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Abstract

The Quadratic Unconstrained Binary Optimization (QUBO) problem is NP-hard. Some

exact methods like the Branch-and-Bound algorithm are suitable for small problems. Some

approximations like stochastic simulated annealing for discrete variables or mean-field

annealing for continuous variables exist for larger ones, and quantum computers based on

the quantum adiabatic annealing principle have also been developed. Here we show that

the mean-field approximation of the quantum adiabatic annealing leads to equations similar

to those of thermal mean-field annealing. However, a new type of sigmoid function replaces

the thermal one. The new mean-field quantum adiabatic annealing can replicate the best-

known cut values on some of the popular benchmark Maximum Cut problems.

1 Introduction

From solid state physics [1] to social phenomena [2] Ising models can describe a wide range of

complex systems. Spin models are versatile because they are simple yet able to show complex

phenomena, like emergence and phase transitions [3–5]. Spin models are also important in

large, real-life optimization problems which can be distilled down to finding the global mini-

mum of a high-dimensional, nonlinear function. Most of these tasks are NP-hard [6]. Small

problems up to approximately a hundred nodes for a dense problem can be solved by exact

methods like the Branch-and-Bound (B&B) [7], or Branch-and-Cut [8]. Larger problems can

be solved approximately with intuitive methods like the tabu search [9, 10], semi-definite pro-

gramming [11–13], stochastic simulated annealing (SSA) [14–16] and quantum annealing

[17–19]. Quantum annealing is also the key idea behind adiabatic quantum computers [20, 21]

such as the D-Wave system [22–25]. To reduce the computational costs of stochastic methods,

the mean-field annealing (MFA) [26] has been proposed. In MFA, the dynamics of spins are

replaced with the evolution of their average values. As the temperature decreases, the MFA

algorithm updates these averages based on their values at the previous temperature. Computa-

tion using the means reaches equilibrium faster than the corresponding stochastic dynamics,

and MFA relaxes to a solution much faster than SSA, leading to an overall decrease in compu-

tational effort. Such methods have become popular lately, and special devices like coherent

Ising machines [27, 28] have been developed.
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In this paper, we develop the mean-field version of the quantum annealing [17] method

and apply it to the maximum cut problem, which belongs to the larger set of Quadratic Uncon-

strained Binary Optimization (QUBO) problems. The mean-field quantum annealing intro-

duced here is similar to [18, 19] in spirit. The novelty is the proposed quantum MFA is that the

equations derived here are fully analogous to the thermal MFA equations, the tunneling rate of

the quantum MFA corresponds to the inverse temperature, and the sigmoid theta function is

replaced with a new and different sigmoid function. The new sigmoid function improves the

performance of the quantum MFA, which is in line with recent result [29] emphasizing the

importance of the shape of the sigmoid function.

The structure of this paper is the following. In section 2 we summarize the thermal mean-

field annealing method for the Ising problem. Then in section 3 we present the quantum

annealing problem and its proposed novel mean-field solution. In section 4 we test the new

method on the maximum cut problem benchmark G-sets [30], and finally, in section 5 we

compare the new method with SSA and B&B.

2 Thermal mean-field annealing

The variational principle of statistical physics is a powerful tool for examining interacting sys-

tems at finite temperatures. The most straightforward version of this principle is the mean-

field approximation. This approximation works best when the number of interactions per spin

is large. In real-life optimization problems, the number of nodes is usually not as large as in

physics, typically just tens of thousands, and usually, they have no symmetry. The statistical

physical derivation of the mean-field annealing starts from the expression of the free energy

FðTÞ ¼ � T ln
X

n

e� En=T; ð1Þ

at finite temperature, T, where the sum goes over all the system states, and En is the energy.

