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Abstract 

Background Cancer-associated fibroblasts (CAFs) are key components of the hepatocellular carcinoma (HCC) tumor 
microenvironment (TME). regulating tumor proliferation, metastasis, therapy resistance, immune evasion via diverse 
mechanisms. A deeper understanding of the l diversity of CAFs is essential for predicting patient prognosis and guid-
ing treatment strategies.

Methods We examined the diversity of CAFs in HCC by integrating single-cell, bulk, and spatial transcriptome 
analyses.

Results Using a training cohort of 88 HCC single-cell RNA sequencing (scRNA-seq) samples and a validation 
cohort of 94 samples, encompassing over 1.2 million cells, we classified three fibroblast subpopulations in HCC: 
HLA-DRB1 + CAF, MMP11 + CAF, and VEGFA + CAF based on highly expressed genes of which, which are primar-
ily located in normal tissue, tumor boundaries, and tumor interiors, respectively. Cell trajectory analysis revealed 
that VEGFA + CAFs are at the terminal stage of differentiation, which, notably, is tumor-specific. VEGFA + CAFs were sig-
nificantly associated with patient survival, and the hypoxic microenvironment was found to be a major factor induc-
ing VEGFA + CAFs. Through cellular communication with capillary endothelial cells (CapECs), VEGFA + CAFs promoted 
intra-tumoral angiogenesis, facilitating tumor progression and metastasis. Additionally, a machine learning model 
developed using high-expression genes from VEGFA + CAFs demonstrated high accuracy in predicting prognosis 
and sorafenib response in HCC patients.

Conclusions We characterized three fibroblast subpopulations in HCC and revealed their distinct spatial distributions 
within the tumor. VEGFA + CAFs, which was induced by hypoxic TME, were associated with poorer prognosis, as they 
promote tumor angiogenesis through cellular communication with CapECs. Our findings provide novel insights 
and pave the way for individualized therapy in HCC patients.
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Background
Liver cancer is the third leading cause of cancer-related 
deaths and the sixth most common cancer globally, with 
HCC accounting for 80–85% of all liver cancer cases [1]. 
Despite surgical resection, the recurrence rate remains 
high, and patients with unresectable HCC have limited 
therapeutic options and poor prognosis [2]. Over 80% of 
HCC cases are characterized by extensive hepatic fibro-
sis due to the activation, proliferation, and accumulation 
of fibroblasts [3]. A prominent feature of the HCC tumor 
TME is the abundant presence of CAFs, which secrete 
various cytokines, chemokines, and growth factors that 
support cancer cell survival [4]. CAF-derived factors 
not only promote cancer cell survival but also modify 
the immune landscape by suppressing immune effector 
cells and recruiting immunosuppressive cells, allowing 
cancer cells to evade immune surveillance [5]. Fibro-
blasts play a critical role in TME remodeling, influenc-
ing tumor growth, metastasis, treatment resistance, and 
immune evasion, often likened to the "soil" in which can-
cer “seeds” thrive [6]. Therefore, understanding the diver-
sityof fibroblasts in the HCC TME is essential.

Recent advances in scRNA-seq and spatial transcrip-
tomics (ST) have overcome technical barriers to study-
ing cellular heterogeneity in complex tissues like cancer 
[7, 8], providing valuable insights into fibroblast diversity 
in HCC. CAFs in primary liver cancer have been classi-
fied into eight subtypes, with DAB2 + and SPP1 + tumor-
associated macrophages (TAMs) shown to promote 
immune barrier formation by enhancing FAP + CAF 
function through TGF-β, PDGF, and ADM signaling [9]. 
In HCC, six CAF subtypes have been identified based 
on gene expression and function, with POSTN + CAFs 
recruiting SPP1 + macrophages and elevating SPP1 
expression through the IL-6/STAT3 pathway [10]. Addi-
tionally, five CAF subpopulations have been classified, 
with CD36 + CAFs shown to recruit CD33 + myeloid-
derived suppressor cells (MDSCs) in an MIF and CD74 
dependent manner, enhancing MDSC-mediated immu-
nosuppression and promoting tumor growth [11]. How-
ever, these studies did not account for the potential 
impact of mural cells that is composed of pericytes and 
smooth muscle cells in mesenchymal cells on fibro-
blast behavior, highlighting the need for standardized 
approaches to exclude mural cell effects for a comprehen-
sive, high-resolution assessment of CAFs.

In this study, we characterized three distinct fibroblast 
subtypes in HCC, revealing their functional diversity and 
spatial distribution. Inference of cell differentiation tra-
jectories highlighted the critical role of the TME in driv-
ing fibroblast differentiation. Additionally, we analyzed 
the complex biological functions resulting from inter-
cellular communication patterns, paving the way for the 

development of therapeutic approaches targeting CAF in 
HCC.

Methods
Data collection
A total of 89 HCC-related samples from the Xue et  al. 
study [12] were used as the discovery cohort, includ-
ing 10 adjacent liver (AL) samples and 79 HCC samples. 
The raw FASTQ data (BioProject ID: PRJCA007744) is 
available in the Chinese National Center for Biologi-
cal Information (CNCB) (https:// www. cncb. ac. cn/). 
Additionally, scRNA-seq data for 94 HCC and AL sam-
ples were obtained as a validation cohort from the Gene 
Expression Omnibus (GEO) database (GSE149614, 
GSE151530, GSE189903, GSE202642, GSE156625) 
[11, 13–16]. For ST, samples from five HCC patients—
including adjacent tumor, tumor, and tumor margin 
regions—were sourced from Wu et  al. [17], totaling 15 
slides. RNA-seq and microarray data were collected 
from The Cancer Genome Atlas (TCGA-LIHC, n = 424), 
GEO (GSE14520, n = 488) [18], the International Cancer 
Genome Consortium (ICGC-LIRI-JP, n = 389), and the 
National Omics Data Encyclopedia (NODE, OEP000321, 
n = 316).

Single‑cell data processing
Raw FASTQ data from the discovery cohort were filtered 
and aligned using Starsolo (v2.7.9a) with the human refer-
ence genome GRCh38. All validation cohort scRNA-seq 
data were directly merged after downloading from GEO. 
Given the large cell number in the training set, prelimi-
nary filtering, dimension reduction, and clustering were 
performed using scanpy (v1.6) [19] in Python. Filtering 
criteria included: (1) 500–6000 detected genes, (2) UMI 
counts between 1000 and 30,000 per cell, (3) mitochon-
drial gene content below 10%. We selected 2000 highly 
variable genes (HVGs) using highly_variable_genes, cal-
culated the top 50 principal components (PCs) via pca, 
regressed out mitochondrial gene effects, and scaled each 
gene to unit variance. Nearest neighbor graphs were con-
structed with the neighbors function, and clustering was 
performed using the louvain function (resolution = 0.1). 
Dimension reduction and visualization were achieved 
using uniform manifold approximation and projection 
(UMAP). For each clustered subpopulation, dimension 
reduction and clustering were further refined using Seu-
rat (v4.3.0) in R. For the validation cohort, Seurat [20] 
was used to analyze merged gene expression matrices 
with parameters consistent with those described above. 
To mitigate batch effects between samples and datasets, 
Harmony (v1.2.0) was applied to both discovery and vali-
dation cohorts.

https://www.cncb.ac.cn/
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Identification of fibroblasts
Mesenchymal cells were characterized based on estab-
lished markers (LUM, COL1A1, and RGS5). The expres-
sion levels of fibroblast and mural cell markers were 
calculated using the addmodulescore function. Fibro-
blasts were classified as cells with a fibroblast score at 
least 0.1 higher than the mural cell score, while mural 
cells were defined as cells with a mural cell score exceed-
ing the fibroblast score by 0.1. Cells with a score differ-
ence of less than 0.1 were categorized as undetermined.

