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Motor imagery electroencephalography (EEG) has been successfully used in locomotor rehabilitation programs. While the noise-
assisted multivariate empirical mode decomposition (NA-MEMD) algorithm has been utilized to extract task-specific frequency
bands from all channels in the same scale as the intrinsic mode functions (IMFs), identifying and extracting the specific IMFs that
contain significant information remain difficult. In this paper, a novel method has been developed to identify the information-
bearing components in a low-dimensional subspace without prior knowledge. Our method trains a Gaussian mixture model
(GMM) of the composite data, which is comprised of the IMFs from both the original signal and noise, by employing kernel spectral
regression to reduce the dimension of the composite data. The informative IMFs are then discriminated using a GMM clustering
algorithm, the common spatial pattern (CSP) approach is exploited to extract the task-related features from the reconstructed
signals, and a support vector machine (SVM) is applied to the extracted features to recognize the classes of EEG signals during
different motor imagery tasks. The effectiveness of the proposed method has been verified by both computer simulations and

motor imagery EEG datasets.

1. Introduction

Many people throughout the world live with a variety of clini-
cal conditions, including stroke, spinal trauma, cerebral palsy,
and multiple sclerosis. Unfortunately, these conditions fre-
quently present with motor deficits, which greatly reduce the
quality of life for those affected. Mental practice with motor
imagery (MI) is currently considered a promising additional
treatment to improve motor functions [1]—repetitive cog-
nitive training exercise, during which the patient imagines
performing a task or body movement without actual physical
activity, has been shown to modulate the cerebral perfusion
and neural activity in specific brain regions [2]. Interestingly,
it has been suggested that the combination of robot-assisted
training devices and brain-controlled limb assistive technol-
ogy may help to induce neural plasticity, resulting in motor
function improvement [3]. Despite recording noninvasively

and on the same time scale as the sensorimotor control
of the brain, the high-dimensional EEG data used in MI
exercises faces many challenges [4]. More specifically, these
signals are usually collected from multiple electrodes (or
channels), which are inevitably contaminated by the noise
from biological, environmental, and instrumental origins.
Dimensionality reduction plays a key role in many fields
of data analysis [5]. Using this method, data from a high-
dimensional space can be represented by vectors in a reduced,
low-dimensional space in order to simplify problems without
degrading performance. One of the most popular dimen-
sionality reduction methods is principle component analysis
(PCA) [6], which is theoretically guaranteed to discover
the dimensionality of the subspace and produce a compact
representation if the data is embedded in a linear subspace.
In many real world problems, however, there is no evidence
that the data is actually sampled from a linear subspace
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[7, 8]. This has motivated researchers to consider manifold-
based approaches for dimensionality reduction. Various
manifold learning techniques, including ISOMAP, locally
linear embedding (LLE), and Laplacian eigenmaps, have been
proposed to reduce the dimensionality of fixed training sets
in ways that maximally preserve certain interpoint relation-
ships [9-11]. Unfortunately, these methods do not generally
provide a functional mapping between the high- and low-
dimensional spaces that is valid both on and off the training
data [7]. Recently, spectral methods have also emerged as
powerful tools for dimensionality reduction. Spectral regres-
sion (SR), based on regression and spectral graph analysis,
can make efficient use of both labeled and unlabeled points
to discover the intrinsic discriminant structure in the data
[7, 8]. As a result, SR has been applied to supervised, semisu-
pervised, and unsupervised situations across different pattern
recognition tasks [12, 13] and has shown its superiority over
traditional dimensional reduction methods.

Empirical mode decomposition (EMD) is a fully data-
driven and adaptive analysis method that is widely applied
within the field of biomedical signal processing [14-16]. It
decomposes a raw signal into a set of intrinsic mode functions
(IMFs) which represent the natural oscillatory modes con-
tained within the original data. EMD does have some limita-
tions in processing multichannel data, since the IMFs decom-
posed from different data channels are difficult to match in
number and/or frequency [17, 18]. In order to resolve this
problem, a noise-assisted multivariate EMD (NA-MEMD)
[19] method has been proposed recently. This method applies
the dyadic filter bank property of multivariate EMD [20] to
white noise and is thereby capable of reducing the mode-
mixing problem significantly, achieving favorable perfor-
mance in the classification of MI EEG signals [21]. Although
EMD and its extended versions have been widely researched
and applied, there have been few studies on the selection of
relevant IMF levels (scales), raising the question of how to
select the information-bearing IMF components in an effi-
cient way. Conventional approaches make use of prior knowl-
edge in task-related domains: relevant IMFs are selected by
calculating the average power spectra of the first several
IMFs and comparing them to the frequency distributions
of the mu (8-12Hz) and beta rhythms (18-25Hz) [21].
Similarly, in the neural beta-related oscillatory activities, the
informative IMFs are chosen by examining the mean beta
band frequency [22]. In [23], the relevant modes are selected
by means of partial reconstruction and measures of similarity
are calculated between the probability density function of the
input signal and that of each mode extracted by EMD, though
this is still insufficient to analyze multivariate data. Recently, a
novel statistical approach has been proposed to recognize the
information-bearing IMFs on each scale [24]. This method
uses similarity measures to compare the IMFs to both the data
and noise, yielding impressive results when applied to the
multichannel local field potentials recorded from the cortices
of monkeys during generalized flash suppressing (GFS) tasks.

