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Effector CD4+ T cells recognize intravascular
antigen presented by patrolling monocytes
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Camden Lo2, Zhe Hao Tan1, Songhui Li3,4, Susan K. Nilsson 3,4, A. Richard Kitching 1,5 &

Michael J. Hickey 1

Although effector CD4+ T cells readily respond to antigen outside the vasculature, how they

respond to intravascular antigens is unknown. Here we show the process of intravascular

antigen recognition using intravital multiphoton microscopy of glomeruli. CD4+ T cells

undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not

expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol

glomerular capillaries, interacting with CD4+ T cells. Following intravascular deposition of

antigen in glomeruli, effector CD4+ T-cell responses, including NFAT1 nuclear translocation

and decreased migration, are consistent with antigen recognition. Of the MHCII+ immune

cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations.

These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion

reduces CD4+ T-cell-dependent glomerular inflammation. These findings indicate that

MHCII+ monocytes patrolling the glomerular microvasculature can present intravascular

antigen to CD4+ T cells within glomerular capillaries, leading to antigen-dependent

inflammation.
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A growing body of evidence indicates that immune cells can
make critical contributions to inflammatory responses
while remaining within the vasculature1. This concept of

“intravascular immunity” is exemplified by the intravascular
migration of non-classical monocytes in tissues such as skin,
mesentery, muscle, and brain2–6. In vivo imaging studies show
that this patrolling function involves prolonged crawling on the
endothelium independent of the direction of blood flow2,4.
Patrolling Ly6C− monocytes perform important immune sur-
veillance within the vasculature, internalizing microparticles and
soluble material from the bloodstream and responding to
microbial infection or tissue injury3,7. Upon detection of these
signals, intravascular monocytes are positioned to respond
rapidly by inducing recruitment of other immune cells or
migrating out of the vasculature3–5. These intravascular activities
are not restricted to myeloid leukocytes as in the liver micro-
vasculature, invariant natural killer T (iNKT) cells also con-
stitutively migrate. In this location iNKT cells respond to innate
and adaptive signals by modulating their migration and releasing
proinflammatory mediators8,9. Whether these intravascular
functions also contribute to adaptive immune responses involving
conventional T cells is less clear.

Intravital imaging studies have revealed that CD4+ and CD8+

T cells in microvessels of the central nervous system and the renal
interstitium can undergo intraluminal crawling and subsequently
exit the vasculature10–12. While in contact with the endothelium,
effector CD8+ cells can recognize peptide/MHC class I (MHCI)
complexes expressed by endothelial cells, leading to T-cell acti-
vation and promotion of recruitment and/or tissue retention12–14.
Although some endothelial cells can express MHC class II
(MHCII) in inflammatory states, mechanisms of antigen recog-
nition by antigen-specific CD4+ T cells within the vasculature are
unclear15–17

One site where intravascular immunity is crucial is the spe-
cialized microvasculature of the glomerulus. Monocytes and
neutrophils have been shown to undergo constitutive intravas-
cular adhesion and crawling within glomerular capillaries17,18.
During antibody-mediated glomerular inflammation, the dura-
tion of the retention of these cells is increased and intravascular
neutrophils generate reactive oxygen species (ROS) responsible
for glomerular injury17,18. In addition to humoral mediators,
CD4+ T cells also have an important function in the development
of glomerular injury and dysfunction in severe, rapidly pro-
gressive forms of glomerulonephritis. Intraglomerular T cells are
detectable in humans with rapidly progressive glomerulone-
phritis19–21, and functional studies in animal models demonstrate
that disease-inducing effector responses can be directed by CD4+

T cells responding to antigen located intravascularly within the
glomerulus15,16,22–24.

Evidence indicates that glomerular injury mediated by effector
CD4+ T cells in glomerulonephritis involves multiple steps,
beginning with loss of tolerance to nephritogenic autoantigens in
secondary lymphoid organs16,25. This evidence includes the dis-
covery of circulating CD4+ T cells specific for these antigens in
patients with autoimmune glomerulonephritis26–28. In patients
with autoimmune disease, circulating autoreactive T cells have a
memory phenotype, indicating that they have been exposed to
cognate antigen and undergone differentiation into effector or
memory T cells29,30. However, the existence of circulating,
antigen-experienced T cells is insufficient to result in disease. The
final steps in the process involve T-cell recognition of antigen in
the target tissue, leading to effector T-cell-mediated injury at the
site of antigen recognition, the glomerulus. Indeed, analysis of
antigen-experienced T-cell responses to antigen in the periphery
has shown that these cells can respond within minutes upon
recognition of cognate antigen31,32. However, the mechanism

whereby CD4+ T cells recognize antigens in the unique micro-
vasculature of the glomerulus is not known. Therefore, the aim of
this study is to investigate the mechanisms of intravascular
antigen presentation to disease-initiating, antigen-experienced
effector CD4+ T cells in the glomerulus, using a validated model
of T-cell-mediated glomerulonephritis. The findings indicate that
in the absence of inflammation, MHCII expression in the glo-
merulus is restricted to subsets of circulating leukocytes. Of these
cells, monocytes undergo the most prolonged retention and
migration in the glomerular capillaries and are required for CD4+

T-cell-mediated induction of neutrophil-dependent glomerular
inflammation.

Results
CD4+ T cells migrate in uninflamed glomerular capillaries. We
first examined whether CD4+ T cells could spontaneously adhere
within uninflamed glomerular capillaries. Endogenous CD4+

T cells were visualized using anti-CD4 mAb and intravital mul-
tiphoton imaging of the kidney. In uninflamed glomeruli, CD4+

T cells regularly underwent periods of adhesion (defined as
retention for >30 s) on the endothelial surface, at a rate of ~5 cells
per glomerulus per hour (Fig. 1a, b and Supplementary Movie 1).
The majority remained stationary during adhesion (“static” cells),
while ~20% underwent crawling (Fig. 1b). Typically, the duration
of retention, or dwell time, of CD4+ T cells was ~4 min (Fig. 1c).
Crawling CD4+ T cells were retained in glomeruli for twice as
long as stationary cells and migrated at ~9 μmmin−1 (Fig. 1c, d).