Functional enrichment analysis
To understand the functional characteristics of the dif-
ferent cell subpopulations, we first identified highly 
expressed genes for each subpopulation using the Find-
AllMarkers function (adjusted P < 0.05, log2FC > 0.25). 
Functional enrichment analysis of the top 30 genes for 
each subpopulation was then performed using the GO 
and KEGG databases through the R package clusterPro-
filer (v4.10.0) [21]. An FDR of less than 0.05 was con-
sidered significant. Additionally, the R package progeny 
(v1.24.0) [22] was used to evaluate the function of 14 
pathways within the cells. For single-cell data, each cell 
was functionally scored using the addmodulescore func-
tion. For bulk RNA-seq data, GSVA (v1.52.3) [23] was 
used to assign functional scores to samples based on pre-
defined gene sets.

Cell preference analysis
To assess the prevalence of distinct cell types across 
different tissues, we used the Ro/e, which represents 
the ratio of observed to expected cell counts. An Ro/e 
greater than 1 indicates enrichment of a specific cell clus-
ter within a tissue, while an Ro/e less than 1 indicates 
depletion. Additionally, the odds ratio (OR) algorithm 
was used to further analyze cell preference. Here, an OR 
greater than 1.5 suggests a significant enrichment of cells 
in the specified sample category, while an OR less than 
0.5 indicates substantial depletion.

Bulk deconvolution analysis
To assess the infiltration of different cell subpopulations 
in bulk RNA-seq and microarray data, we estimated cell 
abundance in each sample using CIBERSORTx [24]. 
This was conducted in two steps. First, due to CIBER-
SORTx limitations, we randomly sampled each cell type, 
reserving 500 cells per type to create a single-cell count 
expression matrix and derive a signature matrix. Next, 
the constructed signature matrices and bulk mixture files 
were used for CIBERSORTx analyses.

Survival analysis
To link single-cell data with patient phenotypes from 
bulk sequencing, we utilized the R package Scissor 
(v2.0.0) [25]. Scissor + cells were associated with poorer 
patient survival, while Scissor − cells correlated with bet-
ter prognosis.

Additionally, the bulk sequencing matrix was trans-
formed into a cell-type abundance matrix using CIBER-
SORTx, which integrated single-cell and bulk sequencing 
data. The abundance of fibroblast subpopulations was 
used as a variable to assess the relationship between 
these subpopulations and patient survival. We performed 
univariate Cox regression analyses with the R package 
survival (v3.5.7), and Kaplan–Meier survival curves were 
generated for selected cell subgroups. Log-rank and Cox 
p-values of less than 0.05 indicated statistically signifi-
cant associations. Optimal grouping thresholds and sur-
vival analyses for each cohort were calculated using the R 
package survminer (v0.4.9).

To evaluate whether specific gene expression levels in 
fibroblast subpopulations could serve as a prognosis pre-
dictor, we applied the GSVA method to generate a score 
based on bulk sequencing gene sets and assessed its cor-
relation with patient survival.

CAFs differentiation trajectory analysis
To investigate potential cell differentiation trajectory, we 
used the R packages Monocle2 (v2.26.0) [26] and sling-
shot (v2.7.0) [27] for cell trajectory analysis. The fitGAM 
function in slingshot identified genes associated with 
pseudotime, enabling us to track gene expression changes 
over the inferred differentiation timeline.

Spatial transcriptomics (ST)analysis
We used the Seurat package for dimensionality reduc-
tion and clustering analyses on the downloaded ST data. 
Unlike single-cell analyses, ST data were not subjected 
to quality control. To assess the spatial distribution of 
fibroblast subpopulations, we scored highly expressed 
genes of CAFs using the addmodulescore function. The 
spatial distribution of these subpopulations was further 
validated by integrating single-cell transcriptomic and 
ST data with the R package celltrek (v0.0.94) [28], which 
generated sparse plots via a random forest model to sim-
ulate CAF distribution.

For spatial colocalization analysis of VEGFA + CAF 
and CapEc, we first scored the top 50 highly expressed 
genes of these cell types for each Visium sample using 
the AddModuleScore function, estimating their abun-
dance at each spot. Spatial coordinates were extracted, 
scaled, and distances to the six nearest spots were cal-
culated using the knn function from the dbscan package 
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(v1.1-12). Spots scoring above the 75th percentile for 
VEGFA + CAF were designated as starting points, while 
those above the 75th percentile for CapEc were defined 
as endpoints. Colocalized spots were identified when the 
distance between starting and endpoint spots was less 
than six. For each starting spot, the CapEc abundance of 
colocalized spots was normalized to obtain a standard-
ized neighbor enrichment score.

Cell communication analysis
Cellular communication between fibroblasts and 
endothelial cells was initially analyzed using CellChat 
(v2.1.2) [29]. First, the overall communication strength 
and frequency between all endothelial cells and fibroblast 
subpopulations were calculated. Key cell types interact-
ing with VEGFA + CAFs were identified, along with the 
main senders and receivers within angiogenesis-related 
pathways.

To infer specific signaling interactions between 
endothelial cells and fibroblasts and assess their impact 
on downstream target genes, we used the R package 
NicheNet (v2.1.0) [30]. Here, fibroblasts served as signal 
senders, and endothelial cells as receivers. The top 30 
ligands, receptors, and target genes ranked by aupr_cor-
rected—were visualized in a heatmap. Functional enrich-
ment of target and receiver genes was conducted using 
the clusterProfiler package, with GO, KEGG, databases 
as references. Pathways with a corrected p-value < 0.05 
were deemed significantly enriched.

Machine learning model construction
The mime R package (v0.12) [31] was used to deter-
mine whether gene expression levels in fibroblast sub-
populations could predict HCC patient prognosis and 
inform personalized treatment strategies. First, patient 
prognosis was predicted using 101 combinations of 10 
machine learning algorithms applied to the top 15 highly 
expressed genes in VEGFA + CAFs. One-way Cox regres-
sion (unicox.filter.for.candi = T) was used to filter genes 
independently correlated with patient prognosis. Seven 
additional machine learning models were then employed 
to predict HCC patients’ responses to the angiogenesis 
inhibitor sorafenib.

