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ABSTRACT: Uncharacterized proteins have been underutilized as targets for the
development of novel therapeutics for difficult-to-treat bacterial infections. To
facilitate the exploration of these proteins, 2819 predicted, uncharacterized proteins
(19.1% of the total) from reference strains of multidrug Acinetobacter baumannii,
Klebsiella pneumoniae, and Pseudomonas aeruginosa species were organized using an
unsupervised k-means machine learning algorithm. Classification using normalized
values for protein length, pI, hydrophobicity, degree of conservation, structural
disorder, and %AT of the coding gene rendered six natural clusters. Cluster proteins
showed different trends regarding operon membership, expression, presence of
unknown function domains, and interactomic relevance. Clusters 2, 4, and 5 were
enriched with highly disordered proteins, nonworkable membrane proteins, and
likely spurious proteins, respectively. Clusters 1, 3, and 6 showed closer distances to
known antigens, antibiotic targets, and virulence factors. Up to 21.8% of proteins in
these clusters were structurally covered by modeling, which allowed assessment of druggability and discontinuous B-cell epitopes.
Five proteins (4 in Cluster 1) were potential druggable targets for antibiotherapy. Eighteen proteins (11 in Cluster 6) were strong B-
cell and T-cell immunogen candidates for vaccine development. Conclusively, we provide a feature-based schema to fractionate the
functional dark proteome of critical pathogens for fundamental and biomedical purposes.

■ INTRODUCTION
The lack of functional knowledge of proteins limits their
utilization as targets for the development of novel therapeutics
for multidrug-resistant pathogens. Uncharacterized and poorly
characterized proteins represent a sizable fraction of the
bacterial proteome, up to 20−50%, even in strains of model
bacterial species.1,2 The functions of these uncharacterized or
“hypothetical” proteins lack experimental characterization, and
they cannot be inferred with sufficient certainty with sequence
homology-based tools. Thus, they are considered the func-
tional dark proteome.3,4

Extensive antibiotic resistance represents a major medical
challenge for humanity.5 The Acinetobacter baumannii,
Klebsiella pneumoniae, and Pseudomonas aeruginosa species
represent the highest, i.e., a critical concern for the WHO and
other public organizations.6,7 Clinical isolates of these Gram-
negative “superbugs” are potentially untreatable with the
limited antibiotic panel that is currently available, leading to
panresistance and a potential return to the pre-antibiotic era.8

The existence and dissemination of these pathogens affect
multiple aspects of modern medicine such as organ trans-
plantation, anticancer treatment, autoimmune diseases therapy,
neonatal and geriatric specialties, ICU stays, and virtually any
kind of surgery. Given the slow pace of development of new

antibiotics against resistant pathogens,9 other options, such as
the identification of novel antibiotic targets and prophylaxis
through vaccination,10 are currently being explored. In this
context, proteins are major players as chemotherapeutic
targets, protective antigens, and diagnostic markers that
could improve epidemiological tracking. Eventually, any
fundamental knowledge regarding persistence and virulence
can potentially be utilized for clinical benefit against these
problematic species.
Many proteins of these concerning pathogens remain

functionally unexplored. Subsets of them have been detected
as expressed by proteomics,11,12 identified as essential during
pathogenic processes,13−15 or deemed conserved enough to be
included in the core proteome of the species.16 However,
information regarding the function of protein targets is an
important prerequisite for developing biomedical applications.
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For instance, a description of the mode of action is required for
the efficient development of antibiotic compounds.17 The
burden of assigning potential functions to “uncharacterized
proteins” often results in their exclusion from studies aiming to
identify potential therapeutic targets.
While massive DNA sequencing has become extremely cost-

effective over the last 15 years,18 functional characterization of
predicted proteins encoded in bacterial genomes remains a
laborious and nonscalable task. Consequently, the relative
amount of protein domains with unknown functions (DUFs)19

in the Pfam database increases as more sequences are
available.20 This increasing gap between sequence availability
and functional understanding of proteins is a remaining
challenge of the postgenomic era and a huge problem for the
biological sciences.21 To respond to this demand, hypothetical
proteins are approached by exclusive resources such as
COMBREX-DB22 and the Dark Proteome Database.23

The umbrella term “hypothetical proteins” (HPs) used to
define these proteins overlooks their heterogeneity. The reason
for the slow pace in the characterization of novel protein
functions is manifold. These include, but are not limited to: (a)
recalcitrance to experimental work, e.g., low expression using
standard recombinant DNA technology or insolubility in
common molecular biology buffers; (b) extreme structural
disorder resulting in unsatisfactory structural resolution or
failed structure-based function prediction; (c) nonessentiality
or overlapping roles with other proteins that render
inconclusive experiments using knockout mutants; (d) lack
of proper microbiological and/or biochemical assays to study
nonstandard functions; (e) phylogenetic narrowness (even
strain-specific) that do not attract the attention of the scientific
community; and (f) prediction of spurious ORFs or relic
pseudogenes by gene identification algorithms, typically
associated with deviant codon usage and AT content.
Altogether, these considerations result in the systematic
exclusion of uncharacterized proteins in studies searching for
biomedical targets, which prevents the potential discovery of
new functions and applications.24

