of KC with kidney renal clear cell
carcinoma (KIRC) being themost common subtype of KC (Cohen & McGovern, 2005). Due
to the ineffective therapeutic methods available at present and late diagnosis, the survival
rate of KIRC is far from ideal. Nevertheless, KIRC is known to be amongst the earliest
malignancies that responded to immunotherapy and being most responsive (Escudier,
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2012; Atkins, Regan & McDermott, 2004). The treatment of renal tumors over the last two
decades has significantly improved with the emergence of the immune checkpoint blockade
(ICB), indicating a positive direction in KIRC towards immunotherapy (Song et al., 2017).
The prognosis and efficacy of immunotherapy and chemotherapy have been found to
be influenced by tumor-infiltrating immune cells like tumor-infiltrating neutrophils and
tumor associated macrophages (Zhang et al., 2018;Waniczek et al., 2017). However, there is
very little data examining the relationship between the tumor characteristics and immune
responses. Hence, for the development of fresh targeted therapies and efficient prognosis of
KIRC, the identification of the immune-related biomarkers for examining the progression
of the malignancy becomes imperative.

The GRAM domain is an intracellular protein-binding or lipid-binding signaling
domain (Jiang, Ramamoorthy & Ramachandran, 2008). The importance of the GRAM
domain was indicated by the mutations disrupting its phosphatase activity leading to
X-linked myotubular myopathy in case of myotubularin (Doerks et al., 2000). Under
tumorigenesis, the other members of the GRAM domain family were also shown to play
a part (John et al., 2011). For instance, recently some reports implicated that GRAMD1B
was responsible for chemo-resistance of the ovarian cancer patients, while the isolation of
this gene resulted in anti-tumor effect in combination with paclitaxel synergistically (Wu
et al., 2014). GRAMD1C (GRAM Domain Containing 1C), an uncharacterized protein
belonging to the GRAM domain family of proteins, has not been reported to relate to
prognosis and immune response in any cancers. In present study, bioinformatic analysis
using high throughput RNA-sequencing data from TCGA demonstrated that a reduced
expression of GRAMD1C correlated to poor prognosis in KIRC.

Thus, the purpose of our present study was to evaluate the prognostic value of
GRAMD1C expression in KIRC based on data downloaded from TCGA and investigated
the underlying mechanisms of GRAMD1C affecting the prognosis of KIRC.

In our study, based on the gene expression profiles of KIRC and a comprehensive
bioinformatics analysis, we analyzed the association of GRAMD1C with the characteristics
of KIRC patients. Then, we investigated the correlation of GRAMD1C with TIICs in KIRC
via a widely accepted evaluation algorithm, CIBERSORT. Moreover, we calculated the
influence of different subtypes of TIICs on overall survival. The GSEA was performed
finally with an intent to gain further breakthroughs in the underlying mechanism of
GRAMD1C by identifying the biological pathways involved.

MATERIALS & METHODS
Data resources and data preprocessing
Gene expression profile and paired clinical information of KIRC patients, including 539
tumor samples and 72 para-carcinoma samples, were acquired from the Cancer Genome
Atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/), which serves as a public
repository for archiving high-throughput microarray experimental data (Liu et al., 2018).
The sequencing data of LUAD were generated with Illumina HiSeq_RNA-Seq platforms.
In the subsequent processing, the trimmed mean of M values (TMM) normalization
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method was utilized for normalization of the downloaded data (Robinson, McCarthy
& Smyth, 2010). The average expression data were calculated when met duplicate data.
The processing process of the study fully satisfies the TCGA publication requirements.
All preprocessing processes were realized by R software (version: 3.5.3) and Strawberry
Perl. The processed expression data (Dataset S2) and script file for transformation and
normalization of gene expression data (Dataset S3) have been uploaded into supplementary
file. Cases lacking key clinical information, such as overall survival time, age, histologic
grade (8 cases), gender, stage (3 cases), tumor status (T) (2 cases), and distant metastasis
(M) (62 cases) were excluded. Then, we had to exclude all lymph node (N) data on account
of the better part of KIRC cases downloaded from TCGA with no data on lymph node.
Finally, mRNA expression level of 462 patients with kidney renal clear cell carcinoma
and corresponding clinical information were reserved and used for further study. Table 1
uncovered KIRC patients’ characteristics were downloaded. Our study cohort, the mean
age at diagnosis was 60 years old. Most patients were (n= 302, 65.4%) male, 160 (34.6%)
were female. The histologic grade of KIRC in our study included undifferentiated (G4),
poor-differentiated (G3), moderately-differentiated (G2) and well-differentiated (G1),
separately taking up 1.9%, 42.0%, 41.1%, 14.9%. The tumor status contained 49.1%
(n= 227) T1, 13.0% (n= 60) T2, 35.9% (n= 166) T3 and 1.9% (n= 9) T4. 73(15.8%)
cases had distant metastasis and 389 (84.2%) had no-distant metastasis. At last contact,
307 (66.5%) subjects were alive, 155 (33.5%) were dead.