Statistical analysis
Statistical analyses and visualizations were performed in 
R (v4.3.0). Differences between groups were compared 
using the Wilcoxon test. Survival analyses were con-
ducted using the Kaplan–Meier method, with statistical 
significance determined by the log-rank test. Cox regres-
sion assessed correlations between variables and patient 
overall survival (OS) or recurrence-free survival (RFS), 

using the median or optimal cut-off as thresholds. Statis-
tical significance was set at P < 0.05. Correlation analyses, 
given the non-normal data distribution, were conducted 
using the Spearman method.

Results
Isolation of fibroblasts in HCC
To explore the diversity of CAFs in the HCC tumor 
microenvironment, we analyzed a cohort of 89 HCC-
associated samples, as reported by Xue et  al. After 
excluding one outlier sample, the cohort consisted of 
78 HCC and 10 AL cases (Supplementary Fig. 1A). Fol-
lowing quality control (Supplementary Fig. 1B), 587,954 
cells were obtained, with 54,125 cells from AL and 
533,829 from HCC samples. After data normalization, 
a k-nearest-neighbor overlap of cells from individual 
patients was used to assess batch effects in the scRNA-
seq data. Harmony correction significantly minimized 
batch effects between samples (Supplementary Fig. 1C).
Through further clustering and visualization, we char-
acterized seven cell types (Fig.  1A, B): B cells (marked 
by CD79A, MS4A1, n = 15,138), T/NK cells (marked by 
CD3D, GNLY, n = 293,829), endothelial cells (marked by 
PECAM1, VWF, n = 61,041), mesenchymal cells (marked 
by RGS5, COL1A1, n = 28,773), myeloid cells (marked 
by CD68, CD14, n = 106,695), epithelial cells (marked 
by EPCAM, ALB, APOA2, n = 69,574) and plasma cells 
(marked by IGHG1, MZB1, n = 12,904).

To isolate fibroblasts, we focused on mesenchymal cell 
subpopulations, which, upon reclustering, were divided 
into seven subpopulations (Supplementary Fig.  1D). 
Given the important role of mural cells within mesenchy-
mal cells, we aimed to distinguish fibroblasts from mural 
cells. We initially analyzed expression levels of RGS5, 
MYH11, DCN, and LUM, as they are highly expressed in 
pericytes, smooth muscle cells, and fibroblasts, respec-
tively. Results indicated that DCN and LUM were highly 
expressed in subclusters 2 and 5, RGS5 in subclusters 1, 
3, 4, and 6, and MYH11 in subcluster 0 (Supplementary 
Fig.  1E). We also evaluated marker genes of fibroblasts 
from mural cells accompanied with those previously 
reported for fibroblast subpopulations in mesenchymal 
cell subpopulations. However, effective differentiation 
was not achieved (Supplementary Fig. 1F, G). To improve 
classification, we synthesized findings from prior stud-
ies to generate specific gene markers for fibroblasts and 
mural cells (Table  S1), then examined the expression of 
these markers in our dataset (Fig. 1C). While some cells 
remained undetermined, these markers allowed us to dis-
tinguish between fibroblasts and mural cells within the 
mesenchymal cell population (Fig. 1D, E). Validation on 
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additional cohorts consistently showed similar results 
(Supplementary Fig. 1H–N).

In summary, we identified a broadly applicable 
approach for distinguishing fibroblasts from mural cells 
in HCC-associated scRNA-seq data, a critical step for 
analyzing fibroblast heterogeneity in the HCC TME.

Subpopulation and functional enrichment analysis 
of fibroblasts
In the discovery cohort, fibroblast subpopulations were 
classified and named based on their highly expressed 
genes: HLA-DRB1 + CAF, MMP11 + CAF, and 
VEGFA + CAF (Fig.  2A, Table  S2). These three fibro-
blast types could be distinguishable by the expression 
levels of HLA-DRB1, MMP11, and VEGFA (Fig.  2B, 
C). In the validation cohort, fibroblasts were classified 
into four subpopulations, with one group showing high 

Fig. 1 Isolation of fibroblasts in HCC. A UMAP shows cell clustering of cell types in the discovery cohort. B UMAP plot showing highly expressed 
genes in cell types. C Scatterplot showing the classification of fibroblasts and mural cells based on canonical gene markers. D Bar graph showing 
the percentage of fibroblasts/mural cells as well as undetermined cells in each mesenchymal subpopulation based on the classification results. E 
UMAP plot showing the results of fibroblasts and mural cells demarcation in the discovery cohort using the consensus gene signature
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Fig. 2 Subpopulation and functional enrichment analysis of fibroblasts. A UMAP shows that fibroblasts can be clustered into three subpopulations. 
B UMAP plot showing the expression of three typical genes (MMP11/HLA-DRB1/VEGFA) in three fibroblast subpopulations. C Heatmap showing 
top 5 highly expressed genes in each subpopulation of fibroblasts. D–F Bar plot showing top 5 terms or pathways significantly enriched 
for HLA-DRB1 + CAF, MMP11 + CAF, VEGFA + CAF. G Heatmap showing the different subtypes of fibroblasts’ progeny pathway scores. H Box line 
plots showing the scores of basement membrane, interstitial collagen, collagen, ECM glycoproteins, and proteoglycans in comparison for three 
subpopulations of fibroblasts. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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HLA-DRB1 expression. However, MMP11 and VEGFA 
were expressed in the same subpopulations, likely due to 
the limited number of fibroblasts in the validation cohort 
(n = 702) (Supplementary Fig. 2A–C).

To elucidate the functions of these fibroblast subtypes, 
we conducted functional enrichment analyses based on 
their highly expressed genes. The HLA-DRB1 + CAFs 
were enriched in pathways related to antigen presenta-
tion (Fig. 2D), including antigen processing and presen-
tation of peptide, polysaccharide antigen via MHC class 
II, MHC class II protein complex assembly, and so forth. 
These cells exhibited high expression of HLA-DRB1, 
COLEC10, and CD74, classifying them as classical anti-
gen-presenting CAFs (apCAFs) [32]. MMP11 + CAFs 
were significantly enriched in pathways related to extra-
cellular matrix (ECM) organization and collagen fibril 
formation, such as extracellular structure organization, 
collagen fibril organization and cellular response to trans-
forming growth factor beta stimulu, with high expres-
sion of ECM remodeling genes like MMP11 and POSTN, 
aligning them with matrix CAFs (mCAFs) [33] (Fig. 2E). 
VEGFA + CAFs were enriched in hypoxia-response 
pathways, including response to oxygen levels, response 
to hypoxia and cellular response to hypoxia. These cells 
showed high expression of SERPINE2, VEGFA, and IL-6, 
which are associated with angiogenesis, suggesting a role 
in promoting angiogenesis within hypoxic environments 
(Fig. 2F). Pathway scoring using Progeny further demon-
strated that MMP11 + CAFs scored highest on the TGF-β 
pathway, while VEGFA + CAFs showed higher scores 
on the hypoxia and VEGF pathways, consistent with the 
functional enrichment findings (Fig. 2G).