Since uncharacterized proteins cannot be studied in full with
common homology-based tools, e.g., BLAST or Pfam,
alternative approaches for analysis are desirable. Several
properties of proteins are linked to their activities irrespective
of the strict amino acid sequence. These aspects may be
utilized in unsupervised machine learning, which permits the
identification of natural specimen clusters that are otherwise
incomplete using only human expertise.25 Unsupervised
learning has been applied in protein sciences, for example, as
a method for facilitating structural classification.26,27

Whether the functional dark proteome from multidrug-
resistant species can be utilized in therapeutic objectives
remains an open question. In this study, we have taken
advantage of the strength resulting from the integration of
protein science principles, omic information, and unsupervised
classificatory algorithms to identify protein classes within this
obscure set of proteins. We achieve the prefractionation of the
uncharacterized protein space into manageable groups of
proteins. Some of these groups are compatible with biomedical
applications, warranting further investigation that explores
their use in the control of these challenging infections.

■ EXPERIMENTAL SECTION
Hypothetical Protein Acquisition. Chromosomally-

encoded proteomes for the reference strains A. baumannii

ATCC 19606 (UP000005740), K. pneumoniae HS11286
(UP000007841), and P. aeruginosa PAO1 (UP000002438)
were downloaded (last accession date: 11/May/2021) from
the Proteomes RefSeq database section of the UniProt
resource.28 Proteins explicitly described as uncharacterized
proteins, those with UPF (unknown protein family), and
hypothetical, all without available “biological role” by Gene
Ontology29 were deemed uncharacterized. However, all of
those containing known domains and those with “probable”,
“putative” or uncharacterized general functions were likely
remote homologues of known families or superfamilies and
were not considered. Fragmented proteins were not considered
either. Coding gene sequences and gene feature information
were downloaded from the Assembly database.30 Protein
redundancy of selected uncharacterized proteins was assessed
by sequence-based clustering by CD-HIT 4.631 applying 90%
identity and 90% alignment length coverage.
Calculation of Protein Clustering Features. Classifica-

tory properties were calculated as follows. The length,
isoelectric point (pI), and GRAVY index were calculated
with EXPASY protparam tool.32 Coiled coils were predicted by
ncoils33 using 0.5 as threshold, low complexity regions by
SEG,34 and disordered sections longer than 10 residues by
IUpred.35 The intra-species conservation index (ranging
between 0 and 100) was calculated as the prevalence ratio
multiplied by the average identity and alignment coverage of
the hits. The prevalence of each protein across the species was
calculated as the percentage of isolates that carry protein
homologues with identity ≥80% and alignment coverage
≥90%, calculated with BLASTp 2.2.28+.36 For that, proteomes
of a random sample of 200 isolates of the respective species,
nonanomalous according to NCBI quality filters from the
Assembly database30 were utilized (Supporting Table S1). The
Z score for AT content for each gene coding for hypothetical
proteins was the number of standard deviation units, higher or
lower, with respect to the average AT content of all coding
sequences in the genome: 60.3 ± 4.2% for A. baumannii, 43.3
± 6.8% for K. pneumoniae, and 33.2 ± 3.9% for P. aeruginosa.
Unsupervised Classification. Data profiles containing

values for the six classificatory properties were nonparametri-
cally normalized with the RobustScaler method available in the
preprocessing module of the scikit-learn machine learning
suite.37 K-means clusters were calculated, applying k values
between 2 and 20, with the lloyd algorithm of the K-Means
method of the cluster scikit-learn module.37 Clustering was run
by applying default hyperparameters: 10 different centroid
seeds, up to 300 iterations, and a tolerance of 10−4. The
optimal number of clusters, that is, the number of clusters with
the best trade-off between maximal inclusivity (highest size)
and homogeneity, were estimated by calculating the inter- vs
intra-clustering difference. For the latter, the 6-mer Euclidean
distances between normalized feature values of all members in
the same cluster and between cluster centroids were calculated
using the pairwise method of the DistanceMetric class of
Neighbors scikit-learn module.37 Hyperparameter tuning by
grid search was carried out by varying the number of seeds
(from 5 to 20, step = 5), the number of maximal iterations
(from 100 to 500, step = 100), the tolerance to cluster center
differences in two consecutive iterations (10−3, 10−4 or 10−5),
and the algorithm applied (either lloyd or elkan). Agglomer-
ative hierarchical clustering was carried out with the
Agglomerative Clustering method of the cluster scikit-learn
module using the “ward” linkage criterion and applying six
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clusters. DBSCAN clustering was carried out with the
DBSCAN method of the cluster scikit-learn module, applying
0.472 as the maximal distance to consider the inter-sample
neighborhood and a minimal neighborhood sample number of
10 for core points to render six final clusters.
Calculation of Further Postclassificatory Protein