Detection of these blood-borne CD4+ T cells in this fashion
does not allow the differentiation between naïve and effector
T cells. This is important as for CD4+ T cells to induce disease in
the glomerulus in response to local antigen recognition, they
require prior activation and differentiation into effector cells in
secondary lymphoid organs. Therefore, we next asked whether
activated effector T cells also undergo retention in uninflamed
glomerular capillaries. To examine this issue, we used OVA-
specific T cells from TCR transgenic OT-II mice. OT-II T cells
were activated in vitro to a Th1 phenotype, fluorescently labeled
and transferred intravenously into recipient mice and subse-
quently glomeruli were examined via intravital multiphoton
imaging. As for endogenous CD4+ T cells, activated OT-II cells
underwent retention in glomerular capillaries (Fig. 1e, Supple-
mentary Movie 2). On average, ~1.5 OT-II cells underwent
adhesion per glomerulus per hour, of which ~70% remained
stationary (Fig. 1f). OT-II cells arrested in glomeruli at a relatively
consistent rate during the 90 min imaging period after transfer
(Fig. 1g). The dwell time of OT-II cells in glomeruli was ~13 min
—this was similar in stationary and crawling OT-II T cells
(Fig. 1h) while more than twice that of endogenous CD4+ T cells.
The mean migration velocity of crawling OT-II cells was ~9 μm
min−1 (Fig. 1i). Together these findings indicate that CD4+

T cells, and specifically effector CD4+ T cells, undergo adhesion
and migration in the glomerular microvasculature in the absence
of inflammation.

T-cell adhesion in antigen-bearing glomerular capillaries. We
have previously shown that OT-II cells can trigger antigen-
dependent neutrophil recruitment within 4 h in a planted antigen
model of CD4+ T-cell-dependent glomerulonephritis15–17. In this
model, the peptide antigen OVA323–339 (pOVA) is delivered to
the glomerular microvasculature via conjugation to 8D1, an mAb
that binds to the NC1 domain of the α3 chain of type IV collagen
in the glomerular basement membrane without inducing glo-
merular injury33. The 8D1/pOVA construct was transferred into
mice intravenously together with fluorescently labeled OT-II cells.
In order to focus on initiation of the T-cell-dependent response,
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glomeruli were imaged for 2 h after OT-II transfer. Compared to
control mice receiving unconjugated 8D1 mAb, more OT-II cells
adhered in glomerular capillaries of mice receiving 8D1/pOVA
(Fig. 2a), due solely to an increase in the number of crawling cells
(Fig. 2b). OT-II cells also crawled more slowly in mice that
received 8D1/pOVA (Fig. 2c), a finding consistent with the
reduced velocity of effector T cells during antigen recognition

described in other organs31,32,34. To identify when the increased
retention of crawling OT-II cells occurred, the rate of OT-II cell
recruitment to the glomerular capillaries was examined in 10 min
intervals during the 2 h after transfer. In mice given 8D1/pOVA, a
significant increase in crawling OT-II cells was detectable 71–80
min after transfer (Fig. 2d). In contrast, the rate of arrest of static
OT-II cells was constant after the first 20 min of the observation

Endogenous CD4+ T cells
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Fig. 1 CD4+ T cells migrate constitutively in the uninflamed glomerular microvasculature. a–d Retention and migration of endogenous CD4+ T cells in the
glomerular microvasculature of untreated mice, as assessed using multiphoton intravital microscopy. a Image sequence showing CD4+ T cells (anti-CD4-
PE, red) undergoing retention and migration in the glomerular capillaries (vasculature detected via Qtracker® 655—blue). The glomerular border is denoted
by a thin dotted line, and the migration paths of two CD4+ T cells are indicated by thick dotted lines (time elapsed shown below images). See also
Supplementary Movie 1. Scale bar, 10 μm. b–d Quantification of adhesion and migration of endogenous CD4+ T cells in glomeruli of untreated mice (n= 6
mice). Data show number (b) and dwell time (c) of adherent CD4+ T cells, and velocity of crawling cells (d). In b and c, data are shown for total cells, and
specifically for static or crawling cells. In b, data are expressed as # per glomerulus per h per mouse. In c, data are expressed per cell (n= 124 total,
96 static and 28 crawling). In d, circles represent individual cells (n= 21). e–i Retention and migration of effector CD4+ T cells in the glomerular
microvasculature of untreated mice. OT-II cells were activated in vitro, labeled with CFSE (green) and transferred into uninflamed mice. e Image sequence
showing effector CD4+ T cell (green) migrating within the glomerular capillaries. See also Supplementary Movie 2. Scale bar, 10 μm. f–i Quantification of
adhesion and migration of activated OT-II cells in glomeruli in the 90min following transfer (n= 8 mice). f Number of adherent cells, shown for total,
static, and crawling cells, expressed as OT-II cells per glomerulus per h per mouse. g Rate of OT-II cell adhesion, assessed in 10 min intervals. h Dwell time
of total, static, and crawling OT-II cells (n= 333 total, 232 static and 101 crawling). iMigration speed of crawling OT-II cells. In i, circles represent individual
cells (n= 16). In b–d and f–i, data are shown as mean ± s.e.m. (as red lines in d and i). **P < 0.01; ***P < 0.001. b, c, f and h: unpaired Student’s t-tests
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period and did not differ between the groups (Fig. 2e). OT-II cells
were also retained in glomerular capillaries for longer periods in
mice that received 8D1/pOVA (Fig. 2f), due to a significant
increase in the dwell time of crawling OT-II cells (Fig. 2g). To
control for possible effects of inflammation-associated alterations
in glomerular hemodynamics on the retention of OT-II cells35,
we also compared retention of OT-II T cells with that of T cells
from SMARTA mice, which recognize an unrelated peptide. In
co-transfer experiments with differentially labeled activated OT-II
and SMARTA cells, in mice treated with 8D1-pOVA, OT-II cells
showed prolonged glomerular dwell time relative to co-
transferred SMARTA T cells (Fig. 2h). This response was not
seen in the absence of antigen (Fig. 2i), supporting the hypothesis
that the increased retention of OT-II cells was due to their
capacity to recognize pOVA, rather than physical factors at play
in the inflamed glomerulus.

We also examined intravascular migration by OT-II cells in
glomerular capillaries 2–3 h after cell transfer, when the number

of adherent OT-II cells was comparable with or without exposure
to antigen and similar for crawling and static cells (Supplemen-
tary Fig. 1a, b). However, consistent with the earlier time point
(Fig. 2g), in mice receiving antigen, crawling effector OT-II cells
remained in glomeruli for longer, and crawled more slowly
(Supplementary Fig. 1c, d) during the 2–3 h period post-transfer.
These results indicate that effector OT-II cells undergo increased
retention in glomerular capillaries in response to a planted
glomerular antigen within just over an hour of administration.