CIBERSORT estimation
CIBERSORT is a widely used approach (Gentles et al., 2015; Ceccarelli et al., 2016) to
characterize the cell composition of complex tissues based on their gene expression profiles,
and it is highly consistent with ground truth estimations in many cancers (Newman et al.,
2015). After uploading the gene expression data with standard annotation on to the
CIBERSORT web portal (http://cibersort.stanford.edu/), the algorithm using the LM22
signature was run (Newman et al., 2015). LM22, the annotated gene signature matrix
defining 22 immune cell subtypes, was downloaded from the CIBERSORT web portal
(http://cibersort.stanford.edu/) (Ge et al., 2019). Then, CIBERSORT derived a P-value for
the deconvolution for each sample using Monte Carlo sampling, providing a measure of
confidence in the results (Newman et al., 2015). Instances where the CIBERSORT output
was of p < 0.05, it indicated that the inferred fractions of the immune cell populations
produced by CIBERSORT were accurate (Anjum et al., 2016), and consequently further
analysis with them was considered to be possible. For efficient comparison across the
diverse samples, the CIBERSORT output were summarized to the Fig. S1, assisting in the
visualization of the immune cell fraction of each sample. Types of immune cells could be
sensitively and accurately discerned by CIBERSORT include T cells, B cells, macrophages,
natural killer cells, dendritic cells and myeloid subsets. We grouped the samples into high
and low GRAMD1C expressions based on median GRAMD1C expression value (1.922) to
evaluate the difference of proportion of immune cells between high and low GRAMD1C
expression.
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Table 1 Kidney renal clear cell carcinoma patient characteristics in TCGA database.

Clinical characteristics Total (462) Percent

Age at diagnosis (years) 60(26–90)
Gender Female 160 34.6%

Male 302 65.4%
Histologic grade G1 9 1.9%

G2 194 42.0%
G3 190 41.1%
G4 69 14.9%

Stage Stage I 221 47.8%
Stage II 49 10.6%
Stage III 116 25.1%
Stage IV 76 16.5%

Tumor status T1 227 49.1%
T2 60 13.0%
T3 166 35.9%
T4 9 1.9%

Distant metastasis Negative (M0) 389 84.2%
Positive (M1) 73 15.8%

Vital status Dead 155 33.5%
Alive 307 66.5%

Identification of prognostic subtypes of TIICs in KIRC
We tried to identify the prognosis-related immune cell subtypes in KIRC. Based on the
immune cell fraction of each sample evaluated by CIBERSORT analysis and clinical
information acquired from TCGA database, we performed survival curves using ‘‘survival’’
package. Considering that clinical stage is a crucial factor determining prognosis of
KIRCs, boxplots of clinical stage were performed using ‘‘ggplot2’’ package to visualize the
association between the proportions of different types of TIICs and clinical stage.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA), a calculation method that could estimate whether
a list of previous defined genes shows concordant differences with statistical significance
between two biological processes (Subramanian et al., 2005). This study carried out
the GSEA to elucidate the significant difference in survival rates observed between the
low and high GRAMD1C groups after initially generating a sequential list of all genes
according to their correlation to GRAMD1C expressions. For each analysis, the gene set
permutations were performed 1000 times. The phenotype label was identified in the level of
the GRAMD1C expression. In order to sort out the pathways enriched in each phenotype
the Normalized Enrichment Score (NES), the nominal p value was utilized. The absolute
value of NES>1.5 and P value < 0.05 were considered with statistical significance.