Properties. Correspondence analysis of codon usage of
genes coding for hypothetical proteins was carried out with
CodonW (http://codonw.sourceforge.net). The percentage of
rare codons was defined as the percentage of codons showing
relative isocodon prevalence <20% with respect to the most
prevalent isocodon for the amino acid in the whole proteome
of the species. Operon information was calculated with the
Operon-mapper resource.38 DUF domains were identified by
the hmmscan program from the HMMER 3.1b1 package39

against the Pfam v33.1 database,40 applying their respective
gathering thresholds. The number of partners for protein−
protein interactions (PPIs) were calculated using STRING
v11,41 applying a combined score threshold of ≥0.7. For
reference strains that are not available in STRING, protein
equivalences between reference and STRING strains were
assigned with BLASTp 2.2.28+, applying E-value <0.00001,
identity ≥70%, and bidirectional alignment coverage ≥90%
thresholds. Transmembrane helices were identified with
TMHMM 2.042 and considered when they did not overlap
with the signal peptide by five or more residues predicted with
SignalP 5.0 trained with a Gram-negative data set.43 Protein
solubility was assessed by Proso II.44 Structural coverage was
calculated by applying BLAST with identity ≥25% and
bidirectional alignment coverage ≥60% thresholds to protein
sequences in the Protein Data Bank (PDB) (last accession: 12/

May/2021). Structural homology models required for the
prediction of target druggability and discontinuous B-cell
epitopes were built with SWISS-MODEL.45 Essential proteins
were downloaded from the DEG 15 database46 involving
conditions such as lung infection,47 rich medium,48 and
succinate medium.49 Homologues for essential proteins from
strains distinct from reference ones were identified by BLAST,
applying 80% identity and 90% mutual alignment length
coverage. Betweenness centrality was calculated as the
shortest-path betweenness centrality for STRING nodes with
the betweenneess_centrality method of NetworkX.50 Pocket
detection and their druggability score in HPs was carried out
with DogSiteScorer51 using structures for sequences showing
≥89% identity but PA1233 (37% identity, 53% similarity to
PDB id 4f98 sequence). For antibody accessibility to potential
antigens, the subcellular location was determined with
PSORTb 3.0.52 Linear B-cell epitopes were predicted with
BepiPred 2.0.53 Discontinuous B-cell epitopes were predicted
with Discotope 2.054 and ElliPro,55 applying a score ≥0.5 and a
maximal distance <6 Å. HLA class II supermotif cores were
predicted with netMHCIIpan 4.0,56 selecting the five super-
type alleles57 and applying an adjusted rank ≤2.0 and an
epitope length of 15 residues.
Control Proteins of Biomedical Interest. Antibacterial

agent targets from γ-Proteobacteria, the most specific taxon
shared by the three species addressed here, were downloaded
from DrugBank.58 Homologues for antibacterial target
sequences were detected in A. baumannii, K. pneumoniae, and
P. aeruginosa reference proteomes by BLAST, applying ≥40%
identity, ≥80% mutual alignment, and E-value <0.001
thresholds. Antigens of these species were selected from a

Figure 1. Classificatory protein features utilized in this study. (A) List of the six classificatory features considered in this work. (B). Heatmap
showing color-ranked r-squared values for the inter-feature value correlation matrix.
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comprehensive review.59 Virulence factor sequences were
downloaded from the Virulence Factor Database60 (last
accession: 10/Oct/2021) and identified by BLAST in the
proteomes of the reference strains, applying ≥40% identity,

≥80% mutual alignment coverage, and E-value <0.001
thresholds. Values for the six clustering features were
calculated as for hypothetical proteins above. Data was
nonparametrically normalized with RobustScaler by adding

Figure 2. Unsupervised classification of the uncharacterized proteome in Gram-negative superbugs. (A) Ratio between average inter- and intra-
cluster Euclidian distances according to the number of clusters. (B) Cluster sizes (upper chart) and relative amount of cluster members by species
(lower chart) for a k = 6. (C) Undirected weighted graph showing clusters at k = 6. Edges correspond to normalized distances between cluster
centroids below a cutoff of 4. Average and SD values for non-normalized features for each cluster are indicated. Features showing significant
differences to Cluster 1 are highlighted in bold and underlined when dominant (P-value <10−30). The cluster size is indicated within the node and
made proportional to the sphere diameter. The graph was created using the NetworkX and matplotlib Python libraries.
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data independently for each antibacterial target, vaccine

antigen, or virulence factor to the whole hypothetical protein

data set pool. Then, the distance of normalized data of each

biomedical control protein to the average of each of the six

hypothetical protein clusters was calculated, as described

above.