Antigen-presenting cells patrol glomerular capillaries. Effector
CD4+ T cells recognize antigenic peptides presented via MHCII
molecules to induce responses in peripheral tissues. However, in
non-inflamed glomeruli, it has been reported that resident cells
expressing MHCII are rare36. We confirmed these findings using
MHCII-EGFP mice in which GFP is expressed fused to MHCII,
thereby labeling MHCII-expressing cells37. Three-dimensional
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Fig. 2 Presence of antigen in glomeruli alters recruitment and migration of effector CD4+ T cells. Retention and migration of activated OT-II cells in
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multiphoton analysis of fixed tissues confirmed a lack of MHCII
expression within uninflamed glomeruli, though many cells of
dendritic morphology expressed MHCII in the interstitium and
the periglomerular region (Supplementary Fig. 2 and Supple-
mentary Movie 3). To exclude the possibility that projections
from periglomerular mononuclear phagocytes extended into the
glomerulus, we performed similar analyses of kidneys from
CD11c-YFP mice, in which YFP is highly expressed in renal
dendritic cells and cellular projections are readily detectable38–40.
In agreement with previous studies, these experiments revealed
an interdigitated network of dendritic cells in the interstitium,
including immediately adjacent to, but not within glomeruli39,41.
However, no projections from these cells were detected within
glomeruli (Supplementary Fig. 2 and Supplementary Movie 4).
These data indicate that mononuclear phagocytes of the renal
interstitium are unlikely to contribute to intraglomerular antigen
presentation under resting conditions.

We next asked whether the MHCII+ cells responsible for
antigen presentation were blood-borne leukocytes migrating
within glomerular capillaries. Several populations of MHCII-
expressing leukocytes circulate in the bloodstream, including B
cells and a subset of monocytes42. To determine if MHCII+ cells
also undergo retention and migration in glomerular capillaries,
we examined kidneys of MHCII-EGFP mice via intravital
multiphoton imaging. Experiments in uninflamed MHCII-
EGFP mice revealed that numerous intravascular MHCII+ cells
migrate within glomerular capillaries (Fig. 3a, Supplementary
Movie 5). Approximately 20 MHCII+ cells underwent adhesion
in the glomerular capillaries in each glomerulus every hour
(Fig. 3b). Nearly 80% of these cells remained static (Fig. 3b), with
an average dwell time of ~5 min (Fig. 3c). However, the minority

of MHCII+ cells that crawled within glomerular capillaries were
retained for more than twice as long (Fig. 3c). We confirmed
these findings in glomeruli of intact, non-hydronephrotic kidneys
of 3-week-old mice, in which ~15 adherent MHCII+ cells
underwent adhesion per glomerulus per hour, the majority of
which were stationary (Fig. 3d, Supplementary Movie 6). These
experiments demonstrate that MHCII-expressing leukocytes
constitutively undergo periods of retention, and in some cases
migration, in glomerular capillaries, even in the absence of
inflammatory stimuli. Together with our observations of
constitutive intraglomerular migration of CD4+ T cells and
altered retention of these cells in the presence of cognate antigen,
these findings raise the possibility that circulating MHCII+

leukocytes present glomerular antigens to intravascular effector
CD4+ T cells.

T cells interact with intravascular antigen-presenting cells. For
intravascular MHCII-expressing leukocytes to present antigens to
CD4+ T cells within the glomerulus, these two populations must
interact within glomerular capillaries. To determine if this occurs,
CMTPX-labeled OT-II cells were imaged 30–90 min after transfer
into MHCII-EGFP mice injected with either 8D1/pOVA or
unconjugated 8D1. In both groups of mice, OT-II cells and
MHCII+ leukocytes consistently underwent interactions in the
glomerular microvasculature (Fig. 4a, Supplementary Movie 7).
On average, each OT-II cell interacted with one MHCII+ cell
during its time within the glomerulus (Fig. 4b), with the number
of interactions being similar in mice receiving either 8D1 or 8D1/
pOVA. The majority of interactions were no longer than 4 min.
However, we noted more prolonged interactions (>10 min) in
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Fig. 3 MHCII+ immune cells constitutively migrate in glomerular capillaries. Multiphoton microscopy was performed on glomeruli of uninflamed MHCII-
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mice that received antigen (Fig. 4c), generally occurring 60–90
min after transfer. These results demonstrate that intravascular
OT-II cells are able to interact with antigen-presenting cells
within the glomerular capillaries.

Antigen-dependent activation of OT-II cells in glomerulus. To
assess whether OT-II cells undergo activation within the glo-
merular capillaries, we made use of a system enabling visualiza-
tion of translocation of the transcription factor nuclear factor of
activated T cells-1 (NFAT1) to the nucleus11,43. In T cells,
NFAT1 is a critical transcription factor driving changes in gene
expression in response to T-cell activation, and rapidly translo-
cates to the nucleus in response to elevation in cytosolic calcium
following TCR engagement44. Via use of the fluorescent reporter
NFAT1(1–460)-GFP (NFAT-GFP), NFAT1 translocation to the
nucleus, and therefore T-cell activation, can be tracked in vivo
using multiphoton microscopy. We generated NFAT-GFP-
transduced OT-II (OT-IINFAT-GFP) cells and demonstrated
in vitro that the NFAT-GFP reporter readily translocated to the
nucleus following T-cell activation (Supplementary Fig. 3). We
then transferred these cells into mice 30 min after treatment with
either 8D1 or 8D1-pOVA and assessed subcellular localization of
the reporter (Fig. 4d–f and Supplementary Fig. 3e−g). Following
administration of 8D1-pOVA, NFAT-GFP had either partially or
completely translocated to the nucleus in 26% of OT-IINFAT-GFP
cells, whereas in mice that received 8D1, translocation was seen in

only 10% of cells (P < 0.05, Fisher’s exact test) (Fig. 4g). Fur-
thermore, typically T cells with cytoplasmic NFAT-GFP were
active and highly migratory, while cells displaying nuclear NFAT-
GFP remained static (Supplementary Movie 8), consistent with
previous descriptions of T-cell arrest during antigen-dependent
activation31. These experiments provide direct evidence of T-cell
activation occurring within the glomerular capillaries.

To investigate whether OT-II cells in the kidney showed other
changes typically associated with antigen recognition, 4 h after
transfer kidneys were digested and the T cells analyzed by flow
cytometry, assessing IFNγ production. In mice that received 8D1/
pOVA, renal OT-II cells had significantly increased de novo
production of IFNγ, compared with OT-II cells from mice that
received 8D1 control mAb (Fig. 5a–c). This response was not seen
in mice that received pOVA conjugated to a control antibody
(IgG/pOVA) (Fig. 5b, c), demonstrating that pOVA administered
in a non-targeted form was insufficient to induce this response.

We previously observed increased glomerular neutrophil
retention in mice 4 and 24 h after receiving OT-II cells and
8D1/pOVA17. Here we confirmed that this response was also
dependent on glomerular targeting of pOVA. Comparison of
neutrophil responses 24 h after administration of OT-II cells plus
either 8D1, 8D1/pOVA or non-targeted IgG/pOVA revealed that
increased neutrophil dwell time was observed in mice that
received 8D1/pOVA but not IgG/pOVA (Fig. 5d). As an
additional readout of the neutrophil response, we used the
oxidant-sensitive fluorochrome, DHE, to assess ROS production
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by intraglomerular neutrophils17,18. These experiments revealed
that induction of neutrophil ROS production also required
glomerular targeting of antigen (Fig. 5e). Together these data
indicate that glomerular localization of pOVA results in T-cell
activation in the microvasculature of the glomerulus and
induction of neutrophil-dependent glomerular inflammation.