The generation and remodeling of ECM are funda-
mental functions of fibroblasts across tissues; however, 
these functions vary significantly among fibroblast sub-
populations. We examined whether each subpopulation 
upregulated genes linked to specific ECM components, 
including basement membrane, interstitial collagen, 
ECM glycoproteins, and proteoglycans. Results showed 
that MMP11 + CAFs upregulated numerous genes related 
to basement membrane, interstitial collagen, ECM glyco-
proteins, and proteoglycans. HLA-DRB1 + CAFs also reg-
ulated these pathways. Interestingly, VEGFA + CAFs only 

upregulated genes related to ECM glycoproteins and pro-
teoglycans, with a relatively lower proportion, suggesting 
that VEGFA + CAFs may have lost most of their ECM-
related functions. (Supplementary Fig.  2D). To further 
clarify these distinctions, we calculated module scores 
for each ECM category and compared expression across 
fibroblast subpopulations (Fig.  2H). MMP11 + CAFs 
exhibited the highest ECM-generation-related functions, 
including basement membrane, interstitial collagen, col-
lagen, ECM glycoproteins, and proteoglycans, followed 
by HLA-DRB1 + CAFs, while VEGFA + CAFs demon-
strated the lowest activity.

Taken together, these data reveal three fibroblast sub-
populations and their functions in the HCC tumor 
microenvironment, which may differentially regulate the 
maintenance/remodeling of the extracellular matrix.

Spatial distribution of the three fibroblast subtypes
We analyzed the infiltration patterns of fibroblast sub-
types across different tissue types. Results showed 
that HLA-DRB1 + CAF and MMP11 + CAF were pre-
dominant in normal tissues, while VEGFA + CAF and 
MMP11 + CAF were more frequent in tumor tissues 
(Fig. 3A). Notably, HLA-DRB1 + CAF was almost absent 
in tumor tissues, whereas VEGFA + CAF was concen-
trated within tumor areas, suggesting that the tumor 
microenvironment may influence fibroblast differen-
tiation. Ro/e analysis supported these findings (Fig. 3B). 
The relative percentages of the three fibroblast types in 
normal and tumor tissues are provided in Supplementary 
Fig.  3A. These results indicate that HLA-DRB1 + CAF 
is scarce in tumor tissues, while MMP11 + CAF is less 
abundant in normal tissues. VEGFA + CAF did not show 
a statistically significant difference between normal and 
tumor tissues, likely due to the low count in normal tis-
sues (n = 1). Scoring of all cells using addmodulescore 
further confirmed that cells in normal tissues had high 
scores for HLA-DRB1 + CAF, whereas tumor cells had 
higher scores for both MMP11 + CAF and VEGFA + CAF 
(Supplementary Fig. 3B).

To validate these fibroblast phenotypes in a larger 
cohort, we used CIBERSORTx to create cell abun-
dance matrices that included fibroblast subpopulations, 

(See figure on next page.)
Fig. 3 Spatial distribution of the three fibroblast subtypes. A Bar graphs show the percentage of the three fibroblasts among various sample 
types. B RO/E showing the abundance of the three fibroblasts to be enriched in AL and tumour tissues C Accuracy validation using a pseudobulk 
dataset generated from a single-cell transcriptome. Bar graphs show the correlation between CIBERSORTx estimates and true abundance 
for each cell type (Pearson r). D Box plot showing the comparison of the abundance of the three fibroblasts in normal and tumour tissues based 
on the deconvolution results of CIBERSORTx. E Spatial distribution of the three fibroblasts in the HCC1_L slide. F Spatial distribution of the three 
fibroblasts in the HCC2_L slide. G CellTrek deconvolution based on the HCC sections in the distribution of the three fibroblast subtypes 
in,HCC3_L,HCC4_L. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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Fig. 3 (See legend on previous page.)
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endothelial cells, mural cells, epithelial cells, and immune 
cells. We evaluated accuracy using pseudobulk datasets, 
generated by pooling single-cell transcriptomes to serve 
as reference samples. Results showed a strong correlation 
between CIBERSORTx estimations and the pseudob-
ulk dataset for HLA-DRB1 + CAF  (R2 = 0.91, p < 0.001), 
MMP11 + CAF  (R2 = 0.77, p < 0.001), and VEGFA + CAF 
 (R2 = 0.83, p < 0.001) (Fig. 3C, Supplementary Fig. 3C–E). 
Analysis of the TCGA RNA-seq LIHC dataset using 
CIBERSORTx confirmed that HLA-DRB1 + CAF is fre-
quent in normal tissues, whereas MMP11 + CAF and 
VEGFA + CAF are more common in tumor tissues 
(Fig. 3D).

We investigated the spatial distribution of the three 
fibroblast subtypes within tumors. On the HCC1-L 
slide, addmodulescore scoring across all spots revealed 
that MMP11 + CAF was mostly located at the tumor 
border, HLA-DRB1 + CAF was mainly found in nor-
mal tissues, and VEGFA + CAF was concentrated 
within the tumor interior. (Fig.  3E). Similar distribution 
patterns were observed in other tumor border slides 
(Fig.  3F). The distributions of fibroblast types across 
tumor and normal slides corroborated these findings 
(Supplementary Fig.  3F, G). Using Celltrek to integrate 
single-cell and spatial transcriptomic data, we simu-
lated the spatial distribution of these fibroblast sub-
types, showing MMP11 + CAFs predominantly at the 
tumor border, HLA-DRB1 + CAFs in normal tissues, and 
VEGFA + CAFs in tumor interiors (Fig. 3G).

In conclusion, HLA-DRB1 + CAF is primarily distrib-
uted in normal tissues, MMP11 + CAF is concentrated 
at the tumor periphery, and VEGFA + CAF is located 
within the tumor interior. These distribution patterns 
may reflect the distinct biological roles of each fibroblast 
subtype.

Cell‑state transition trajectory inference of CAFs
To explore the dynamic processes of CAF subtypes at 
the single-cell level, we inferred cellular trajectories 
of CAF subtypes using Slingshot (Fig.  4A–C). Results 
revealed that HLA-DRB1 + CAFs represent the pro-
genitor state, which progressed into MMP11 + CAFs, 
with VEGFA + CAFs occupying the terminal differ-
entiation stage. Interestingly, fibroblasts from normal 

tissues predominantly appeared at the early, pre-dif-
ferentiation stage, while fibroblasts from tumor tissues 
were observed at later stages, suggesting a transition 
from normal fibroblasts to tumor-associated fibroblasts 
during tumorigenesis and progression (Fig.  4D). We 
repeated this analysis using Monocle2, which yielded 
similar results, thereby enhancing the robustness of our 
findings (Supplementary Fig. 4A, B).