In this work, we propose a novel method to identify
the information-bearing components from EEG data in low-
dimensional space, independent of prior knowledge. The pro-
posed method first performs NA-MEMD on the input signal
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to obtain different scales of IMFs. Secondly, unsupervised
kernel spectral regression is employed to map the decom-
posed IMFs into a low-dimensional subspace, avoiding the
eigendecomposition of dense matrices and enabling the flex-
ible incorporation of various regularizers into the regression
framework [7, 8]. Thirdly, a Gaussian mixture model (GMM)
is generated, informed by the IMFs from both the original sig-
nal and noise, and an optimal number of clusters and corre-
sponding model parameters are estimated by the GMM clus-
tering approach. Finally, the information-bearing IMFs from
the input signal are discriminated on each scale. The GMM
clustering algorithm is essentially similar to conventional
clustering algorithms (e.g., K-means, performing a hard
assignment of data points to clusters) except that it allows
cluster parameters to be accurately estimated even when
the clusters overlap substantially [25]. Compared to existing
methods of identifying informative IMFs, the new method
has several noteworthy aspects:

(1) Kernel spectral regression is employed to reduce the
dimension of the decomposed IMFs by constructing
a nearest neighbor graph to model their intrinsic
structure.

(2) The probability density function of the composite
IMFs is modeled by a mixture of Gaussian distribu-
tions and the number of clusters which best fits the
composite IMFs is estimated and used to recognize
the information-bearing components.

(3) The method does not depend on prior knowledge
and can discriminate the informative IMFs from each
signal channel on each scale.

The rest of the paper is organized as follows: Section 2
presents the materials and proposed signal identification
method, consisting of the noise-assisted multivariate empir-
ical mode decomposition of multichannel EEG signals, the
spectral regression-based dimensionality reduction of the
composite data created by combining the IMFs from signal
and noise channels, and GMM clustering. It then briefly
introduces the common spatial patterns-based feature extrac-
tion of the reconstructed signals from the identified informa-
tion-bearing IMFs and support vector machine (SVM) clas-
sifier. Section 3 then demonstrates the experimental results,
including simulation results and applications on real MI EEG
datasets. Finally, we provide some concluding remarks and
suggestions for future work in Section 4.

2. Materials and Methods

2.1. Subjects and Data Recording. In order to assess the
proposed algorithm, the EEG data from nine subjects was
obtained from two publicly available datasets. These datasets
contain EEG signals recorded while subjects imagined limb
movements, such as left/right hand or foot movements. They
are described briefly as follows:

(1) BCI Competition IV Dataset I [26] was provided by
the Berlin BCI group. EEG signals were recorded
using 59 electrodes from four healthy participants (a,
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FIGURE I: The positions of the chosen electrodes in the extended
international 10-20 system.

b, f, and g) who performed two classes of MI tasks.
More precisely, subjects a and f performed left hand
and foot MI while subjects b and g carried out left
hand and right hand MI. A total of 200 trials were
available for each subject, including 100 trials for each
class.

(2) BCI Competition IIT Dataset IVa [27] was provided
by the Berlin BCI group. EEG signals were recorded
using 118 electrodes from five healthy subjects (aa,
al, av, ay, and aw) who performed right hand and
foot MI. A training set and a testing set were available
for each subject, though their size differed for each
subject. In total, 280 trials were available for each
subject, among which 168, 224, 84, 56, and 28 trials
comprised the respective training sets for subjects aa,
al, av, ay, and aw, with the remaining trials belonging
to their testing sets.

Since the sensorimotor rhythms (SMRs) of motor
imagery are primarily linked to the central area of the brain
[28, 29], 11 EEG channels from the experimental data were
used (FC3, FC4, Cz, C3, C4, C5,C6,T7, T8, CCP3, and CCP4,
as recommended in [21]). The locations of these channels are
shown in Figure 1.