B cells are not required for T-cell-dependent inflammation. We
next sought to identify the MHCII-expressing immune cell in the
circulation responsible for intravascular antigen presentation to
CD4+ T cells in glomerular capillaries. Flow cytometric analysis
of blood from MHCII-EGFP mice revealed that the majority
(~95%) of MHCII-EGFP+ leukocytes were CD19+ B cells (Sup-
plementary Fig. 4a). The remainder consisted primarily of a
subset of CD115+ monocytes, while <1% of the MHCII+ popu-
lation were CD11c+ dendritic cells. To determine whether B cells
are retained in glomerular capillaries, we used anti-B220 to label

B cells in vivo (Supplementary Fig. 4b, Supplementary Movie 9).
B cells adhered within glomerular capillaries at a rate of ~13 cells
per glomerulus per hour (Supplementary Fig. 4c). The majority of
adherent B cells remained stationary (Supplementary Fig. 4c),
with a dwell time of ~8 min, while the minor population of
crawling B cells had a shorter dwell time of only ~3 min (Sup-
plementary Fig. 4d).

To determine whether B cells were required for induction of T-
cell-mediated glomerular inflammation, we next assessed neu-
trophil retention in B-cell-deficient μ MT mice 4 h after transfer
of OT-II cells and either 8D1/pOVA or unconjugated 8D1. μ MT
recipient mice that received 8D1/pOVA had prolonged retention
of neutrophils in glomeruli, compared with mice that received
8D1 (Supplementary Fig. 4e), similar to the response described
previously in wild-type mice17. These findings indicate that while
B cells comprise the majority of MHCII+ cells retained in the
uninflamed glomerulus, they are not required for induction of
CD4+ T-cell-mediated inflammation.
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Fig. 5 Glomerular targeting of pOVA promotes T-cell activation and glomerular inflammation. a–c Assessment of OT-II cell activation in the kidney in the
presence of glomerulus-targeting antibody alone (8D1), glomerulus-targeted antigenic peptide (8D1/pOVA), or non-targeted antigenic peptide
(IgG/pOVA). a, b Example flow cytometry data showing gating strategy to detect OT-II cells (left panel—forward scatter/CD45+; right panel—CD4+

Vβ5.1/5.2+) in kidney digests (a), followed by intracellular staining for IFNγ in all three experimental conditions (b). c Group data showing IFNγ expression
(as % of OT-II cells) from mice receiving either 8D1, 8D1/pOVA or IgG/pOVA along with OT-II cells. Data are shown as mean ± s.e.m. of n= 7 (8D1) or 8
(8D1/pOVA and IgG/pOVA) mice per group. ***P < 0.001; ****P < 0.0001, via one-way ANOVA with Dunnett’s multiple comparison test. d, e Neutrophil
retention and activation in the glomerulus in the presence of 8D1, 8D1/pOVA or IgG/pOVA, as assessed by multiphoton microscopy. Data are shown for
static dwell time (d) and % of adherent neutrophils that were DHE+ (e). Data are shown as mean ± s.e.m. of n= 8 (8D1 and IgG/pOVA) or 10
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MHCII+ monocytes have prolonged intraglomerular retention.
We next examined the contribution of circulating monocytes to
the MHCII+ leukocyte population undergoing retention in glo-
merular capillaries. Flow cytometric analysis of blood from
MHCII-EGFP mice revealed that 10–20% of circulating mono-
cytes expressed MHCII (Fig. 6a) similar to previous
reports42,45,46, with these cells being found in both CX3CR1lo-int

(classical) and CX3CR1hi (non-classical) populations (Supple-
mentary Fig. 5). To determine whether monocytes contributed to
the MHCII+ leukocyte population patrolling the glomerulus, we
treated MHCII-EGFP mice with clodronate liposomes and ana-
lyzed migration of EGFP+ cells by multiphoton microscopy.
Clodronate liposome treatment has recently been shown to
almost eliminate patrolling monocytes from the glomerulus18. In
MHCII-EGFP mice, clodronate liposomes did not significantly
affect the number of stationary MHCII+ cells in glomerular

capillaries (Fig. 6b), consistent with the continued retention of B
cells. In contrast, the number of MHCII+ leukocytes undergoing
crawling was significantly decreased after clodronate liposome
treatment, showing that monocytes constitute the majority of the
crawling MHCII+ leukocyte population within glomerular
capillaries.

In the absence of inflammation, monocytes extensively patrol
the glomerular microvasculature, being retained in the glomerular
capillaries for an average of ~20 min17,18. To determine whether
MHCII+ monocytes were retained for a similar extended time, we
utilized anti-CD11b to detect monocytes in MHCII-EGFP mice3.
As B cells may also express CD11b, we first performed flow
cytometric analyses of whole blood, demonstrating that the
majority (>80%) of CD11bhi MHCII+ leukocytes were mono-
cytes, while <10% were B cells (Supplementary Fig. 6). Using
intravital multiphoton microscopy of the glomerular capillaries,
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Fig. 6 MHCII-expressing monocytes have prolonged retention in the glomerular microvasculature. a The proportion of monocytes expressing MHCII was
determined by flow cytometric of circulating leukocytes from MHCII-EGFP mice. The SSClo CD11bhi population was gated (left panel), then monocytes
were identified as CD115+ F4/80+ (middle panel) and the proportion of MHCII-EGFP+ monocytes gated on a histogram (right panel, black line) against a
fluorescence-minus-one control (shaded). Results shown are representative of analyses from three mice. b Effect of clodronate liposomes on adhesion of
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with either clodronate (gray bars) or control liposomes (white bars). Data show number of adherent cells defined as either static or crawling and represent
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we observed retention of three populations: (1) MHCII+ CD11b−

cells, the bulk of which were likely to be B cells; (2) MHCII−

CD11b+ cells (neutrophils or monocytes); and (3) MHCII+

CD11b+ cells (Fig. 6c and Supplementary Movie 10). Adhesion of
these CD11b+ MHCII+ leukocytes occurred at a rate of ~2.5 cells
per glomerulus per hour, with the majority undergoing crawling
(Fig. 6d). Interestingly, the mean dwell time of CD11b+ MHCII+

cells in glomeruli was ~40 min, compared to <10 min for CD11b−

MHCII+ cells, with this applying to both crawling and stationary
cells (Fig. 6e). Furthermore, cells with dwell times >35 min were
almost exclusively CD11b+ MHCII+ (Fig. 6f). As B cells typically
have a short (~6 min) dwell time in glomeruli (Supplementary
Fig. 4d), these findings support the interpretation that the CD11b
+ MHCII+ leukocytes with prolonged dwell times are not B cells.