We also examined gene expression patterns asso-
ciated with CAF state transitions. Differentially 
expressed genes were clustered into three modules 
based on pseudotime-associated expression patterns, 
labeled as progenitor, activation, and differentiation 
modules (Fig. 4E). To investigate the functions of these 
genes at different differentiation stages, we performed 
KEGG pathway enrichment analysis (Supplementary 
Fig.  4C–E). The progenitor module was enriched in 
pathways related to antigen processing and presenta-
tion; the activation module was enriched in pathways 
involving focal adhesion and ECM-receptor interac-
tions, both linked to ECM; and the differentiation mod-
ule was associated with the HIF-1 signaling pathway, 
suggesting a close link to hypoxia. These functional 
analyses suggest that the three pseudotime-related 
modules align with the identified fibroblast subpopu-
lations. In terms of expression across the tumor time-
line, we observed that the progenitor, activation, and 
differentiation modules were highly expressed in the 
early, mid, and late stages, respectively. Notably, ana-
lyzing tumor and normal tissues separately showed that 
the progenitor and activation modules were present 
in both normal and tumor tissues, while the differen-
tiation module was specific to tumor tissues, suggest-
ing a tumor-specific feature (Fig. 4F, G, Supplementary 
Fig. 4F).

Furthermore, we analyzed pathway expression along 
pseudotime and found that Hypoxia, TGF-β, VEGF, and 
WNT pathway activity increased over time in tumor 
tissues (Fig.  4H), whereas these levels remained stable 
or decreased in normal tissues. This may correlate with 
the high presence of VEGFA + CAF in tumor tissues, 
as these pathways are enriched in this subtype. Con-
versely, some MMP11 + CAF-enriched pathways did 

Fig. 4 Cell-state transition trajectory inference of CAFs. A UMAP plot demonstrating possible differentiation trajectories between the three 
fibroblasts. B UMAP plot demonstrating the distribution of fibroblasts in pseudotime. C Violin plot demonstrating the comparison of the three 
fibroblasts in pseudotime. D Distribution of the three fibroblasts as well as fibroblasts in normal and tumour tissues in pseudotime. E Heatmap 
demonstrating genes in fibroblasts during their differentiation over time and clustering analysis dividing them into three modules: progenitor, 
activation and differentiation. F Trends in gene expression of the three modules over time. G Trends in gene expression of the three modules 
over time in normal and tumour tissues. H Hypoxia, TGFb, VEGF, WNT pathway scores over time in normal and tumour tissues

(See figure on next page.)
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not exhibit significant differences between normal and 
tumor tissues (Supplementary Fig. 4G).

Overall, our cell trajectory analysis of CAF subtypes 
classified pseudotime-related genes into three modules: 
progenitor, activation, and differentiation. Importantly, 
we found that the differentiation module appears tumor-
specific, corresponding to the VEGFA + CAF subtype.

VEGFA + CAF was associated with poor prognosis
We used Scissor, developed by Sun et al., to investigate 
the relationship between fibroblast subpopulations and 
OS in HCC patients. Based on TCGA bulk RNA-seq 
LIHC and survival data, we identified Scissor-positive 
(Scissor +) and Scissor-negative (Scissor  −) fibroblast 
cells. Scissor + cells were associated with shorter OS, 
whereas Scissor  − cells correlated with longer OS 
(Fig. 5A).

Next, we assessed the proportion of Scissor + cells 
within each fibroblast subpopulation. Results indi-
cated that Scissor + cells were most prevalent in 
VEGFA + CAFs, while Scissor  − cells were more 
abundant in MMP11 + CAFs (Fig.  5B, Supplemen-
tary Fig.  5A). Overall, Scissor + cells showed an asso-
ciation with VEGFA + CAF and, to a lesser extent, 
MMP11 + CAF, whereas HLA-DRB1 + CAF was more 
commonly associated with Scissor  − cells (Supple-
mentary Fig.  5B). Validation in the discovery cohort 
confirmed that patients with a high percentage of Scis-
sor + cells had lower OS (Fig.  5C). Further analysis 
revealed that Scissor + cells highly expressed VEGFA 
(Fig.  5D). Additionally, a dot plot of the top ten genes 
showed that genes highly expressed in Scissor + cells 
were predominantly found in VEGFA + CAF, while 
genes highly expressed in Scissor  − cells were pri-
marily in HLA-DRB1 + CAF (Table  S3). This sug-
gests that VEGFA + CAF is the dominant cell type in 
Scissor + cells and a key factor impacting OS in HCC 
patients (Supplementary Fig. 5C).

To further investigate the correlation between fibro-
blast subpopulations and patient prognosis in a larger 
cohort, we used CIBERSORTx to quantify the abundance 
of the three fibroblast subpopulations in the TCGA LIHC 
dataset. Results from one-way Cox regression analyses 
indicated that VEGFA + CAFs were significantly asso-
ciated with poorer OS (HR = 2.17, P = 0.001), whereas 
HLA-DRB1 + CAFs correlated with a favorable prog-
nosis (HR = 0.62, P = 0.012). No statistically significant 
association was found between OS and MMP11 + CAFs 
(HR = 1.38, P = 0.224) (Fig.  5E). Kaplan–Meier survival 
curve analysis confirmed that patients with a higher pro-
portion of VEGFA + CAFs had a significantly worse prog-
nosis (P < 0.0001) (Fig.  5F). These findings were further 
validated in two external datasets, showing a significant 

correlation between the ratio of VEGFA + CAFs and both 
OS and RFS (Fig. 5G).

In conclusion, our findings indicate that VEGFA + CAF 
is a dominant cell type among Scissor + cells and plays 
a pivotal role in influencing OS in HCC patients. These 
results were further validated in two external datasets, 
reinforcing the significance of VEGFA + CAF in HCC 
prognosis.

Cell communication between VEGFA + CAF and CapECs 
contribute to angiogenesis.in HCC
The studies above demonstrated a strong correlation 
between the presence of VEGFA + CAF and poorer prog-
nosis, alongside high VEGFA expression, which plays a 
key role in angiogenesis. Based on these observations, 
we propose that VEGFA + CAF may contribute to poor 
prognosis in HCC patients by promoting angiogenesis. 
To explore this, we re-dimensioned, clustered, and anno-
tated endothelial cells, identifying six cell types: arte-
rial endothelial cells (ArtECs), venous endothelial cells 
(VenECs), CapECs, liver1 sinusoidal endothelial cells 
(LSECs), lymphatic endothelial cells (LECs), and prolifer-
ating endothelial cells (pECs) (Fig. 6A, B, Table S4). We 
then analyzed cell subtype enrichment preferences and 
infiltration ratios across different sample types (Fig. 6C). 
In tumor tissues, CapECs and pECs were enriched along 
with VEGFA + CAF and MMP11 + CAF, while HLA-
DRB1 + CAF, LSEC, and LECs showed greater enrich-
ment in normal samples.