Statistical analysis
All statistical analyses were performed by R (v.3.5.3). For evaluating the correlation between
GRAMD1C expression and the other clinical characteristics (gender, age, histologic grade,
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clinical stage, tumor status and distant metastasis), we performed χ2 tests. The median
GRAMD1C expression value determined the cut-off value of χ2 tests. The COX regression
analysis was conducted to identify overall survival-related clinical characteristics in the
TCGA patients. To study whether different proportions of tumor-infiltrating immune cells
related to different clinical stages and diverse survival outcome, we performed boxplot and
survival curve using ‘‘survival’’ and ‘‘ggplot2’’ packages (Wickham, 2011) based on results
of CIBERSORT and clinical characteristics acquired from TCGA database. P value lower
than 0.05 was considered statistically significant in this study.

RESULTS
Correlation of the GRAMD1C expression with clinical characteristics
Using R (v.3.5.3), a total of 462 KIRC samples with GRAMD1C expression data and several
patient characteristics (overall survival, histologic grade, clinical stage) were analyzed.
Survival curve derived by ‘‘survival’’ package and boxplot of different histologic grade
and clinical stages derived by ‘‘ggplot2’’ package were performed. Group cutoff value
of survival curve was the median GRAMD1C expression (1.922). Figure 1 suggests that
decreased GRAMD1C expression is significantly associated with poor overall survival
(P < 0.01), advanced clinical stage (P < 0.01) and histologic grade (P < 0.01). In addition,
the GRAMD1C expression in tumor tissues is obviously lower than that in para-carcinoma
tissues (P-value < 0.01). In addition, χ2 tests (Table 2) reveal the relationship between the
GRAMD1C expression and the clinical characteristics. The results demonstrate that the
up-regulated of GRAMD1C expression in tumor tissues is significantly related to gender
(P < 0.001), age (P = 0.041), histologic grade (P < 0.001), clinical stage (P = 0.001), tumor
status (stage T, P = 0.001), distant metastasis (stage M, P = 0.007).

GRAMD1C is an independent predictor of prognosis in KIRC
As shown in Table 3, Univariate analysis of correlation using Cox regression reveal that
several factors, including age (HR = 1.03, P-value<0.01), histologic grade (HR = 2.38,
P-value < 0.01), clinical stage (HR = 1.89, P-value < 0.01), tumor status (HR = 1.92,
P-value < 0.01), distant metastasis (HR = 4.45, P-value < 0.01) as well as the GRAMD1C
expression (HR = 0.72, P-value < 0.01) have significant correlation with overall survival.
At multivariate analysis (Table 3B, Fig. 2), decreased GRAMD1C expression, advanced
clinical stage, higher histologic grade and older age are individual predictors for poor
prognosis.

GRAMD1C expression relates to the proportion of different types of
TIICs in KIRC
The proportions of TIICs vary substantially across immune subtypes and tumor types.
Kidney renal clear cell carcinoma is one of tumors within the top leukocyte fraction and
most responsive to immune checkpoint inhibitors (Thorsson et al., 2019). Therefore, we
made an effort to find whether GRAMD1C expression has a correlation with immune
infiltration level in KIRC. 462 tumor samples were split into 2 parts according to the
median GRAMD1C expression (1.922) and a widely accepted computational resource
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Figure 1 Correlations of GRAMD1C expression with several key clinicopathologic characteristics. (A)
Decreased GRAMD1C expression significantly associates with poor overall survival. (B) The GRAMD1C
expression in tumor tissues is obviously lower than in para-carcinoma tissues. (C) Decreased GRAMD1C
expression significantly associates with unfavorable histologic grade. (D) Decreased GRAMD1C expres-
sion significantly associates with advanced clinical stage.