MHCII+ monocytes are not recognized as professional
antigen-presenting cells. Nevertheless, for them to be important
in T-cell-mediated glomerular inflammation, they must be able to
induce antigen-dependent responses in T cells. Therefore, we
sorted MHCII+ monocytes from the blood of MHCII-GFP mice
(Fig. 7a) and assessed their capacity to induce OT-II cell
proliferation in vitro39,40. In the presence of OVA-peptide,
MHCII+ monocytes were able to induce OT-II T-cell prolifera-
tion (Fig. 7b-d). T cells did not proliferate in the absence of
monocytes and the level of T-cell proliferation was proportional
to the number of monocytes in the assay, supporting the
specificity of this response. These observations clearly demon-
strate that the MHCII-expressing monocyte subset can present
antigen to CD4+ T cells. Finally, using electron microscopy, we
observed that mononuclear immune cells patrolling glomerular
capillaries extended projections in close proximity to fenestrae of
glomerular endothelial cells (Supplementary Fig. 8), raising the
possibility that these leukocytes were probing the location of the
antigen in these experiments. Together these findings indicate
that a population of MHCII+ monocytes undergoes constitutive
patrolling within the glomerular microvasculature, characterized
by substantially longer intraglomerular dwell times than any
other population previously identified, and that MHCII+

monocytes have the capacity to induce CD4+ T-cell proliferation.

Monocytes are required for T-cell-induced inflammation. We
next assessed whether the presence of MHCII+ patrolling
monocytes within glomeruli was associated with a role for
monocytes in induction of antigen-dependent glomerular
inflammation, using clodronate liposomes to deplete monocytes
in the OT-II cell-8D1/pOVA model. Firstly we established that
OT-II cell trafficking in the glomerulus was unaltered in
clodronate-treated mice (Supplementary Fig. 9). Subsequently we
used neutrophil retention and ROS production in glomerular
capillaries as readouts of T-cell-initiated glomerular inflammation
following clodronate treatment. In mice depleted of monocytes,
both neutrophil dwell time and ROS production 24 h after
transfer of OT-II cells and 8D1/pOVA were reduced relative to
mice treated with control liposomes (Fig. 8a–c and Supplemen-
tary Movie 11), with the reduction in ROS-producing neutrophils
due to reduced production by crawling cells (Fig. 8d). Together
these findings support the hypothesis that induction of glo-
merular inflammation by intravascular OT-II cells in response to
planted antigen requires monocytes.

Discussion
CD4+ T cells specific for nephritogenic autoantigens are present
in the circulation during autoimmune glomerulonephritis26–28,
and experimental evidence indicates that CD4+ T-cell-dependent
glomerular inflammation can be initiated by T cells responding to
antigen located within the vasculature15,16. However, the cell type
that presents antigen to effector CD4+ cells within glomeruli is
not known. The present study addresses this by demonstrating
that the cellular participants required for a CD4+ T-cell-mediated
response—CD4+ T cells and an MHCII-expressing cell—both
undergo constitutive periods of intravascular retention and
crawling in the glomerular microvasculature. In addition, here we
observed that each T cell retained in the glomerulus interacts with
on average one MHCII-expressing immune cell. In the presence
of antigen, T cells in the glomerular capillaries displayed evidence
of antigen recognition including nuclear translocation of NFAT1,
prolonged dwell time and reduced migration velocity. The
MHCII-expressing cells retained in the glomerulus for the longest
duration expressed the monocyte marker CD11b and monocyte
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depletion attenuated inflammation induced by T-cell antigen
recognition. Together these findings demonstrate that a CD4+ T-
cell-driven immune response in the glomerulus can be mediated
by intravascular antigen presentation by an MHCII-expressing
subset of circulating monocytes.

We hypothesized that a key step in the development of T-cell-
mediated glomerulonephritis occurs when T cells recognize
disease-causing antigens within the glomerular microvasculature.
Here we provide direct evidence of T-cell activation in the glo-
merulus during the initial response to locally planted antigen.
Using the NFAT-GFP reporter to reveal T-cell activation in vivo
at a single cell level, we visualized increased nuclear translocation
of this transcription factor in T cells in glomerular capillaries, in
the presence of cognate antigen targeted to the glomerulus. These
findings clearly demonstrate that antigen-dependent T-cell acti-
vation occurs intravascularly within the glomerular capillaries.
Glomerular targeting of pOVA was necessary for both T-cell
activation and downstream intraglomerular neutrophil activation,
as these responses were not seen when pOVA was delivered
systemically in a non-targeted fashion. Together these data pro-
vide compelling evidence that T cells respond to antigen within
glomerular capillaries and that intraglomerular antigen recogni-
tion leads to proinflammatory changes in the glomerular micro-
vasculature. In some studies, immunogenic peptides capable of

binding directly to MHCII without intracellular uptake or pro-
cessing have been used to examine the immediate response to
antigen presentation31. As our studies use the peptide recognized
by OT-II cells, it is conceivable that a similar response could be at
work here. However, as the peptide is covalently conjugated to a
much larger immunoglobulin molecule, we anticipate that
intracellular processing is the more likely route by which the
OVA peptide is loaded onto MHCII.