To analyze the spatial colocalization of VEGFA + CAF 
and CapEc, we first scored the top 50 highly expressed 
genes of these cell types for each Visium sample using the 
addmodulescore function, estimating their abundance 
at each spot. Spots with VEGFA + CAF scores above the 
75th percentile were designated as starting points, while 
those with CapEc scores above the 75th percentile were 
defined as endpoints. Colocalized spots were identified 
when the distance between starting and endpoint spots 
was less than six. For each starting spot, the CapEc abun-
dance of colocalized spots was normalized to obtain a 
standardized neighbor enrichment score. The results 
showed significant colocalization of VEGFA + CAF and 
CapEc in HCC tumor samples, suggesting that their 
spatial proximity may provide a physiological basis for 
potential cell–cell communication (Fig. 6D, E).

Using CellChat, we examined cellular communication 
patterns between fibroblasts and endothelial cells, reveal-
ing complex communication between these cell types 
(Supplementary Fig.  6A). We examined the communi-
cation pattern of VEGFA + CAFs and CapECs across all 
pathways, with a specific focus on the VEGF pathway. 
Here, VEGFA + CAFs demonstrated the strongest out-
going interaction, while CapECs showed the strongest 
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Fig. 5 VEGFA + CAF was associated with poor prognosis. A UMAP plot demonstrating the distribution of Scisso + as well as Scissor − cells 
among the three fibroblasts. B Bar graph demonstrating the percentage of Scisso + cells in the fibroblast subpopulation. C Kaplan–Meier survival 
curve demonstrating the differences in OS as well as RFS in patients with different Scisso + as well as Scissor − cell abundance. D Demonstration 
of survival-independent cells, Scisso + as well as Scissor − cell subpopulations of highly and lowly expressed genes. E Forest plot demonstrating 
the relationship between the three fibroblast abundances and patient OS (in TCGA-LIHC). F Kaplan–Meier survival curve demonstrating 
the differences in OS in patients with different VEGFA + CAF abundances. G Kaplan–Meier survival curve demonstrating the differences in OS 
in patients with different VEGFA + CAF abundances in the two external validation sets, VEGFA + CAF was not only associated with poorer OS 
but also poorer RFS
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incoming interaction, suggesting a high probability of 
interaction via the VEGF pathway (Fig.  6F). Heatmaps 
further supported this hypothesis (Fig.  6G, Supplemen-
tary Fig. 6B–D), indicating that this cellular interaction is 
likely mediated by the VEGFA-VEGFR1 ligand-receptor 
pair (Supplementary Fig. 6E).

To assess the downstream effects of cellular interactions 
between fibroblasts and CapECs, we employed NicheNet 
(Supplementary Fig. 6F). VEGFA, the top-ranked ligand, 
was most highly expressed in VEGFA + CAFs and had 
the greatest impact on fibroblast-CapEC communica-
tion. Enrichment analysis of receptor and target genes 
revealed that receptor genes were enriched in pathways 
related to endothelium development and endothelial cell 
differentiation, while target genes were linked to epithe-
lial cell proliferation and vasculogenesis. This suggests 
that communication between VEGFA + CAF and CapECs 
may enhance the angiogenic capacity of CapECs, thereby 
facilitating tumor progression and metastasis (Supple-
mentary Fig. 6G, H).

In conclusion, our findings suggest that VEGFA + CAFs 
may interact with CapECs through the VEGF pathway, 
promoting angiogenesis and potentially driving tumor 
progression.

Predicting prognosis and making therapeutic decision 
choices for HCC patients by machine learning using highly 
expressed genes in VEGFA + CAF
Based on the findings from our analyses, we propose 
that VEGFA + CAF could serve as a novel biomarker for 
prognosis and treatment selection. We selected the 15 
most highly expressed genes of VEGFA + CAF as marker 
genes and scored patients using GSVA. Results demon-
strated that in the TCGA (P < 0.0001), OEP (P < 0.0001), 
ICGC (P = 0.035), and GSE14520 (P < 0.0001) cohorts, 
patients with high VEGFA + CAF scores had signifi-
cantly lower OS than those with low scores. Similarly, 
in the OEP (P = 0.0034) and GSE14520 (P < 0.0001) 
cohorts, RFS was also significantly lower in patients 
with high scores (Fig.  7A). Additionally, in the TCGA 
and GSE14520 cohorts, patients with tumor stages III or 
IV had significantly higher VEGFA + CAF scores com-
pared to those with stages I or II, suggesting that high 
VEGFA + CAF expression may serve as a biomarker for 

tumor progression and poor prognosis in HCC patients 
(Supplementary Fig. 7A).

The top 15 genes expressed by VEGFA + CAF were 
used to predict HCC prognosis through 101 combi-
nations of 10 machine learning algorithms in mime. 
The TCGA dataset served as the training set, while the 
ICGC, GSE14520, and OEP datasets were used as test 
sets. Results indicated that the StepCox [forward] + Enet 
[α = 0.3] combination had the highest predictive accu-
racy, with a C-index of 0.693 across all cohorts and 0.69 
in the test cohort. Notably, the C-index for the test cohort 
ICGC (0.71) exceeded that of the discovery cohort (0.7), 
indicating strong model performance (Fig. 7B, C). When 
patients were classified by median risk score from the 
model, high-risk patients showed lower OS rates across 
all four cohorts (Fig.  7D). The model demonstrated 
robust efficacy in predicting one-year and three-year sur-
vival, with AUCs of 0.787 and 0.723, respectively (Sup-
plementary Fig.  7B, C). Cox regression analyses further 
confirmed that the risk score was an independent predic-
tor of OS in all four cohorts (Supplementary Fig. 7D).

Given the role of VEGFA + CAF in promoting angio-
genesis, we explored whether a machine learning model 
based on VEGFA + CAF’s top genes could assist in 
personalizing sorafenib treatment for HCC patients. 
Sorafenib is an anticancer drug effective for unresect-
able HCC, functions by inhibiting tumor growth and 
angiogenesis [34]. The GSE109211 dataset, a dataset that 
includes RNA seq data from HCC patients, along with 
information on their response to sorafenib treatment 
was split into a discovery cohort (comprising 70% of the 
samples) and a validation cohort (comprising 30% of the 
samples). Seven machine learning models were created 
using the top 15 genes of VEGFA + CAF, and their pre-
dictive efficacy was evaluated in the validation cohort. 
Results showed that the LogiBoost model had the highest 
predictive power for identifying HCC patients likely to 
respond to sorafenib, with an AUC of 0.94 (Fig. 7E, Sup-
plementary Fig.  7E). These findings highlight the Logi-
Boost model’s potential utility in predicting responses to 
sorafenib therapy in clinical settings.