The probability of finding the system at state n is proportional to the Boltzmann weight e� En=T ,

therefore, the free energy coincides with the ground state energy at zero temperature. The

problem is that even if we know all the En energies, apart from the most straightforward cases,

we cannot evaluate the summation due to the exponentially large number of terms. The varia-

tional principle states that the exact free energy is always smaller or equal to variational free

energy

FVðTÞ ¼
X

n

PnEn þ T
X

n

Pn lnðPnÞ; ð2Þ

where Pn is an arbitrary probability distribution. The closer the probabilities Pn are to the real

ones, the lower FV(T) will be. In practice, the distribution can’t be too complicated since we

have to calculate the variational free energy analytically, avoiding exponential summations.

The typical strategy is to consider a class of probability distributions Pn(m) parametrized by

some set of parameters m, then calculate FV (m, T) and finally find the minimum m�. This

solution is temperature dependent and we will refer to it as m�(T). The variational free energy

is then FV(T) = FV (m�(T), T).

The Ising model consist of interacting spins: S = (S1, S2 . . . SN), with components Si 2 {±1}.

The model is defined by its energy:

EðSÞ ¼ �
1

2

X

ij

JijSiSj �
X

i

hiSj; ð3Þ
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where Jij is the interaction between spin i and j, and hi is the external magnetic field. In the

mean field approximation, we assume that a variational distribution factorizes. In the case of

spin systems

PMFðS;mÞ ¼
YN

i¼1

PiðSi;miÞ ¼
Y

i

1þmiSi
2

: ð4Þ

This distribution is normalized and the expectation values of the spins are the parameters hSii
= mi. The variational free energy is

FMFðm;TÞ ¼ �
1

2

X

ij

Jijmimj �
X

i

himj

þT
X

i

1þmi

2
ln

1þmi

2

� �

þ
1 � mi

2
ln

1 � mi

2

� �� �

: ð5Þ

We have to find its minimum, so its derivative has to be zero

@FMF

@mi
¼ �

X

j

Jijmj � hi þ T
1

2
ln

1þmi

1 � mi

� �

¼ 0 ð6Þ

and the second derivative, the Hessian should be positive definite

@
2FMF

@mi@mj
¼ � Jij þ

Tdij
1 � m2

i

� 0: ð7Þ

We can rewrite the implicit Eq (6) as a self-consistent equation:

mi ¼ tanh
hi þ

P
j Jijmj

T

� �

: ð8Þ

If m(T) is known for a given temperature T, we can determine it for a slightly lower tempera-

ture m(T − ΔT) by using the self-consistent equation iteratively as it was proposed in [26]. This

method requires fewer function evaluations than SSA. Above some temperature T> T0 the

iterative equation

miðT � DTÞ ¼ tanh
hi þ

P
j JijmjðTÞ

T � DT

� �

ð9Þ

converges towards a unique high temperature solution mi� hi/T. There are more solutions at

lower temperatures. At T0, a bifurcation occurs, and the iterations after that follow one of the

new post-bifurcation solutions. Later on at successively lower temperatures T1 > T2 > T3. . .

further bifurcations occur, and the iteration follows one of the new solutions. The bifurcation

temperatures Tn are those points, where one of the eigenvalues and consequently the determi-

nant of the Hessian (7) becomes zero

det � Jij þ
Tndij

1 � m2
i ðTnÞ

� �

¼ 0 ð10Þ

at the solution mi(Tn) of the self-consistent Eq (8). Due to the nature of the solution, the mean-

field annealing is also called a bifurcation machine. The procedure described above leads to

one of the local minima of free energy. In general, there is no guarantee that the method leads

to the absolute minimum, but decreasing the size of cooling steps ΔT and increasing the overall

running time in parallel, improves the chances of finding deeper minima [31].
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3 Quantum mean field annealing

Instead of the free energy and temperature, we can use quantum mechanics and the adiabatic

theorem to determine the system’s ground state. The adiabatic theorem asserts that if a quan-

tum system is initially at the ground state and the corresponding time-dependent Hamiltonian

operator changes sufficiently slowly, there is a gap between the ground state energy and the

rest of the spectrum. The system remains at the instantaneous ground state [32]. An applica-

tion of this theorem is to find the ground state of a complicated Hamiltonian. The ground

state of the initial Hamiltonian Hi should be easy to prepare, and the final operator Hf is the

one whose ground state we are interested in. In that case, we can compose the Hamilton opera-

tor of the adiabatic problem

HðtÞ ¼ ð1 � sðtÞÞHi þ sðtÞHf ; ð11Þ

where s(t) is a continuous, monotonic function of time, with s(0) = 0 and s(TA) = 1. The time