In this planted antigen model of T-cell-dependent glomerular
inflammation, we reasoned that the cell responsible for antigen
presentation must either be intravascular or have access to the
glomerular capillary lumen. The renal interstitium plays host to
an abundant mononuclear phagocyte population39,41,47,48, and
these cells may access the lumen of the interstitial cortical renal
microvasculature via extension of cellular processes49,50. How-
ever, results of the present experiments indicate that this is not
the case in the glomerulus. Furthermore, no intrinsic glomerular
cells, including glomerular endothelial cells, expressed detectable
MHCII under resting conditions. Therefore, we next examined
circulating immune cells with the potential to present antigen to
CD4+ T cells. Circulating B cells expressed MHCII. However,
OT-II cells could induce glomerular inflammation in the absence
of B cells. Therefore we examined the possibility that a monocyte
subpopulation mediated this response.
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Fig. 8 Monocytes are required for T-cell-induced neutrophil activation in response to planted antigen. The effect of clodronate liposome-mediated
monocyte depletion on glomerular neutrophil retention and activation was assessed 24 h after transfer of OT-II cells and 8D1/pOVA via intravital
multiphoton microscopy. Mice were treated with either control liposomes (white bars) or clodronate liposomes (gray bars) 18 h prior to cell transfer. a
Neutrophil dwell time in control and clodronate liposome-treated mice. b–d Production of reactive oxygen species (ROS) by neutrophils, as assessed in
intravital microscopy experiments via the ROS-sensitive fluorochrome, dihydroethidium (DHE). b Multiphoton image sequence showing a neutrophil
(arrow) (identified by Gr-1 staining, green, upper panels) positively stained for DHE (red, lower panels). Time elapsed is shown beneath each panel. See
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static and crawling neutrophils (d). Data are shown as mean ± s.e.m. from seven mice per group. **P < 0.01 vs Control. a, d Mann−Whitney tests; c
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In mice, monocytes exist in two major subpopulations: classi-
cal/inflammatory (CCR2hi CX3CR1lo Ly6C+) and non-classical/
patrolling (CCR2− CX3CR1hi Ly6C−). Mounting evidence indi-
cates that the patrolling subset has a specialized role in mediating
responses to injury or infection from within the vasculature,
including in the glomerulus2,3,18,51, and these cells also undergo
prolonged retention and migration in the glomerular micro-
vasculature17,18. We observed that a subset of the MHCII-
expressing cells that were positive for the monocyte marker
CD11b were retained in the glomerulus, often for over 40 min.
This prolonged patrolling of the glomerular microvasculature
provides opportunity to encounter and internalize antigens while
also increasing the probability of this cell encountering intraglo-
merular T cells. These properties are consistent with an immu-
nosurveillance function for these cells. We also demonstrate that
MHCII+ monocytes can induce antigen-specific T-cell pro-
liferation in vitro, providing additional support for the contention
that these cells are responsible for antigen-specific T-cell activa-
tion in glomerular capillaries. With future technical advances, it
may be feasible to isolate or image patrolling MHCII+ monocytes
in glomeruli to demonstrate antigen uptake from within the
glomerular microvasculature.

To examine a role for monocytes in T-cell-induced glomerular
inflammation, we used clodronate to remove intravascular
monocytes. Clodronate did not affect retention of the MHCII-
expressing cells that underwent brief, static retention in glomer-
uli, consistent with our observations that these were B cells. In
contrast clodronate markedly reduced the number of migratory
MHCII-expressing cells present in glomeruli, providing further
evidence that these cells were monocytes. This depletion strategy
resulted in a reduction in the downstream inflammatory readouts
of neutrophil retention and ROS-generating activity, consistent
with the hypothesis that MHCII-expressing monocytes are
responsible for intravascular antigen presentation in this model.
We recently reported that monocytes promote innate responses
of intravascular neutrophils in acute glomerulonephritis18. The
present findings add to this by showing that monocytes can also
perform the function of intravascular antigen presentation to
T cells in T-cell-mediated glomerular injury. These findings are of
particular relevance to the initial stages of disease. However in
established autoimmune glomerulonephritis, further mechanisms
of antigen recognition, including antigen presentation by glo-
merular endothelial cells with upregulated MHCII expression
could contribute to activation of CD4+ T cells52.

Alterations in migration are characteristic of T cells under-
going antigen recognition. In naïve cells, altered migration occurs
over several hours53,54, but effector T cells respond to antigen
presentation rapidly via migratory arrest and induction of cyto-
kine production31,32. The T-cell responses in the present study
are consistent with previous descriptions of effector T cells.
Identification of cells undergoing antigen presentation on the
basis of nuclear localization of NFAT-GFP revealed that these
cells were uniformly static, while cells with non-translocated
NFAT-GFP, and therefore not detecting antigen, continued to
migrate. This T-cell response occurred within the first hour after
T-cell transfer. Analysis of cytokine production provided further
evidence of rapid antigen-specific activation by intrarenal T cells
in that many intrarenal effector CD4+ T cells were producing
IFNγ 4 h after transfer. Finally, changes in neutrophil retention
and activation resulting from this rapid T-cell response were
apparent within 4 h. These findings highlight the speed with
which effector T cells can respond to antigen in glomeruli and
promote downstream inflammation. It should be noted that in
these experiments, we used effector T cells generated via a stan-
dard ex vivo differentiation protocol. It is conceivable that
responses of cells generated in this manner may differ from those

of cells differentiated in vivo, a possibility that could be explored
in future studies.

The actions of neutrophils observed in glomerular capillaries
under resting conditions are similar to those reported for neu-
trophils in uninflamed pulmonary capillaries55–57. In the lung,
this intravascular patrolling may be a form of immune surveil-
lance facilitating rapid responses to local infection. It is possible
that this is also an important function of neutrophils in glomeruli.
However, microbial infection is less explicitly relevant in the
glomerular microcirculation than in the lung. In the glomerulus
neutrophil patrolling is a double-edged sword as it also underpins
the induction of injurious responses after immune complex
deposition or in response to other inflammatory stimuli17.

In conclusion, these studies have identified a novel mechanism
of intravascular antigen recognition in the glomerular micro-
vasculature, in which circulating CD4+ T cells routinely interact
with patrolling antigen-presenting cells. Under these circum-
stances, deposition of antigen within the glomerular vasculature
can result in rapid induction of inflammation in the glomerular
capillaries. This is the first study to show the coordinated series of
events underlying initiation of intravascular CD4+ T-cell
responses in the glomerulus.

Methods
Mice. C57BL/6 wild-type mice were obtained from Monash Animal Research
Platform at Monash University and housed in specific pathogen-free conditions.
MHC Class II-EGFP knock-in (MHCII-EGFP) mice on a C57BL/6 background,
generously provided by B. Fazekas de St Groth (University of Sydney) were bred
in-house37. μ chain-deficient (μMT) mice, CD11c-YFP mice, Cx3cr1gfp/+ mice, and
OT-II mice, all on a C57BL/6 background, were bred in-house. SMARTA-GFP
mice (C57BL/6 background) were generously provided by S. Mueller (University of
Melbourne). Male mice between 3 and 22 weeks of age were used in all experi-
ments. All experimental procedures were approved by the Monash Medical Centre
Animal Ethics Committee ‘B’. Sample size calculation was not performed a priori
because the effect sizes of our observations and interventions could not be deter-
mined before experiments. This study was not randomized and was not blinded.
All experiments were included in the analyses.

Antibodies and reagents. For production of ovalbumin peptide (pOVA)-con-
jugated 8D1, we used 8D1 mAb15,33 (grown from hybridoma), chemical linker N-
succinimidyl-6-maleimido-caproate (EMCS, Sigma Aldrich), and a custom
OVA323–339 peptide containing an amino terminal cysteine residue and C-terminal
biotin tag (Mimotopes, Notting Hill, VIC, Australia). As control for these
experiments, isotype control mouse IgG1 (clone MOPC-21, Bio X Cell)58 was used.
For activation and polarization of OT-II T cells, cells were cultured in RPMI
1640 supplemented with 10% heat-inactivated fetal calf serum (both from Life
Technologies), 2-mercaptoethanol, recombinant mouse (rm)IL-12 (eBioscience),
rat anti-IL-4 (clone 11B11, ATCC) and rmIL-2 (R&D Systems). Mitomycin C was
from Intas Pharmaceuticals (Hyderabad, India), Histopaque 1083, Optiprep and
Brefeldin A were acquired from Sigma, and collagenase D and DNase I were from
Roche Diagnostics (Dee Why, NSW, Australia). For mouse anesthesia, ketamine
hydrochloride (Troy Lab) and xylazine (Pfizer) were used.