In conclusion, machine learning models based on 
VEGFA + CAF’s top genes offer a powerful tool for 

Fig. 6 Cell communication between VEGFA + CAF and CapECs contribute to angiogenesis.in HCC. A UMAP plot demonstrating subpopulations 
of endothelial cells. B Heatmaps illustrating the top five most highly expressed genes in the various subpopulations of endothelial cells. C OR plots 
demonstrating the tissue distribution preferences of different fibroblasts as well as endothelial cell subpopulations. D VEGFA + CAF and CapEC 
scores, colocalized spots, and abundance distribution in the HCCT_5_3 sample. E VEGFA + CAF and CapEC scores, colocalized spots, and abundance 
distribution in the HCCT_5_2 sample. F Scatter plots demonstrating the activity of all pathways, as well as the VEGF pathway alone. G Heatmap 
demonstrating the strength of outgoing and incoming interactions of VEGF pathways between endothelial cells and fibroblast subpopulations

(See figure on next page.)



Page 14 of 20Liu et al. Journal of Translational Medicine          (2025) 23:198 

Fig. 6 (See legend on previous page.)
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predicting HCC patient prognosis and supporting per-
sonalized sorafenib therapy.

Discussion
The growth of solid tumors is largely dependent on a 
remodeled stroma composed of CAFs and ECM, which 
play a pivotal role in the formation of an immunosup-
pressive TME, tumorigenesis, progression, metastasis 
and treatment resistance [35]. Previous studies of CAFs 
in HCC have typically been limited by small sample sizes 
and the potential interference of mural cells in mesen-
chymal cells [9–11]. In this study, we employed multiple 
cohorts and comprehensive analyses of scRNA-seq, ST, 
and bulk RNA-seq to systematically establish a process 
for isolating fibroblasts from mesenchymal cells, char-
acterized three fibroblast subpopulations, analyze their 
locations, biological functions, and clarify their value in 
predicting the prognosis of patients with HCC and in 
developing personalized treatment plans. It is notewor-
thy that the communication between VEGFA + CAF and 
CapECs appears to be of crucial importance during the 
progression of HCC and the process of metastasis.

Fibroblasts in the HCC tumor microenvironment are 
highly heterogeneous and the heterogeneity confers dif-
ferent roles on them. In this study, we characterized a 
subpopulation of fibroblasts with high expression of 
MHC class II related genes, which is similar to the pre-
viously described apCAF [32, 36]. Although it is mainly 
enriched for the functions of Antigen processing and 
presentation, the perception of its role in cancer is often 
contrary. Ela Elyada et al. have shown that in pancreatic 
ductal adenocarcinoma, as the absence of co-stimulatory 
molecules on antigen-presenting cells leads to T-cell 
unresponsiveness and regulatory T-cell (Treg) induc-
tion, the activation of CD4 + T-cells by apCAF and the 
promotion of their immune-regulatory function directly 
leads to tumor immunosuppression and a poorer prog-
nosis[32]. In contrast, Dimitra Kerdidani et  al. reported 
that apCAFs in lung cancer have the unique ability to 
activate effector T cells and have tumor suppressor func-
tions [37]. In the present study, HLA-DRB1 + CAFs were 
predominantly enriched in AL and were associated with 
a better prognosis.

MMP11 + CAFs were significantly enriched in tumors 
and were involved in the maintenance and remodeling of 
the ECM, similar to mCAFs described in previous stud-
ies [10, 11, 33]. MMP is part of a large family of zinc-
dependent protein hydrolase metalloenzymes and is well 
known for its role in ECM degradation [38]. MMP11 is a 
zinc-dependent protein hydrolase and a zinc-dependent 
protein hydrolase that remodels the ECM by degrad-
ing ECM proteins, plays an important role in the inva-
sion and metastasis of solid malignant tumors, enabling 
tumor cells to modify ECM components and release 
cytokines that promote protease-dependent tumor pro-
gression [39]. Interestingly, we found that MMP11 + CAF 
were mainly enriched around the tumor, forming a bar-
rier, which is consistent with the presence of peritumor 
on pathological sections, that are present around the 
tumor in 10–76% of HCC patients [40]. Previous stud-
ies have shown that the presence of these peritumor may 
play the role of a physical barrier, preventing immune 
cells from migrating into the core of the tumor, leading to 
immune rejection and resulting in patients’ non-response 
to immunotherapy and poor prognosis [9, 10, 41].

VEGFA + CAF was significantly enriched, within 
tumors, in contrast to MMP11 + CAF. Enrichment anal-
ysis demonstrated that terms it mainly enriched in is 
response to hypoxia, which may be related to the hypoxic 
immune microenvironment within the tumor. Ernestina 
Marianna De Francesco, et al. demonstrated that, in the 
hypoxic microenvironment, HIF-1α/GPER signaling was 
elevated and mediated the expression of VEGF in CAF, 
thereby promoting angiogenesis within the tumour [42], 
which is consistent with our findings. It is noteworthy 
that evidence indicates that the synthesis and remodeling 
of the ECM by CAFs generates solid stress, which leads 
to vascular and lymphatic compression, reduced perfu-
sion rates and increased hypoxia in the TME [43, 44]. 
This suggests that the hypoxic TME plays an important 
role in the induction and maintenance of VEGFA + CAFs. 
The pseudotime analysis indicated that VEGFA + CAF is 
at the terminal stage of differentiation and that the dif-
ferentiation module corresponding to VEGFA + CAF is 
tumor-specific. This further suggests that the differen-
tiation of VEGFA + CAF cannot be separated from the 

(See figure on next page.)
Fig. 7 Predicting prognosis and making therapeutic decision choices for HCC patients by machine learning using highly expressed genes 
in VEGFA + CAF. A Kaplan–Meier survival curve between VEGFA + CAF scores and patients’ OS and RFS in four large cohort bulk seq datasets. B Using 
VEGFA + CAF highly expressed genes, 101 combinations of 10 machine learning predictions were used to predict the OS of patients with HCC, 
and the top 20 patients with the highest average C-index in the four datasets were selected for presentation. The top20 with the highest average 
C-index in the four datasets are shown. C C-index of the model with the best predictive performance in the four datasets. D Risk scores generated 
by machine learning are associated with poorer prognosis in HCC patients. E Demonstration of the prediction of response or non-response 
to sorafenib in patients with HCC using 7 machine learning using VEGFA + CAF highly expressed genes (in auc form)
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TME. In addition to VEGFA, VEGFA + CAF also exhib-
its high expression of IL-6. It has been demonstrated that 
IL-6 produced by CAFs induces tumor angiogenesis by 
stimulating adjacent stromal fibroblasts [45, 46].

Furthermore, our findings revealed that, similar to 
VEGFA + CAF, CapECs were also enriched in the tumor. 
Additionally, cell communication analysis indicated that 
there was a robust cellular communication between the 
two, which was primarily constituted by the VEGF path-
way. This suggests that VEGFA + CAF may facilitate angi-
ogenesis, as well as tumor progression and metastasis, 
through cellular communication with CapECs. Further-
more, the NicheNet results indicated that the primary 
function of the downstream target genes of CapECs fol-
lowing the receipt of VEGFA ligands was vasculogenesis, 
thereby reinforcing the notion that VEGFA + CAF plays a 
pivotal role in angiogenesis.