TA is the annealing time, which must be large. The simplest choice for this is s(t) = t/TA. To

solve the Ising problem with the adiabatic method we have to use the quantum version of the

Ising model, as the final Hamilton operator

Hf ¼ �
1

2

X

ij

Jijs
z
is

z
j �
X

i

his
z
i ; ð12Þ

where σz is the Pauli z-matrix. For the initial Hamilton operator the standard choice is the

transverse magnetic field term

Hi ¼ � D
X

i

sx
i ; ð13Þ

where Δ is the strength of the external field. This transverse term plays similar role to the

entropy term in Eq (2) and it induces tunneling between the minima of the Ising Hamiltonian.

The initial ground state is

jC0i ¼ �
N

i¼1

j "i þ j #i
ffiffiffi
2
p ; ð14Þ

which is a product state, and after the annealing the final state is the ground state of Eq (12)

and from that we can determine the minimal energy spin configuration of Eq (3). For a given

H(t) the state of the system is governed by the Schrödinger equation.

i
d
dt
jCðtÞi ¼ HðtÞjCðtÞi: ð15Þ

Initially the system is at ground state: |C(t = 0)i = |C0i, If the annealing time TA is sufficiently

large, then the evolving wave function reaches the ground state of the Ising model.

To develop an MFA to the quantum problem we introduce the energy functional

E½jCðsÞi� ¼ hCðsÞjHðsÞjCðsÞi: ð16Þ

At s = 0, we set the initial wave function to the initial state |C(0)i = |C0i and for s> 0, we

want to keep it in the minimal energy state. In the mean-field approximation, just like in the

thermal case, we assume that the spins are independent and the trial state vector is a product

jFðsÞi ¼ �
N

i¼1
½ci#ðsÞj #i þ ci"ðsÞj "i� ð17Þ

where the amplitudes are constrained by |ci#(s)|2 + |ci"(s)|2 = 1. The expectation values of the
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Pauli operators can be expressed with the amplitudes as

mz
i ¼ hFjs

z
i jFi ¼ jci"j

2
� jci#j

2
;

mx
i ¼ hFjs

x
i jFi ¼ c�i"ci# þ c�i#ci";

my
i ¼ hFjs

y
i jFi ¼ � ic�i"ci# þ ic�i#ci";

ð18Þ

where mx
i , m

y
i and mz

i are real. They satisfy ðmx
i Þ

2
þ ðmy

i Þ
2
þ ðmz

i Þ
2
¼ 1. It is easy to show that

ci" and ci# can be chosen to be real, and in that case my
i ðsÞ ¼ 0. In terms of the spin expectation

values the energy functional is

E mz sð Þ½ � ¼ s �
1

2

X

ij

Jijm
z
im

z
j �
X

i

him
z
i

" #

� 1 � sð ÞD
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðmz
i Þ

2

q

; ð19Þ

where we used mx
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðmz
i Þ

2

q

, since mx
i > 0 during the minimization process. The param-

eter s plays the role of the temperature. The energy functional is minimal where the derivatives

in terms of the expectation values vanish

@E
@mz

i

¼ � s
X

j

Jijm
z
j � hi þ ð1 � sÞD

mz
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðmz
i Þ

2

q ¼ 0; ð20Þ

and the Hessian is positive definite

@
2E

@mz
i@mz

j

¼ � sJij þ ð1 � sÞD
dij

ð1 � ðmz
i Þ

2
Þ

3=2
� 0: ð21Þ

The first part of Eq (20) is the same as in (6). The difference is in the second term, as it is seen

in Fig 1. Now, we can rewrite the implicit Eq (20) as a self-consistent equation

mi ¼ s
hi þ

P
jJijmj

G

� �

; ð22Þ

where the tunneling rate is Γ = Δ(1 − s)/s and we dropped the superscript mi ¼ mz
i . The new

sigmoid function is

sðxÞ ¼
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p : ð23Þ

This new equation is the main result of the paper. It is the equivalent of the thermal self-

consistent Eq (8), where the tunneling rate Γ is the analog of of the temperature T and σ(x)

replaces tanh(x).