■ RESULTS
Feature-Based Schema to Classify Uncharacterized

Proteins. The reference strains of three leading multidrug-
resistant species showed comparable numbers of uncharac-
terized proteins: A. baumannii ATCC 19606 (851 HPs, 22.4%
of the total proteome), K. pneumoniae HS11286 (930 HPs,
17.2%), and P. aeruginosa PAO1 (1,038 HPs, 18.6%). The
2,819 protein data set showed very low sequence redundancy
(0.3%) at a 90% identity and 90% alignment coverage level.

Figure 3. Genetic differences between genes coding for proteins in distinct clusters. (A) Codon usage correspondence analysis (upper panel) and
percentage of rare isocodons (lower panel) of uncharacterized protein-encoding genes of the three species. The two principal correspondence
analysis axes are shown. Each dot corresponds to gene coding HPs colored according to the cluster. Kernel density estimates for the distribution of
rare isocodons was carried out with the gaussian_kde method of the stats module of scipy Python library. (B) Prevalence of operon membership in
clusters according to operon size (number of genes). Dashed lines in B correspond to the reference value for Cluster 1. *** P < 0.001.
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As homology tools have limitations to classify HPs, an
alternative feature-based classificatory schema was developed.
For that, three global protein properties were utilized: length
(Len), pI, and hydrophobicity (GRAVY), besides three
additional properties usually related to difficulties in solving
protein function: anomalous AT content (ATp_Z), low
species isolate occurrence (Spec_distr), and high sequence
percentage predicted as structurally disordered (Unfold_P)-
(Figure 1A). Notably, these six properties involved values that
were continuous, mostly nonzero (nonsparse), and non-
correlated (r2 ≤ 0.12 in all pair cases) (Figure 1B). Moreover,
these are inclusive of other features not explicitly considered
for clustering. For instance, length would correlate with
molecular weight and the number of domains, pI with an
abundance of certain charged residues, and the GRAVY index
with the amount of aliphatic and aromatic residues. This 6-mer
schema is therefore appropriate for unsupervised machine
learning approaches.61

Unsupervised Learning Renders Six Optimal Clusters.
To minimize the influence of outliers and the different numeric
scales of the six properties considered, values were nonpara-
metrically normalized. Next, 6-mer arrays of normalized values
for all properties corresponding to the 2,819 HPs were
subjected to unsupervised classification by the k-means

method. Incremental single-linkage clustering was applied for
a number (k parameter) between 2 and 20 clusters. The
difference between the average of inter-cluster with respect to
the average of intra-cluster distances increases quickly until a k
value of six clusters (Figure 2A). After this point, the
productivity of every new cluster was minor and clustering
likely resulted in over-partitioning of naturally compact
clusters. A k value of six was therefore considered hereafter
due to the production of clusters with optimized inclusivity
and homogeneity. Hyperparameter tuning (see Materials and
Methods) did not essentially change cluster content, i.e.,
protein pair coclustering was >99.2%, indicating cluster
convergence was reached after a few iterations.
These clusters largely differed in size, where the extremes

were Cluster 1 (arbitrary numbering) with 1175 members and
Cluster 3 with only 51 members (Figure 2B, upper chart).
Clusters showed comparable relative proportions between the
three species, although K. pneumoniae HPs was relatively
enriched in Cluster 5 proteins and P. aeruginosa proteins in
Cluster 3 and 6 (Figure 2B, lower chart). Clusters showed
significantly different values (two-tailed P-value by Student’s t
test) for at least two properties with respect to Cluster 1
(selected here as the reference one by its largest size) (Figure
2C). Detailed cluster information containing proteins and

Figure 4. Protein level differences in clusters. Heatmap shows the color-ranked percentage of cluster proteins: containing DUFs, positive for
interactome degree (≥5 PPIs) and integral MPs (those containing ≥4 TMHs).
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values for classificatory properties is available in Supporting
Table S2.
Besides k-means, two other clustering methods are usually

utilized in unsupervised learning: hierarchical clustering (HC)
and DBSCAN.61 HC grouping at the level of six clades showed
clear cluster correspondences with k-means. The exceptions
were k-means Cluster 1 and 6, which became intermingled after
HC (Supporting Figure S1). Overall, both methods showed
nearly identical average intra-cluster distances. However, HC
showed remarkably lower inter-cluster distances, indicating
lower cluster discriminative power. This effect was more
exacerbated for DBSCAN, which grouped >99% of the data set
into two large heterogeneous clusters (Supporting Figure S1).
Clusters Show Distinct Genetic Trends: Codon Usage