Full-size DOI: 10.7717/peerj.8205/fig-1

(CIBERSORT) was used to infer the infiltrating level of 22 subtypes of immune cells.
Barplot (Fig. S1) summarizes the outcome achieved from 462 KIRC patients. As shown
in Fig. 3A and Table 4, plasma cells, T cells CD4 memory resting, T cells CD4 memory
activated, T cells follicular helper, T cells regulatory (Tregs), monocytes, macrophages M0,
dendritic cells resting, mast cells resting and mast cells activated significantly relate to the
GRAMD1C expression. Among them, T cells CD4 memory resting (p= 0.034), monocytes
(p= 0.004), dendritic cells resting (p< 0.001) and mast cells resting (p< 0.001) are
apparently increased in high expression group relative to low expression group. In contrast,
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Table 2 Correlations between the expression of GRAMD1C and clinicopathological characteristics in
KIRC.

Characteristic n Low or no expression High expression Pearson χ2 P

Total 462 231(50.00) 231(50.00)
Gender 13.806 <0.001*

Male 302 170(56.30) 132(43.70)
Female 160 61(38. 10) 99(61.90)

Age 4.191 0.041*

≤60 230 104(45.20) 126(54.80)
> 60 232 127(54.70) 105(45.30)

Histologic grade 33.168 <0.001*

I& II 203 84(41.40) 119(58.60)
III 190 91(47.90) 99(52.10)
IV 69 56(81.20) 13(18.80)

Clinical stage 16.064 0.001*

I 221 91(41.20) 130(58.80)
II 49 24(49.00) 25(51.00)
III 116 67(57.80) 49(42.20)
IV 76 49(64.50) 27(35.50)

Stage T 13.098 0.001*

I 227 95(41.90) 13258.10)
II 60 31(51.70) 29(48.30)
III &IV 175 105(60.00) 70(40.00)

Stage M 7.175 0.007*

0 389 184(47.30) 205(52.70)
I 73 47(64.40) 26(35.60)

Notes.
*p< 0.05.

Table 3 Results of Cox regression analysis. (A) Correlations of clinicopathologic characteristics with
overall survival in KIRCs using Cox regression. (B) Multivariate survival model after variable selection.

Clinicopathologic variable HR HR.95L HR.95H p value

(A)
Age 1.031 1.017 1.045 0.000
Gender 0.991 0.713 1.376 0.956
Grade 2.377 1.908 2.962 0.000
Stage 1.893 1.646 2.177 0.000
Tumor status (T) 1.920 1.611 2.287 0.000
Distant metastasis (M) 4.451 3.204 6.184 0.000
GRAMD1C 0.721 0.621 0.835 0.000
(B)
Age 1.036 1.020 1.052 0.000
Grade 1.496 1.164 1.923 0.002
Stage 1.609 1.012 2.557 0.044
GRAMD1C 0.857 0.743 0.988 0.034
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Figure 2 The outcome of Cox regression analysis.Multivariate analysis suggests that decreased
GRAMD1C expression, advanced clinical stage and positive distant metastasis are individual predictors for
poor prognosis in KIRC.

Full-size DOI: 10.7717/peerj.8205/fig-2

the proportions of plasma cells (p= 0.017), T cells follicular helper (p= 0.049), T cells
regulatory (Tregs) (p< 0.001), macrophages M0 (p< 0.001) are lower in high expression
group. The outcome intensely suggests that GRAMD1C plays a role in regulating the
formation of immune microenviroment in kidney renal clear cell carcinoma, especially
impacting on those subtypes of T cells and macrophages. Proportions of different types of
immune cells subsets were weakly and thenmoderately correlated (Fig. 3B). T cells follicular
helper and T cells CD8 displayed the strongest positive correlation (Pearson correlation =
0.55), while T cells CD8 and T cells CD4 memory resting showed the strongest negative
correlation (Pearson correlation = 0.55).