The iterative solution of the new equation is similar to the thermal case. Given mi(s = 0) = 0

we would like to determine mi(s = 1). The m(s) vector is minimizing the energy functional E
(m(s)), where we assume that the s 7!m(s) trajectory is continuous. Without the external mag-

netic field the Ising model has a Z2 symmetry. That means the mz
i ¼ 0 is a solution to Eq (20),

and it is a minimum as long as the smallest eigenvalue of the Hessian is above zero. For the

parameter s this means

s <
D

lmaxðJÞ þ D
ð24Þ
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where λmax(J) is the largest eigenvalue of the matrix Jij. We can set Δ to 1 and rescale Jij so that

its largest eigenvalue is also 1. Now the trivial solution holds until s reaches 0.5. That means it

is sufficient to start the simulation from s = 0.5. Once mi(s = 1) is known in the simulation, we

round it to either 1 or -1. This gives us the S spin configuration. Since the derivative of E(mz)

diverges as some mi approaches ±1 it is advantageous to use a different parametrization mi(ϑi)
= cos(ϑi), mx

i ðWiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2

i

p
¼ sinðWiÞ and then the derivative @E/@ϑi = s(∑j Jij sin(ϑi) cos(ϑj)

+ hi sin(ϑi)) + (1 − s)(−Δ) cos(ϑi) is regular for all ϑi.

4 Benchmarking

As it was summarized by Lucas [33], many NP hard problems can be formulated with the

Ising model. One of them is the QUBO problem, where we have to find the binary variables xi
2 {0, 1}, minimizing the quadratic functional argmin{q(x)}, where q(x) = ∑ij Qij xi xj, and Q is a

symmetric matrix. Replacing the binary variables with spin variables xi = (1 + Si)/2 leads to the

Ising problem with parameters Jij ¼ � 1

2
Qij and hi ¼ �

1

2

P
jQij. The QUBO problem is then

equivalent to finding the ground state of this Ising model. The NP-hard Maximum Cut prob-

lem [34] is often used as a benchmark for optimization algorithms. The task is to partition an

undirected graph G ¼ ðV; EÞ into two subsets (S;V n S) such that the number of edges

between these subsets is as large as possible. If the graph is defined via its adjacency matrix,

where Aij is one, if i and j are connected and zero otherwise, then the corresponding cut value

is

CV ¼
X

fi;jg2E;i2S;j2VnS

Aij ¼
X

i;j
ði<jÞ

Aij

1 � SiSj
2 : ð25Þ

Fig 1. Comparison of the second term in the equations of the thermal (6) and the quantum (20) annealing.

https://doi.org/10.1371/journal.pone.0273709.g001
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In (25) Si = +1 means the spin i is in the subset S, and Si = −1 means it’s in V n S. Maximizing

the cut value is equivalent to minimizing the Ising energy, where Jij = −Aij and hi = 0.

During the simulation, the Z2 symmetry is disadvantageous because, without the external

field, the system remains in the mz
i ¼ 0 solution forever. Adding some small random external

magnetic field, hi breaks this symmetry. We can use this field as noise and run the simulation

repeatedly for many random realizations. One such distribution is shown in Fig 2a for the set

G3 from G-set [30], which is one of the favorite problems to benchmark the methods for solv-

ing the Maximum Cut problem. This is a random graph with 800 nodes and 19176 links. The

hi components are randomly generated uniformly from (−A, A), where A is the amplitude,

and one hundred trials were generated for all amplitudes. The mean values, the best values,

and standard deviations are shown in Fig 2b. If the amplitude is small, we have a high average

CV with a small deviation, on the other hand, if the amplitude is large, then the average CV is

small, and the deviation is high. An optimal amplitude range exists, where the average is still

large enough as well as the deviation, resulting in the largest best value from the sample. In the

G3, this is around A = 0.05 − 0.1, where the best-known cat value 11622 has been achieved.