For in vivo imaging experiments, the following mAbs were used: anti-CD4 PE
(clone GK1.5, 2 μg)59, anti-B220 PE (RA3-6B2, 2 μg)60 (BD Pharmingen), and anti-
CD11b NC650 (clone M1/70, 10 μg)3, anti-Gr-1 PE and anti-Gr-1 Alexa488 (both
RB6-8C5, 2 μg)17 (eBioscience). Dihydroethidium (DHE), carboxyfluorescein
diacetate succinimidyl ester (CFSE), Cell Tracker Red (CMTPX), Qtracker® 655
and rhodamine dextran were purchased from ThermoFisher Scientific (Scoresby,
VIC, Australia). Clodronate and control liposomes were purchased from
ClodronateLiposomes.com (Amsterdam, The Netherlands). In some experiments,
8D1 conjugated to Pacific Blue (ThermoFisher Scientific) in-house was used as a
vascular label.

The following mAbs were used for flow cytometry (see Supplementary Table 1
for information on antibodies used in this study): anti-CD115 APC (clone AFS98)
and anti-CD45 APC (30-F11) (eBioscience); and anti-CD19 APC-Cy7 (1D3), anti-
CD11c APC (HL3), anti-CD11b APC-Cy7 (M1/70), anti-Ly6C-APC (AL-21), anti-
CD4 APC-Cy7 (GK1.5), anti-IFNγ PE (XMG1.2), anti-TCR Vβ5.1/5.2 FITC (MR9-
4) (BD Pharmingen), anti-MHC Class II-PE (M5/114.15.2), anti-TCR Vα2 AF647
(B20.1) (grown from hybridoma and conjugated in-house)39,40,61,62. Gating
strategies used to define the relevant populations are shown in each figure.

In vitro activation of OT-II T cells. OT-II T cells were differentiated into Th1
effector cells as described previously15,17. Briefly, lymph nodes were harvested from
OT-II mice, and cells were isolated and cultured at 1×106 cells mL−1. Splenocytes
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from C57BL/6 mice were treated with mitomycin C (50 μg mL−1, 20 min at 37 °C),
then washed thoroughly and cultured with naïve OT-II cells at a ratio of 10:1 in
medium containing 1 μM OVA323–339 peptide. Cells were maintained in media
containing rmIL-12 (2 ng mL−1) and anti-IL-4 mAb (11B11, 10 μg mL−1). After
48 h, rmIL-2 (5 μg mL−1) was added and maintained thereafter. Cells were split
once and harvested on day 7. Cell preparations were centrifuged over Histopaque
1083 or Optiprep (1.09 g mL−1) for 30 min at 400 g at room temperature to remove
dead cells. 1×107 OT-II T cells were transferred into recipient mice via jugular or
tail vein unless otherwise stated. For analysis of migration, OT-II T cells were
labeled with 5 μM CFSE or 1 μM CMTPX prior to transfer. In some experiments,
CD4+ T cells from GFP-expressing SMARTA TCR transgenic mice (specific for
the LCMV GP-derived P13 peptide) underwent the same activation protocol, using
P13 peptide (1 μM) as the stimulating antigen63. In these experiments, SMARTA
cells showed comparable levels of activation as OT-II cells (Supplementary Fig. 10).

Antibody peptide conjugation. The 8D1 mAb (of IgG1 subclass) was conjugated
to OVA323–339 using a previously published technique15. In brief, 8D1 mAb was
mixed with tenfold molar excess of EMCS for 2 h at room temperature. Unreacted
EMCS was removed by buffer exchange chromatography, and the activated 8D1
was mixed with a tenfold molar excess of modified OVA323–339. After incubation
for 3 h at room temperature, the reaction was halted by adding 2 mM cysteine, and
the modified 8D1/pOVA antibody was dialyzed in PBS to remove excess
OVA323–339. For some control experiments, pOVA was conjugated to an IgG1
control antibody of irrelevant specificity (MOPC-21) using the identical protocol.

Induction of T-cell-dependent glomerular inflammation. In order to specifically
localize OVA323–339 to the glomerular vasculature, the 8D1/OVA323–339 conjugate
was used15,17, taking advantage of the selective binding of 8D1 to the NC1 domain
of α3(IV) collagen in the glomerular basement membrane33. To induce glomerular
inflammation, 150 μg of 8D1/pOVA was transferred intravenously into recipient
mice together with OT-II T cells. Unconjugated 8D1 mAb and pOVA conjugated
to MOPC-21 (“IgG/pOVA”) served as controls.

Renal intravital multiphoton microscopy. To prepare the kidney for glomerular
intravital microscopy, 4–5-week-old mice underwent unilateral ureteric liga-
tion17,18. Mice were housed for 12 weeks to allow the kidney to undergo hydro-
nephrosis. Intravital imaging experiments performed on intact kidneys were
carried out in 3–4-week-old mice.

Multiphoton microscopy was used for intravital imaging studies17,18. Mice were
anesthetized by an initial intraperitoneal injection of 150 mg kg−1 ketamine
hydrochloride and 10 mg kg−1 xylazine. The left jugular vein was catheterized to
allow delivery of fluorescent probes and to maintain anesthesia as required. A
heating pad was used to maintain the temperature of the mice at 37 °C. The
hydronephrotic kidney was exteriorized through a lateral incision and drained of
urine using a 30G needle. The kidney was extended over a heated platform and
secured with 4-0 silk tied to the kidney capsule. The kidney was superfused with
saline (0.9% sodium chloride (wt per vol)) and covered with a coverslip held in
place with vacuum grease. For imaging experiments using intact kidneys, mice
were anesthetized and catheterized as above. The left kidney was exteriorized
through a dorsal incision and the kidney was immobilized in a heated well
incorporated into a custom-built stage. The exposed kidney was bathed in normal
saline and coverslipped.