Identification of prognostic subtypes of TIICs in KIRC
Many previous studies have demonstrated that the proportions of TIICs are reliable
predictors of prognosis (Dunn, Dunn & Curry, 2007; Clemente et al., 1996). Thus, we
tried to identify the prognostic subtypes of TIICs in KIRC. Based on lymphocyte fraction
of each sample evaluated by CIBERSORT and clinical information (overall survival and
clinical stage) acquired from TCGA, using R (v.3.5.3), we graphed survival curve and
clinical staging boxplot of 22 types of different immune cells. Detailed outcome was shown
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Figure 3 Evaluation of proportions of TIICs based on CIBERSORT. (A) The proportions of 22 tumor-
infiltrating immune cells in high-GRAMD1C and low-GRAMD1C expression group. (B) Correlation ma-
trix of all 22 immune cell proportions.

Full-size DOI: 10.7717/peerj.8205/fig-3

in Figs. S2 and S3. Selected survival curves and clinical staging boxplots of subtypes of
immune cells which relate to GRAMD1C expression (p< 0.05) were exhibited in Figs. 4
and 5. The outcome uncovered that T cells follicular helper (p= 0.013), T cells regulatory
(Tregs) (p= 0.003), dendritic cells resting (p= 0.006) and mast cells resting (p= 0) were
4 types of immune cells which were associated with overall survival of KIRC patients.
Meanwhile, according to the results of CIBERSORT, these 4 types of immune cells were
all related to GRAMD1C expression. B cells memory (p= 0.048), T cells CD8 (p= 0.004),
T cells CD4 memory resting (p= 0.001), T cells CD4 memory activated (p= 0.039), T
cells follicular helper (p= 0.000), T cells regulatory (Tregs) (p= 0.000), T cells gamma
delta (p= 0.032), NK cells resting (p= 0.007), macrophages M0 (p= 0.029), macrophages
M2 (p= 0.000), dendritic cells resting (p= 0.003) and mast cells resting (p= 0.000) were
correlated with clinical stage of KIRC, thereinto T cells CD4 memory resting, T cells
CD4 memory activated, T cells follicular helper, T cells regulatory (Tregs), macrophages
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Table 4 Relative proportions of 22 types of immune cells in high and low risk score groups.

Immune cell type Low GRAMD1C group High GRAMD1C group P values

B cells naive 1.53%± 1.73% 1.55%± 1.88% 0.548
B cells memory 0.04%± 0.29% 0.01%± 0.06% 0.933
Plasma cells 1.91%± 3.57% 2.96%± 4.67% 0.017
T cells CD8 19.76%± 14.89% 21.86%± 14.38% 0.051
T cells CD4 naive 0.04%± 0.58% 0.03%± 0.48% 0.82
T cells CD4 memory resting 17.74%± 9.67% 15.69%± 9.77% 0.034
T cells CD4 memory activated 0.40%± 0.89% 0.82%± 1.96% 0.008
T cells follicular helper 1.33%± 1.58% 1.71%± 1.86% 0.049
T cells regulatory (Tregs) 1.86%± 1.83% 3.30%± 2.83% <0.001
T cells gamma delta 3.78%± 4.76% 3.07%± 3.64% 0.453
NK cells resting 1.22%± 2.83% 1.37%± 3.36% 0.982
NK cells activated 3.40%± 2.67% 3.30%± 2.79% 0.516
Monocytes 5.90%± 5.90% 4.28%± 4.25% 0.004
Macrophages M0 3.02%± 6.24% 6.32%± 9.29% <0.001
Macrophages M1 8.64%± 3.78% 8.00%± 3.45% 0.092
Macrophages M2 21.16%± 9.45% 19.78%± 9.41% 0.103
Dendritic cells resting 1.83%± 4.22% 0.82%± 1.57% <0.001
Dendritic cells activated 0.13%± 0.52% 0.18%± 0.85% 0.886
Mast cells resting 5.45%± 3.14% 3.92%± 2.96% <0.001
Mast cells activated 0.12%± 0.81% 0.31%± 1.42% 0.0089
Eosinophils 0.06%± 0.30% 0.04%± 0.24% 0.948
Neutrophils 0.72%± 3.37% 0.70%± 1.54% 0.530