and Presence in Operons. Insights into the nature of
clusters may be revealed through distinctive values for other
properties not considered for clustering due to sparsity,
probable correlation within clustering properties, or categorical
content character (see Supporting Table S3). The genetic
nature of genes encoding proteins of distinct clusters was
interrogated first.
Codon selection was analyzed, which is related to gene

adaptation to the bacterial tRNA pool involved in the
elongation stage of translation in fast-growing bacteria.62 The
two principal axes of the correspondence analysis of codon
usage indicate compact occupation for Cluster 6 genes while
the disparate location of genes coding for proteins in Cluster 4
and, in particular, Cluster 5 (Figure 3A, upper panel). A.
baumannii showed the most classical and illustrative view
consisting of a central point ball (most housekeeping genes)
with two horns (highly expressed genes and anomalous codon
content genes, respectively).63 Most Cluster 5 protein coding
genes were located in the disperse horn corresponding to
aberrant isocodon utilization. Cluster 5 showed explicit shift

distributions toward higher proportions of rare isocodons,
defined here as those with <20% occurrence with respect to
the preferred isocodon for the amino acid in the whole genome
(Supporting Table S4) (Figure 3A, lower panel). This aspect
may reveal that several theoretical Cluster 5 HPs are coded by
nonexpressed ORFs, as described previously for other genes.64

On the other hand, operon membership suggests functional
relevance since it indicates pressure for cotranscription into
higher-order elements (such as enzymatic pathways or protein
complexes) besides favoring useful cohorizontal transfer with
other genes with dependent functional reasons.65 While genes
coding for 58.8% and 51.5% of proteins in Cluster 3 and 6,
respectively, were part of operons, only 37.8% of genes
encoding Cluster 2 (P < 0.001, Chi-squared test respect to
Cluster 1) and 33.9% of Cluster 5 (P < 0.001) proteins were
nonmonocistronic (Figure 3B).
Conclusively, 139 HP genes contained >5% rare isocodons,

<80 residues, showed presence in <5% isolates in the species,
were not in operons, and encoded theoretical polypeptides that
did not contain DUFs and did not show any PPI. Among
them, around half were K. pneumoniae HPs in Cluster 5. These
may be spurious genes resulting from false positives by gene
detection algorithms or part of mobile genetic elements,
pseudogenes, or small untranslated RNAs. Most of these
proteins showed only scarce BLAST hits in other species in the
same genus (data not shown).
Clusters Show Distinct Protein Trends: Presence of

DUFs and Interactomic Relevance. Qualities of the
proteins themselves were also evaluated (Figure 4). DUFs
were found in 17−27% of proteins in all clusters, except for
Cluster 5, where only 3.8% of proteins carried these important
PFAM entities (P < 0.001, Chi-squared test with respect to
Cluster 1). Cluster 3 and 6 proteins had a relatively higher
percentage of connected proteins within the interactome (P <

Figure 5. Betweenness centrality in the interactome. (A) Amount of proteins per cluster at distinct BC ranges. (B) Species interactomes. Network
graphs of the respective species are shown. Cluster membership is indicated in colors, as shown in Figure 2D. Sphere diameter is proportional to
BC.
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0.001), whereas only 7.1% of Cluster 5 proteins showed 5 or
more partners (P < 0.001). Expectedly, the fraction of integral
membrane proteins (iMPs, ≥4 TMHs) was much higher for
the highly hydrophobic Cluster 4.
Rather than the raw number of partners, the actual relevance

of a protein in the interactome is dictated by the degree of
irreplaceability of the node within the network context. In this
way, important proteins for biomedical applications and
bacterial physiology are central.66 This issue was assessed
through the calculation of the betweenness centrality (BC) for
all HPs. Cluster 3 and 6 proteins showed higher fractions of
central proteins, while most Cluster 5 proteins were peripheral

even at the relaxed threshold of BC <10−8 (Figure 5A). The
actual interactome positioning of the most central HPs is
depicted in the network maps for the three species approached
(Figure 5B). Cluster 6 and Cluster 1 proteins, the latter
favored by its large size, nearly monopolized the most relevant
nodes.
Overall, protein-level features support Cluster 1, 3, and 6

content for biomedical relevance while discouraging Cluster 2,
4, and more emphatically, Cluster 5.
Clusters Show Distinct Workability Trends: Predicted

Protein Solubility and Structure Availability. A recurrent
reason for lack of protein characterization is recalcitrance to

Figure 6. HP workability. (A) predicted solubility. Violin plots showing the distribution of solubility scores calculated with PROSO II are shown.
Lines indicate average values. (B) Structural modeling coverage. Identity level bins are color-ranked (see legend). A minimal bidirectional threshold
of 60% for alignment length coverage was applied.