We tested our algorithm with other Max-Cut problems from the G-set. We focused on the

smaller ones, i.e., the largest was the G22 graph with 2000 nodes. The results are summarized

in Table 1. The last column shows the best values we could find in the literature [9, 35–39]. In

most cases, our best results are the same as the best known; in the rest, it is close.

5 Comparison of the QMFA with SSA and B&B

Two widely used algorithms for discrete optimization problems are the stochastic simulated

annealing (SSA), based on the Monte Carlo method, and the Branch-and-Bound method

(B&B) [40]. The former is a metaheuristic algorithm, just like the QMFA, but has different

hyperparameters. The latter is an exact algorithm where the tests were terminated after a fixed

time due to the prior knowledge of its exponential time complexity. These two algorithms are

used to compare the performance of the QMFA.

The pseudocode of QMFA is the following:
algorithm: Mean Field Annealing:
preprocess: J ≔ J=lmaxðJ Þ, Δ ≔ 1

input: EðW ; h ; sÞ, @WEðW ; h ; sÞ, @W @WEðW ; h ; sÞ, A, n

output: S

Fig 2. a, Empirical Cumulative Distribution of the Cut Values of G3 for different external magnetic field amplitudes. b, Mean value, best value and

standard deviation of the Cut Values of G3 for different external magnetic field amplitudes.

https://doi.org/10.1371/journal.pone.0273709.g002
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W ≔ p=2

h ≔ random numbers between −A and A
for k≔0 to n
s ≔ 1/2 + k/(2n)
W ≔ local minimum of EðW ; h ; sÞ using @WEðW; h; sÞ and @W@WEðW; h; sÞ with the

initial value W

m ≔ cosðWÞ
S ≔ (-1 if mi < 0 else 1 for mi in m)
return S

We have used the Newton-conjugate-gradient method from the SciPy library for finding

the local minimum. In this QMFA algorithm the noise amplitude A and the number of steps n
are the hyperparameters, and once the vector S is known, the Cut Value is

CV ¼ 1

4

P
ijJijðSiSj � 1Þ, with the original matrix J . Fig 3 shows one instance from G1 how the

Cut Value converges as n increases. With n = 20, we can be sure that we have reached the final

Cut Value. One run with n = 20 takes tQMFA = (0.93 ± 0.18) s. Unfortunately, not every h noise

gives the best Cut Value therefore, we have to run the algorithm multiple times. As shown in

Fig 2 only a well-tuned noise amplitude can achieve a good result. For G1, the A = 0.1 is a good

choice, but if we do not know this hyperparameter, we have to explore this parameter space as

Table 1. G-set benchmarks. QMFA: Our results with the quantum MFA method. Best: Best-known results.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G22

QMFA 11624 11620 11622 11646 11631 2178 2006 2005 2050 1999 560 554 13353

Best 11624 11620 11622 11646 11631 2178 2006 2005 2054 2000 564 556 13359

https://doi.org/10.1371/journal.pone.0273709.t001

Fig 3. Convergence of the Cut Value of QFMA as a function of steps for the G1 problem.

https://doi.org/10.1371/journal.pone.0273709.g003
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we did in Section 4. After we have determined n and A, we also need the success rate, i.e., the

probability of finding the best-known Cut Value. For the G1 problem, out of 1000 trials, 61

were successful, so a rough estimation for the time needed to find the best value if the hyper-

parameters are known is 0.93 s � (1000/61) = 15.24 s.