M0, mast cells resting and dendritic cells resting are GRAMD1C-related immune cells.
In general, T cells follicular helper and T cells regulatory (Tregs) tend to be associated
with poor outcome and advanced clinical stage, consistent with proposed role of Tregs as
pro-tumourigenic immune suppressors (Shimizu, Yamazaki & Sakaguchi, 1999; Onizuka
et al., 1999). In contrast, mast cells resting and dendritic cells resting relate to favourable
prognosis and clinical stage.

Gene set enrichment analysis
The Gene Set Enrichment Analysis (GSEA) between high and low GRAMD1C expression
data sets was conducted to identify the signaling pathways differentially activated in
KIRC. In the enrichment analysis of MSigDB Collection (c2.cp.biocarta and c2.cp.kegg),
significant differences caused by GRAMD1C were revealed in the GSEA (p-value < 0.05).
According to their normalized enrichment scores (NES) we selected the most highly
enriched signaling pathways (Fig. 6 and Table 5). The outcome revealed that mTOR
signaling pathway, RNA degradation, WNT signaling pathway, toll pathway and AKT
pathway were differentially enriched in high GRAMD1C expression phenotype. MTA3
pathway was enriched in low expression phenotype.
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A B
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Figure 4 Correlations between the proportions of TIICs and overall survival. (A) Decreased propor-
tion of T cells follicular helper is significantly associated with higher overall survival of KIRC (p= 0.013).
(B) Decreased proportion of T cells regulatory (Tregs) is significantly associated with higher overall sur-
vival of KIRC (P = 0.003). (C) Increased proportion of dendritic cells resting is significantly associated
with higher overall survival of KIRC (p = 0.006) (D) Increased proportion of Mast cells resting is signifi-
cantly associated with higher overall survival of KIRC (p= 0.004).

Full-size DOI: 10.7717/peerj.8205/fig-4

DISCUSSION
Renal clear cell carcinoma (KIRC) is the most common kidney renal cell cancer (Srigley et
al., 2013). Despite advances in diagnosis, screening, surgery and drug therapy, the clinical
outcome of KIRC remains unsatisfactory. Immune response is closely associated with
clinical outcome in KIRC. Tumor- infiltrating immune cells (TIICs) form an ecosystem
in the tumor microenvironment to regulate cancer progression and have shown potential
prognostic value (Grivennikov, Greten & Karin, 2010). GRAMD1C is a messenger RNA
which has not been reported to relate to prognosis and respond to immunotherapy in any
cancers. Here, based on mining the gene expression profiles of KIRC and a comprehensive
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Figure 5 Correlations between the proportions of TIICs and clinical stage. T cells follicular helper (A),
T cells regulatory (Tregs) (B), dendritic cells resting (C), mast cells resting (D), macrophages M0 (E), T
cells CD4 memory activated (F) and T cells CD4 memory resting (G) are significantly correlated with clin-
cial stage in KIRC.

Full-size DOI: 10.7717/peerj.8205/fig-5

Hao et al. (2019), PeerJ, DOI 10.7717/peerj.8205 12/21

https://peerj.com
https://doi.org/10.7717/peerj.8205/fig-5
http://dx.doi.org/10.7717/peerj.8205


A

C D

E F

B

Figure 6 Enrichment plots from gene set enrichment analysis (GSEA).mTOR signaling pathway (A),
RNA degradation (B), WNT signaling pathway (C), AKT pathway (D), Toll pathway (E) and MTA3 path-
way (F) are differentially enriched in GRAMD1C-related KIRC.