Figure 7. Distance distribution of control biomedical targets to HP cluster centroids. Violin plots of normalized Euclidian distances of validated
drug targets, antigens, and VF control data sets with respect to cluster centroids are shown. The lines indicate the medians. Detailed descriptions of
biomedical targets and distances to HP clusters are provided in Supporting Table S5.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04076
ACS Omega 2022, 7, 46131−46145

46138

https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig7&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04076/suppl_file/ao2c04076_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04076?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04076?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


solubility in standard molecular biology buffers. Solubility is a
strict prerequisite for activity, ligand binding, and assays aiming

to resolve protein structure. Four clusters included at least one-
third of solubility-prone proteins according to a supervised

Table 1. Selection Criteria Values for Strong Antibacterial HP Target Candidates

cluster protein BC solubility spec_distr PDB25 DUF essentiality

1 HMMPREF0010_02899 0 0.749 0.949 84.85 DUF493 rich medium
1 KPHS_00170 0.00129 0.693 1.000 100.00 DUF1040
1 KPHS_38450 0.00150 0.697 0.996 85.86 DUF1131
1 KPHS_48910 0.00019 0.467 0.993 94.44 lung infection
1 PA1076 0.00232 0.619 0.998 100.00 DUF5064
1 PA1233 0.00536 0.683 0.985 78.82 DUF2790
1 PA3931 0.00125 0.719 0.853 93.82
1 PA4535 0.00198 0.637 0.984 100.00 DUF1780
2 PA3463 0 0.850 0.980 100.00 succinate medium
3 PA2635 0.00108 0.735 0.929 87.05 DUF839
6 PA1624 0.00137 0.612 0.815 93.28 DUF4892
6 PA5545 0.00225 0.751 0.941 91.85

Figure 8. Structural panel of potential targets showing druggable binding pockets. Protein, DUF, and PDB id are indicated in the top. Pockets with
druggability scores ≥0.5 are highlighted. Volume, surface, drug, and simple scores of the druggable pockets are listed.
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machine learning prediction (Figure 6A). In contrast, Cluster 5
and Cluster 4 rendered only 24 and 9% predicted soluble
proteins (both P < 0.001; Student’s t test with respect to
Cluster 1 solubility score distributions), the latter very likely
due to its high hydrophobicity. On the other hand, another
cause of undercharacterization is the nonavailability of three-
dimensional information of the proteins or their homologues.
This prevents the application of highly effective structure-based
methods for functional characterization, which outperform
sequence-based ones.67 By far, Cluster 1, 3, and 6 excelled in
the three model quality bins with respect to the sequences of
PDB content: those considered as resolved (>90% identity),
high-quality models (50−90% identity) and even 20% or more
HPs in these clusters were at the minimal modeling distance
required of ≥25% identity (Figure 6B).
Altogether, Cluster 1, 3, and 6 proteins were predicted to be

more amenable to use as biochemical targets through
biochemical or structure-based computational methods.
Clusters Show Distinct Distances to Biomedical

Control Proteins. A critical question is to what extent
proteins of demonstrated biomedical interest are close to HPs
based on our 6-mer feature framework. If this is the case,
shared feature values may indicate potential application of HP
proteins in the clinical biotechnological field. To approach this,

validated antibacterial drug targets, vaccine antigens, and VFs
in the three species studied here were collected from respective
central resources and the literature (see Materials and
Methods). On average, the biomedical gold standards showed
lower normalized Euclidean distances to the centroids of
Cluster 1 and 6 (Figure 7). In particular, antibacterial targets
were closer to the Cluster 1 centroid (median distance = 2.33),
while antigens and VFs were closer to the Cluster 6 centroid
(median distances = 1.48 and 1.50, respectively). The Cluster
4 centroid also showed a short median distance to VFs (2.64),
indicating that a substantial number of pathogenicity
determinants may be located in the membrane.
Examples of Uncharacterized Antibacterial Target

Candidates. Beyond general trends per cluster, we searched
for specific strong target candidates for antimicrobial therapy.
For that, we applied a criteria selection pipeline for potential
uncharacterized antimicrobial targets that rendered 12 proteins
(Table 1). These selected proteins showed a predicted
solubility >0.45, were present in ≥80% species isolates,
showed structural coverage at modeling distance and either
high BC values (≥10−4), and/or were reported as essential in
relevant conditions. Among those proteins, we prioritized
proteins containing DUFs as these can be independent folding
units of biomedical interest.68 Moreover, monodomain DUF