In the case of SSA we need an annealing schedule [41], which tells us how the temperature

decreases. We have chosen the geometrical cooling schedule, where Tk+ 1 = Tk α, with α 2 (0,

1). The pseudocode of the SSA is
algorithm: Stochastic Simulated Annealing
input: ES, Tinit, α, n

output: S
S :¼ random vector with ±1 elements
for k ≔ 0 to n
i ≔ random integer from [1, N]
ΔEi ≔ 2∑j Jij Si Sj
T ≔ Tinit αk

if random(0,1) < exp(−ΔEi/T):
Si ≔ −Si

Here DEi ¼ ESðiÞ � ES , and SðiÞ is the same as S except the ith spin is flipped. If the initial

temperature is Tinit = 2maxi ΔEi, then any initial trial i will be accepted with more than 50%, so

it can be considered a sufficiently high temperature. The final temperature is Tfinal = Tinit αn.

Since in the G-sets the Jij elements are -1, 0 or 1, the smallest positive energy difference is 1,

hence it is reasonable to choose Tfinal = 0.05. Below that temperature it is unlikely to accept any

state with higher energy than the current one. The parameter of the geometrical schedule is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tfinal=Tinit

n
p

. The only remaining hyperparameter is n. Fig 4 shows the success rate for dif-

ferent n values for G1. In 15 seconds, 106 Monte Carlo steps can be carried out. It means if we

Fig 4. Success rate out of 100 trials in the SSA case.

https://doi.org/10.1371/journal.pone.0273709.g004
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use n = 2 × 106, then we need approximately 115 seconds to find the best known Cut Value of

G1.

For the B&B method, we used the BiqCrunch implementation [40]. In one hour, the Cut

Value it could find was 11524.

The success rate can be dissimilar for the other sets. For example, for G3, after the hyper-

parameter optimization in the case of the QMFA, it is 0.016, and in the case of SSA with

n = 5 × 107, it is 0.17. Even the running time is increased to tQMFA = (2.8 ± 1.8) seconds, result-

ing in the expected time for finding the best known Cut Value with QMFA to 175 seconds.

With SSA, this expected time is 455 seconds, and the B&B method found a solution with the

Cut Value of 11538 in one hour.

In the examples mentioned above, the QMFA outperformed both the SSA and the B&B.

Still, for example, for the G2 problem, the QMFA was only able to find the best known Cut

Value once out of 2000 trials hence it would be inconsistent to calculate the average success

time. On the other hand, the SSA found 5 times the best Cut Value out of 100 trials with

n = 5 × 106 and the expected success time is 1500 seconds. The B&B method found a state with

CV = 11521 in one hour.

The G11 is special since the QMFA cannot find the best Cut Value, the SSA can find it on

an average of 2500 seconds, but the B&B method needs only 512 seconds. This can be due to

its simple structure since the G11 is a toroidal graph. On the other hand, an additional one

hour is not enough for B&B to confirm that it is the best possible Cut Value. Since it is a toroi-

dal graph (in this case, an 8 × 100 grid with periodic boundaries), we can solve it exactly with

the transfer matrix method, confirming that 564 is indeed the best possible Cut Value.

Considering all of the facts above, we can state that no algorithm is universally dominant,

but we can say the QMFA can find a good, in some cases the best, optimum in a relatively

short time.

6 Conclusion and outlook

We have shown that the thermal and the quantum mean-field annealing are governed by simi-

lar equations, where the temperature and the tunneling rate play similar roles. This is due to

the similarity of the entropic term in the free energy and the transverse term in the energy of

the quantum approach. The sigmoid function in the quantum approach differs from the ther-

mal one, and for large arguments, it changes like a power law as opposed to the exponential in

the thermal case. As it was pointed out in [29] the specific nonlinearity of the sigmoid function

affects the speed of the convergence of the mean-field approach. This can be one of the reasons

for the relative success of the present approach in reproducing some of the best cut values for

certain problems from the G-set. The approximation presented here is the most straightfor-

ward application of the variational method. The next step can be a more sophisticated version

of the mean-field annealing that can be introduced by considering the correlations among the

most coupled spins, which might lead to even better cut values in the future.
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