Full-size DOI: 10.7717/peerj.8205/fig-6
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Table 5 Gene sets enrichment.

MSigDB collection Gene set name NES p-val

c2.cp.kegg.v6.2.symbols.gmt KEGG_MTOR_SIGNALING_PATHWAY 1.987 0.004
c2.cp.biocarta.v6.2.symbols.gmt BIOCARTA_AKT_PATHWAY 1.911 0.006

KEGG_RNA_DEGRADATION 1.823 0.025
BIOCARTA_TOLL_PATHWAY 1.774 0.033
KEGG_WNT_SIGNALING_PATHWAY 1.679 0.041
BIOCARTA_MTA3_PATHWAY −1.846 0.004

Notes.
NES, normalized enrichment score.
Gene sets with p-val smaller than 0.05 were considered.

bioinformatics analysis, we found that the expression of GRAMD1C is correlated to
leukocyte fraction, especially the regulatory T cell (Tregs) and overall survival. In addition,
it is potential to serve as a predictor of prognosis for KIRC patients.

The reduced expression of GRAMD1C in KIRC was established to be associated with
advanced clinical pathologic characteristics (high clinical stage, distant metastasis, and bad
histological grade), poor prognosis and lower overall survival through the bioinformatic
analysis with high throughput RNA-sequencing data from TCGA by this study. The
multivariate analysis suggested GRAMD1C is an independent predictor of overall survival.
To further investigate the functions of GRAMD1C in KIRC, we performed immune-related
analysis using CIBERSORT, which showed that the GRAMD1C expression significantly
effects the leukocyte fraction in tumor microenvirenment of KIRC. In addition, based
on clinical information acquired from TCGA and CIBERSORT results, we found that
several tumor-infiltrating immune cells related to GRAMD1C expression have significant
correlation with prognosis of KIRC patients, which is consistent with previous studies
(Xu et al., 2013; Wang & Ke, 2011; Overacre-Delgoffe et al., 2017). More interestingly, the
GRAMD1C expression has a negative correlation with the regulatory T cell (Tregs) and T
cells follicular helper which predicted a poor clinical outcome and advanced clinical stage.
Another important aspect of this study was that GRAMD1C expression was correlated with
diverse well-known pathways associated with cancer processes and immune responses,
such as mTOR signaling pathway, WNT signaling pathway and AKT pathway.

Several previous studies could explain why GRAMD1C expression correlates to the
poor prognosis and the proportion of regulatory T cells (Tregs). The activation of the
tumor-infiltrating immune cells was affected by the mTOR/AKT pathway as examined
by the research in the field of immunology in the last decade. The Akt-mTOR axis has
been widely recognized as the critical negative regulator of the regulatory T cell (Tregs)
de novo differentiation in the regulatory T cell (Tergs) compartment (Delgoffe et al.,
2009; Sokol et al., 2008; Sauer et al., 2008; Liu et al., 2010) with growth in population
(Battaglia, Stabilini & Roncarolo, 2005). Interestingly, our present study demonstrated
that over expression of GRAMD1C in KIRC was associated with activated Akt/mTOR
pathway and reduced proportion of the regulatory T cell (Tregs). Thus, in the writer’s
view, GRAMD1C regulates the regulatory T cells by activating mTOR/AKT pathway, but
the exact molecular mechanism needs to be further studied. This may partially explain why
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reduced expression of GRAMD1C relates to poor prognosis in KIRCs. Another important
pathway we have discovered associated with GRAMD1C is MTA3 pathway. Researchers
have manifested that MTA3 can serve as a regulatory factor of the proteins of p-PARP,
BAX, Cleved-Caspase-3 and Bcl-2 to accelerate the cellular apoptosis in NSCLCs (Li et al.,
2015). It has also been described as an independent biomarker for unfavorable prognosis
in hepatocellular carcinoma (Wang et al., 2017) and uterine non-endometrioid carcinomas
(Mylonas & Bruning, 2012). In present study, the results of GSEA established a correlation
of lowGRAMD1C expression phenotype and intenseMTA3 signaling, whichwas associated
with poor prognosis.