Glomeruli were observed with a Leica SP5 multiphoton microscope (Leica
Microsystems), equipped with 20× 1.0 NA WI objective lens and a MaiTai pulsed
infrared laser (SpectraPhysics). Experiments in C57BL/6 and μMT mice were
performed at 810 nm excitation, while experiments in MHCII-EGFP mice were
performed at 900 nm excitation. In most experiments, images were taken every 30 s
by collecting z-stacks of approximately 150 μm depth, with 6 μm step size. For 2 h
imaging experiments, z-stacks were collected every 60 s. Emitted fluorescence was
detected by non-descanned detectors with 432–482 nm, 500–550 nm, 575–605 nm,
and 625–675 nm emission filters. Pre-defined settings for laser power and detector
gain were used for all experiments. For visualization of the vasculature, either
Qtracker® 655, rhodamine dextran or Pacific Blue-conjugated 8D1 was used. To
label endogenous leukocytes, the following mAbs were used as appropriate (2 μg
i.v. each unless otherwise stated): anti-CD4 PE (CD4+ T cells); anti-B220-PE (B
cells); anti-Gr-1 PE or Alexa488 (neutrophils); anti-CD11b NC650 (monocytes – 5
μL). OT-II cells were labeled with either CFSE or CMTPX according to the
manufacturer’s instructions. In experiments examining neutrophil ROS
production, mice received 2 mg kg−1 of pre-warmed DHE intravenously 20 min
prior to imaging and were examined using 810 nm excitation17.

Image analysis. Images were analyzed using Imaris software (Bitplane)17. In brief,
leukocytes arrested in glomerular capillaries for at least 30 s (two consecutive
frames) were defined as adherent and subsequently categorized as crawling or
static. Dwell time was defined as the duration of leukocyte adhesion in the glo-
merulus. To measure the velocity of crawling cells, images were tracked in three
dimensions over time. For neutrophil ROS production, neutrophil DHE positivity
was determined after adjusting images using pre-determined thresholds to remove
background staining.

Renal leukocyte isolation and analysis. For flow cytometry analysis of OT-II cell
cytokine production, OT-II cells were isolated from kidneys using a modification of
a previously published method64. Kidneys were harvested 4 h after transfer of OT-
II T cells, infused with RPMI 1640 containing collagenase (1 mgmL−1), DNase I
(100 μg mL−1) and Brefeldin A (10 μg mL−1) and incubated at 37 °C for 25 min.
Kidneys were gently dissociated and incubated at 37 °C for a further 25 min then
washed and resuspended in RPMI with 5 μg mL−1 Brefeldin A. The cell suspension
was left for 10 min to settle tubular debris. The supernatant was filtered through a
70 μm cell strainer and erythrocytes were lysed. Cells were treated with Fc block,
then stained for CD45, CD4, and Vβ 5.1/5.2 TCR. For intracellular cytokine
staining, cells were fixed and permeabilized using the BD Cytofix/CytopermTM kit,
as per the manufacturer’s instructions, and then stained for IFN-γ.

MHCII+ monocyte isolation and ex vivo T-cell proliferation. MHCII+ mono-
cytes were sorted from blood of MHCII-GFP donors. Mice (7–11 per experiment)
were bled into heparinized syringes and blood lysed using NH4Cl. Leukocytes were
resuspended to 5×106 cells in 50μL then pre-incubated with anti-CD16/CD32 Ab
to block non-specific staining. Cells were stained with CD115-APC (clone AFS98)
to identify monocytes and anti-CD19-APC-Cy7 (clone 1D3) to enable exclusion of
B cells. CD115+ monocytes that also expressed MHCII-GFP were sorted by flow
cytometry (FACS ARIA Fusion). Post-sort analysis revealed >98% monocytes of
which >85% were MHCII+.

OT-II cell proliferation was assessed using a modification of a previously
published technique39,40. In brief, CD4+ T cells were positively enriched from LNs
of OT-II mice using anti-CD4 microbeads (Miltenyl-Biotec) (purity >98%) then
labeled with CFSE (5 μM). Cells were subsequently washed twice and resuspended
at 1×106 mL−1. Sorted monocytes (ranging from 1.6 to 8.8 ×104 per well) were
pulsed with 1 µM OVA323–339 and co-cultured with 105 CFSE-labeled OT-II cells.
Negative controls included T cells pulsed with peptide alone (no antigen-
presenting cells) and unpulsed splenocytes (no peptide). As a positive control,
splenocytes pulsed with antigen as above were used as antigen-presenting cells.
Cells were harvested after 65 h and stained with anti-Vα2 APC (clone B20.1) and
anti-CD4 APC-Cy7 (clone GK1.5). Dead cells were excluded by propidium iodide
staining and viable cells were enumerated using BD Calibrate beads (BD
Biosciences). Samples were acquired on an FACS CantoII flow cytometer and
analyzed with FlowJo software (Tree Star), using the level of CFSE staining as an
index of proliferation.

NFAT-GFP vector transduction. T-cell activation was investigated via assessment
of nuclear mobilization of NFAT-GFP, using T cells transduced with retrovirus
generated from pMSCVneo–ΔNFAT-GFP (aa 1–460 of mouse NFAT1) (“NFAT-
GFP”) vector (obtained from Dr. Vigo Heissmeyer), as described previously11,43.
Briefly, pMSCVneo–ΔNFAT-GFP was transfected into Platinum E packaging cells
(Cell Biolabs, Inc.) using a calcium phosphate precipitation method65,66. After
48–72 h, retroviral supernatants were collected and filtered through 0.45 μm filters.
The virus was concentrated by precipitation using PEG 6000 and sodium chloride,
resuspended in RPMI and titrated66.

OT-II cells were transduced with 1.5–3.2×107 transducing units of virus on days
1 and 2 of the activation protocol, in six-well plates in the presence of polybrene (4
μg mL−1), using spinfection at 32 °C, 800 g for 1 h. On day 7, transduced NFAT-
GFP OT-II cells (OT-IINFAT-GFP) were isolated via flow cytometric sorting on the
basis of GFP expression. Typical transduction efficiencies were between 10 and
20%. Preliminary analyses demonstrated that following in vitro activation, the level
of IFNγ expression in OT-IINFAT-GFP cells was comparable to that in activated non-
transduced OT-II cells (Supplementary Fig. 3). Sorted OT-IINFAT-GFP cells were
labeled with CMTPX and used in in vivo imaging experiments assessing the
subcellular localization of GFP11,43.

Statistical analysis. All data presented are shown as mean ± s.e.m. Experimental
groups were compared using Student’s unpaired t tests, or if variances were
unequal, unpaired t-tests with Welch’s correction or non-parametric Mann
−Whitney tests (all one-tailed). In experiments involving more than two groups,
one-way ANOVA or Kruskal−Wallis non-parametric analysis was performed. In
experiments involving categorical analysis of T-cell phenotype, Fisher’s exact test
was used. The numbers of mice used in groups were based on the expected degree
of variability observed in standard kidney imaging experiments, in parameters such
as number of adherent cells and dwell time. Typical group sizes ranged from 6 to 8
individual mice examined on multiple different days, assigned randomly to control
or treatment groups. Significance was set at P < 0.05.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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