Figure 9. Strong vaccine antigen candidates. (A) Number of predicted antibody-exposed proteins per cluster. (B) Antigen selection pipeline. The
relative proportion of progressing proteins as antigenic per cluster in the selection pipeline. (C) Structure panel of antigen candidates. Presence of
discontinuous and linear B-cell epitopes besides HLA class II supermotifs. Nonepitope residues are shown in gray. Detailed linear epitope data is
included in Supporting Table S6.
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proteins with high sequence conservation and high inter-
actome weight have also been deemed physiologically relevant
HPs in Streptococcus pneumoniae.69 Six selected proteins were
subjected to a structure-based druggability analysis using the
DogSiteScorer method. Five of these proteins contained
pockets showing druggability scores >0.5 and could then be
considered druggable targets (Figure 8).
Examples of Uncharacterized Vaccine Antigen

Candidates. Another potential application of HPs is antigens
for vaccine-induced prophylaxis. For example, an unannotated
protein has been shown to be immunoprotective against S.
pneumoniae in a murine model.70 As immunoprotection against
the species approached here is essentially humoral, candidate
antigens must be accessible to antibodies. The location of 93
HPs was classified by PSORTb as “extracellular”, “outer
membrane”, or “periplasmic” and then deemed exposed to
antibodies (Figure 9A). While Cluster 1 only contained 2.0%
exposed proteins, Cluster 3 (27.5%, P = 4 × 10−4, Fisher’s
exact test) and Cluster 6 (9.2%, P < 1 × 10−5) were
proportionally enriched.
These proteins were subjected to a selection pipeline

following principles of reverse vaccinology (Figure 9B), i.e.,
the utilization of multidisciplinary scientific information for
rational vaccine design.71 Among the exposed proteins, 36 HPs
showed enough distribution within the species to protect
against the most pathogenic lineages. Next, 27 HPs fulfilled at
least the relaxed solubility score of ≥0.4 to be considered as
workable, as this may be desired for subunit or nucleic acid
vaccine types. Twenty-five of them contained at least five linear
B-cell epitope regions involving ≥ 50 residues. This indicates
immune evasion toward these antigens would require several
mutation events in the bacteria, which is unlikely without a
considerable fitness penalty. Moreover, structural models for
11 of these B-cell antigen candidates could be built. This
permits the assessment of discontinuous regions, that is, distant
sections of the protein sequence that colocalize in the final
folded protein, which constitute the majority of actual B-cell
epitopes.72 Finally, humoral antigens can also be T-cell
immunoantigens since the HLA class II epitope presentation
that stimulates T helper CD4+ lymphocytes is also involved in
these infections.73 Although the extent of such protection is
essentially determined by the type of human allele, 18 out of
the 25 B-cell antigens carried five or more supermotifs, those
epitopes recognized by one of the five allelic supertypes that
together cover up to 90% of the human population.57 Six
proteins (three periplasmic, two extracellular, one outer
membrane), two from Cluster 1 and four from Cluster 6,
fulfilled all criteria as attractive immunoantigens (Figure 9C).

■ DISCUSSION
The lack of functional data available for approximately one-
fifth of isolate proteomes diminishes the potential biomedical
application of these proteins in different fields. However, there
is a pressing need for improved fundamental knowledge and to
identify targets to combat infections caused by multidrug-
resistant Gram-negative pathogens. This makes the develop-
ment of alternative schemas to organize the dark proteome
necessary. As this cannot be easily achieved, by definition,
through classical homology-based tools, here we applied an
alternative feature-based schema.
We selected proteins deemed as unannotated according to

the central UniProt-Proteome resource from reference strains
of three bacterial species classified as critically urgent by the

WHO. Taking advantage of unsupervised machine learning
techniques, six natural clusters were identified according to
general protein properties besides qualities associated with a
lack of functional solution. These features were preselected
based on principles of protein science and unbiased algorithm
performance. Some theoretical analyses of hypothetical
proteins of these challenging Gram-negative species are
available.74,75 However, these studies update the annotation
by homology search to recently known functions or applying
more relaxed searching thresholds rather than approaching
strictly unknown polypeptides. By our approach, HPs
converged into biologically meaningful groups, i.e., dense
zones in the 6th dimensional protein space, in a neutral
fashion. Our study supports a high level of heterogeneity
between the clusters identified. Our scheme could be refined
using different clustering methods, adding further properties or
considering the uncharacterized proteomes of other species so
that some caution regarding the results obtained should be
exerted. However, the observed clusters likely represent the
principal trends that explain why a bacterial protein remains
unannotated. These ranged from those containing strong
candidates with a spectrum of potential biotechnological
applications to likely spurious genes.
Cluster 1 represents the largest cluster (41.7% of all HPs)

encoded by genes showing the %AT closest to the species
average and relatively high isolate distribution. This cluster
represents the general proteome by considering its features’
values, regardless of annotation. Interestingly, the centroid of
Cluster 1 was the closest one to antibacterial target controls.
Among all of these cluster members, four proteins were
deemed antibacterial target candidates showing 1−2 druggable
pockets: KPHS_00170 (DUF1040), PA1076 (DUF5064),
PA3229 (DUF2790), and PA4535 (DUF1780). Structures
for most of these proteins have been solved by structural
genomics projects76 and are invaluable for further analysis. In
addition, the cluster also included two strong vaccine B/T
immuno a n t i g e n c a n d i d a t e s : t h e p e r i p l a sm i c
HMPREF0010_03702 protein and the extracellular PA2367
protein.
Cluster 2 (12.6% of all HPs) rather contains monocistronic,

slightly basic proteins with partial species distribution and with
remarkably high structural disorder (62.7% on average). Scarce
PDB coverage further complicates its biomedical utilization but
may serve as material for future protein science approaches
involving unstructured regions. These proteins may become
organized after protein interactions during important regu-
lation and pathogenic processes.77,78