The most interesting thing we found about this study is the regulation of GRAMD1C
on tumor-infiltrating immune cells, especially the regulatory T cells (Tregs). The Terg
cells are implicated in a range of medical conditions like cancer and other autoimmune
diseases, but are also known to be the immunosuppressive subset of CD4+ T cells that
maintain the immune homeostasis by regulating the numerous facets of immune response
(Sakaguchi et al., 1995; Khattri et al., 2003). The various types of effector lymphocytes
are suppressed by the Treg cells migrating into the inflammatory sites (Ashutosh et al.,
2009; Yeonseok et al., 2011; Koch et al., 2009; Linterman et al., 2011). Treg cells are often
found in inflamed tumors harboring large numbers of TH cells and CTLs with regard to
cancer (Williams et al., 2017). In tumorigenesis the development of the immune escape
mechanisms is a significant factor involving the recruitment and/or induction of the Tergs,
programmed cell death 1 ligand 1 (PD-L1), programmed cell death 1 (PD-1), and the
immunosuppressive cells (Schreiber, Old & Smyth, 2011). Hence, by depleting or inhibiting
these immunosuppressive factors the responses of the anti-tumor immune system could
be potentially unleashed. The reinvigorate dysfunctional or ‘exhausted’ cytotoxic CD8+
T cells can be enabled to attack the cancer cells and counter the immunosuppression by
anticancer immunotherapy with immune checkpoint inhibitors (ICIs) (Zou, Wolchok &
Chen, 2016; Pardoll, 2012); anti-PD-L1 monoclonal antibodies (mAbs), anti-PD-1 and
anti-CTLA-4, have shown remarkable clinical efficacy across a range of different cancers,
with advanced-stage disease patients (Topalian et al., 2012) (Taneja, 2012). More effective
therapies along with immunotherapy combinations, are urgently needed as in majority of
the cases the efficacy of the ICIs have been found to be unsatisfactory. Considering the fact
that by suppressing the antitumor immunity the Treg cells can promote tumor progression
(Shimon et al., 2010;Wing & Sakaguchi, 2010), by targeting the immunosuppressive factors
or by manipulating Tregs can be looked upon as a new anticancer treatment methodology
with promising results (Onizuka et al., 1999; Shimizu, Yamazaki & Sakaguchi, 1999). Thus,
Considering the regulatory effect of GRAMD1C on the infiltration of Tregs, GRAMD1C
is likely to play a role in promoting immunologic escape in KIRC. However, the exact
biologic process needs to be further demonstrated.

Our study, for the first time, established a correlation of reduced GRAMD1C with poor
prognosis of KIRC and higher infiltration level of several types of immune infiltrating
immune cells and discovered that GRAMD1C was likely could serve as a new prognostic
marker for KIRC patients. Nonetheless, the prediction of protein expression using mRNA
was found to be very unreliable as formulated by Guo et al. (2008). The correlation between
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GRAMD1C protein and the GRAMD1C mRNA expression could not be assessed clearly
due to the limitations in the design of this study. The concept of GRAMD1C needs to be
explored further.

CONCLUSIONS
Our study indicated that reduced GRAMD1C expression correlates with diverse clinical
characteristics (gender, age, histologic grade, clinical stage, tumor status and distant
metastasis). Reduced GRAMD1C expression is an independent predicting factor of
poor prognosis in kidney renal clear cell carcinoma. Meanwhile, GRAMDIC expression
significantly correlates with several tumor-infiltrating immune cells, particularly the
regulatory T cells (Tregs). Moreover, the mTOR signaling pathway, RNA degradation,
WNT signaling pathway, toll pathway and AKT pathway serve as the major pathway
affected by GRAMD1C in KIRC. Above all, GRAMD1C is a promising biomarker of
prognosis and correlates with immune infiltration in KIRC.
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