The relationship between VEGFA + CAF and patient 
prognosis was validated using multiple datasets, as well as 
VEGFA + CAF abundance and VEGFA + CAF score. The 
results demonstrated that VEGFA + CAF was an inde-
pendent risk factor for patient prognosis across multiple 
datasets. Importantly, the abundance of VEGFA + CAF 
also increased with tumor stage progression, highlight-
ing its potential role in driving tumor progression and 
metastasis. These findings underline the critical interplay 
between VEGFA + CAF and tumor dynamics, suggest-
ing that VEGFA + CAFs may serve as both a driver and 
a marker of tumor progression. Furthermore, we con-
structed a machine learning model to predict the prog-
nosis and response to sorafenib in HCC patients with 
good accuracy. This provides a valuable tool for accurate 
diagnosis and personalized treatment of HCC patients. 
However, one limitation of this study is the preliminary 
use of the LogiBoost model to predict therapy response. 
While the model served as a proof-of-concept to demon-
strate the potential application of VEGFA + CAF-associ-
ated features in clinical settings, further exploration and 
validation are required to enhance its clinical relevance.

In conclusion, our study revealed three fibroblast sub-
populations in HCC. Specifically, we determined that 
VEGFA + CAF were predominantly distributed within the 
tumor and were significantly associated with patient sur-
vival. The hypoxic microenvironment may be the main 
factor inducing VEGFA + CAF, which promotes vasculo-
genesis and tumor proliferation through cellular commu-
nication with CapECs and facilitates tumor progression 
and metastasis. A machine learning model for predicting 
the prognosis and response to sorafenib in HCC patients 
using the highly expressed gene of VEGFA + CAF has high 
accuracy and provides a powerful tool for the precise diag-
nosis and personalized treatment.
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(K) UMAP showing the expression of canonical markers pericytes (RGS5), 
fibroblasts (DCN/LUM), and smooth muscle cells (MYH11) in the validation 
cohort MSC subpopulations (L) Scatterplot showing the classification of 
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in the validation cohort using the consensurs gene signature.
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plot showing the expression of highly expressed genes of VEGFA + CAF, 
MMP11 + CAF, and HLA-DRB1 + CAF, in fibroblast subpopulations in the 
validation cohort. (C) UMAP plot showing the expression of VEGFA, MMP1, 
and HLA-DRB1 in the fibroblast subpopulation of the validation cohort (D) 
Bar graph showing the proportion of different matrix body components 
differentially expressed in each subpopulation.
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subpopulations. (A) Bar graph showing the proportion of the three 
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fibroblasts to the total number of fibroblasts in AL and tumour tissues (B) 
Bar graph showing the comparison of the scores of the three fibroblasts in 
the AL and tumour tissues in TCGA. (C-E)Scatter plots showing the linear 
relationship between CIBERSORTx estimates and true abundance for each 
fibroblast subpopulation. (F) In HCC2_T and HCC5_3_T slides the spatial 
distribution of MMP11 + CAF, VEGFA + CAF (G) in HCC1_N and HCC3_N 
slides the spatial distribution of HLA-DRB1 + CAF, MMP11 + CAF. *, P < 0.05; 
**, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

Supplementary Material 4: Fig. 4. Cell-state transition trajectory inference 
of CAFs. (A) UMAP plot demonstrating the order of differentiation of the 
three fibroblasts analysed using Monocel2, and pseudotemporal distribu-
tion (B) Violin plot demonstrating the pesudotime comparison of the 
three fibroblasts calculated using Monocle2. (C-E) Bar plot showing top 
5 terms or pathways significantly enriched for the three modules of pro-
genitor, activation and differentiation (F) Box line plot showing the expres-
sion of the three modules in cells grouped by tissue type and pseudotime 
tertile 3. (G) Androgen, EGFR, Estrogen, JAK-STAT, MAPK, NFκB, p53, P13K, 
TNFa, Trail pathway scores in paracancerous and tumour tissues over time.

Supplementary Material 5: Fig. 5. VEGFA + CAF is associated with poorer 
prognosis in HCC patients. (A) Bar graph showing the percentage of 
Scisso- cells to the fibroblast subpopulation (B) Bar graph showing the 
overall relationship of the three types of fibroblasts to OS in patients (C) 
Dot plot showing the expression of highly expressed genes in the three 
types of cells presenting as Scisso + as well as Scissor- cells.

Supplementary Material 6: Fig. 6. Analysis of cellular communication 
between VEGFA + CAF and endothelial cells. (A) Number and strength of 
cellular communication between endothelial and fibroblast subpopula-
tions (B) Heatmap showing for endothelial and fibroblast subpopulations 
the effect on the VEGF pathway (C) Strength of cellular communication 
between VEGFA + CAF and other cell types in term of VEGF pathway. (D) 
Heatmap showing for cell communication between endothelial and fibro-
blasts in term of VEGF pathway. (E) Demonstration of the effect on the 
VEGF pathway for the ligand-receptor pair, VEGFA-VEGFR1, of VEGFA + CAF 
and other cell types (F) Combined heatmap illustrating the results of the 
NicheNet analysis of CapECS and fibroblasts. The initial section of the com-
bined plot illustrates the Pearson’s coefficient of the fibroblast ligand, with 
elevated coefficients signifying a robust capacity of the ligand to regulate 
the CapECS target genes. The subsequent section depicts the expression 
of the ligand across distinct fibroblast subtypes, while the fourth section 
elucidates the regulatory potential of the target genes.(G)Bar plot showing 
top 5 terms or pathways significantly enriched for reciver genes inCapEcs 
(H) Bar plot showing top 5 terms or pathways significantly enriched for 
target genes in CapEcs.

Supplementary Material 7: Fig. 7. Predicting prognosis and making 
therapeutic decision choices for HCC patients by machine learning 
using highly expressed genes in VEGFA + CAF. (A Box plots demonstrat-
ing VEGFA + CAF scores in HCC patients with different staging in three 
cohortsTCGA,GSE14520,ICGC. (B) AUC curves demonstrating the predic-
tive efficacy of using machine learning to predict 1- and 3-year survival in 
HCC patients in four datasets (C) Bar charts demonstrating the AUC values 
of using machine learning to predict 1- and 3-year survival in HCC patients 
in four datasets (D) Forest plots demonstrating the VEGFA + CAF risk scores 
were significantly associated with patients’ OS in all four datasets (E) AUC 
values for predicting HCC response with sorafenib using seven machine 
learning in the training and test sets are shown using histograms. *, 
p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

Supplementary Material 8: Table 1. Differential genes in endothelial cells 
subtypes. Supplementary Table 2.Differential genes in fibroblast subtypes. 
Supplementary Table 3.Differential genes in scissor subtypes. Supplemen-
tary Table 4.Differential genes in endothelial cells subtypes.
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