The tiny Cluster 3 (1.8% of all HPs) contains large proteins
with over 650 residues. These are very likely multidomain
proteins since most protein domains have less than 200
residues.79 Several Cluster 3 members also tended to be
exposed to the cell outside more than any other cluster, which
has clinical relevance. Moreover, they can behave as humoral
antigens, a fact reinforced by the presence of B-cell epitopes.
On the other hand, they allow for direct interaction to host
tissues as potential factors for colonization and virulence.
Cluster 4 (14.5% of all HPs) unites most integral membrane,

high pI, and high GRAVY index proteins besides moderate
isolate distribution within the species. These are recalcitrant to
experimental work and have, accordingly, low structural
coverage. Whether these are remote undetectable homologues
of canonical transporter families recognizing new substrates or
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they represent novel nontransport functions must be addressed
by the membrane protein scientific community.
Cluster 5 (12.0% of all HPs) HPs tend to be small, encoded

by genes with salient %AT and codon usage, have low species
distribution, and poor Pfam (DUF)/PDB coverage. An open
question is whether Cluster 5 proteins are actual proteins.
Some of these proteins may have been recently acquired by
lateral gene transfer, but a majority of them were not part of
operons, which goes against this idea. On the other hand, a
large section of these ORFs may be pseudogenes or errors
made by gene identification algorithms. This doubt justifies the
wide utilization of the “hypothetical protein” concept over
uncharacterized proteins. Whether these ORFs actually code
for expressible functional protein products should be verified
by genomic scientists. Of note, the low predominance of P.
aeruginosa proteins in Cluster 5 proteins suggests a more strict
curation of P. aeruginosa PAO1 (for instance, by the well-
established Pseudomonas Genome DB resource at https://
www.pseudomonas.com/),80 with respect to reference strains
of A. baumannii and K. pneumoniae, which would benefit from
similar resources.
Finally, Cluster 6 (17.4% of all HPs) mainly contains

conserved, acidic proteins with relatively larger sizes, low
disordered content, and high PDB coverage, and many are
coded by genes included in operons. Remarkably, this cluster
contains the drug target candidate PA1624, whose inter-
homodimer druggable interface has been previously suggested
as a potential antimicrobial target.81 The cluster is enriched in
exposed proteins, and its centroid is the closest one to control
virulence factors and antigens. Four cluster proteins satisfy the
most stringent principles of strong vaccine B/T immunoanti-
gen candidates with high human population coverage for the T
helper response (HMPREF0010_00297, KPHS_35700,
PA0222, and PA0360).
It should be noted that our approach cannot be compared in

goals and complexity to other machine learning efforts. As a
remarkable example, AlphaFold utilizes deep neural networks
to iteratively predict template-free ab initio protein structures
with an unprecedented atomic resolution level.82 This involves
massive features, including data from multiple sequence
alignments, which were not required for our system. Moreover,
the present study focuses on the ∼3000 proteins deemed
unresolved by the central resource UniProt for the reference
strains, which are those that are utilized in practice by
experimentalist groups of the leading multidrug-resistant
species. In contrast, AlphaFold has been recently applied to
cover the whole protein space known,83 regardless of whether
proteins belong to multidrug-resistant organisms and their
functional annotation status.
Conclusively, this study leverages the strength of the

unsupervised machine learning tools and multiomic integration
to surpass the limits of homology-based tools in exploring the
dark proteome with a biomedical perspective. In this way, a
functionally agnostic fractionation of the uncharacterized
protein space facilitates to fill the ever-increasing gap between
sequence availability and fundamental knowledge that can be
used for combating difficult-to-treat organisms. The coarse
homology-free protein sets we provided with precalculated
information (available here as extensive Supporting informa-
tion files) can then be selected by experimental groups
specialized in fields such as chemotherapeutics, unstructured-
based regulation, gene prediction, transport, vaccine develop-
ment, and virulence, which otherwise would remain underu-

tilized. The obtained self-organized map of the functional dark
proteome is therefore a resource-saving factor in terms of time,
human effort, and monetary cost. This is a prior stage that
eases the development of therapeutics for populations affected
by these infections.
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