2.2. Signal Identification in Low-Dimensional Subspace. Our
goal is to identify the significant information-bearing IMFs
on each scale for multichannel data. For each set of multivari-
ate IMFs obtained by NA-MEMD, it is key to recognize the
suitable IMFs bearing significant information associated with
the MI EEG activities. In this section, we introduce a novel
four-stage method to identify the informative IMFs. First, the
NA-MEMD algorithm is performed on the original data to
obtain a set of multivariate IMFs, from which the composite

data is created by combining the IMFs from each signal chan-
nel with those from the noise channels on each scale. Sec-
ondly, the composite data is mapped into lower-dimensional
subspace to extract feature vectors using unsupervised kernel
spectral regression [7, 8]. Thirdly, a Gaussian mixture model
is informed by exploiting the intrinsic discriminant struc-
ture of the probability distribution that generates the low-
dimensional feature vectors. Then, for each group of feature
vectors on each scale, the maximum likelihood classification
is performed to distinguish them into classes after an optimal
number of clusters and corresponding model parameters are
estimated by the GMM clustering approach [25]. Finally, the
informative IMFs from each signal channel on each scale are
identified according to the clustering results. In the following
sections, more details are provided for each stage of the
proposed approach.

2.2.1. Noise-Assisted Multivariate Empirical Mode Decomposi-
tion. For multivariate signals, the MEMD method [20] is uti-
lized by generating multidimensional envelopes, taking signal
projections along different directions, and finally averaging
these projections to obtain the local mean. Though it is valid
in processing multivariate nonstationary signals, MEMD still
inherits a degree of mode-mixing. This has led to the recent
development of the NA-MEMD approach [19], which is
performed by adding white noise as additional channels in
the original signal. NA-MEMD then enjoys both the benefits
of the quasi-dyadic filter bank structure of MEMD on white
noise and the additional realizations of white noise, guaran-
teeing the separability of the IMFs that correspond to both the
original signal and noise. Given an n-variate input neuronal
signal {s(t)}tL:1 = {s;(£),s,(t),...,s,(t)} with L samples per
trial, MEMD produces ] multivariate IMFs:

]
s(t)=) d;(t) +x (1), o)
j=1

whered (1) denotes the jth IMF of s(t) and r(t) represents the
n-variate residual.

In practice, the sifting process for a multivariate IMF can
be stopped when all the projected signals fulfill a stoppage cri-
terion. For MEMD sifting, a combination of EMD stoppage
criteria is employed as introduced in [30, 31]. The stoppage
criterion in standard EMD requires that the number of
extrema and zero crossings differ at most by one for 7 consec-
utive iterations in the sifting algorithm [30]. By introducing
the envelope amplitude p(t) = 1/x ZZ:I |e9k (t) — m(t)] and
defining an evaluation function f(t) = |m(t)/p(t)|, where
x denotes the total number of direction vectors in MEMD
decomposition, % (t) represents the envelope curve along the
kth (k = 1,...,«) set of directions given by angles 6, =
{0",6’; yees Gﬁ_l}, and m(t) is the local mean signal, another
stoppage criterion is proposed [31]. The sifting process is
continued until the value of f(¢) is less than or equal to some
predefined threshold y. Similar to the given values in [20],
T =5and y = 0.075 were chosen in this paper.

2.2.2. Dimensionality Reduction by Spectral Regression. Spec-
tral regression is an efficient method to reduce dimensionality



from the graph embedding viewpoint [7, 8]. Specifically, an
affinity graph is first constructed to learn the responses for
labeled or unlabeled data and then the ordinary regression is
applied for learning the embedding function. In essence, SR
performs regression after the spectral analysis of the graph.

Suppose we have N data points {x;}, ¢ R*, dimension-
ality reduction would aim to find a lower-dimensional repre-
sentation {zi}fil cRM, M <« L. Givena p-nearest neighbor
graph G with N vertices, where the ith vertex corresponds to
a data point x;, let W be a symmetric N X N matrix with W;
having the weight of the edge joining verticesiand j. Gand W
can be defined to characterize certain statistical or geometric
properties of the dataset.

Letv = [v),...,vy]" be the map from the graph to
the real line, where T denotes a transposition. In the graph
embedding approach [7], by introducing a linear function,
v; = f(x;) = a'x;, we find X"a = v, where X = [x,,...,Xy] €
RN and a = [a,,...,ay]". The optimal embedding, v, is
then given by the eigenvector corresponding to the maximum
eigenvalue of the generalized eigenproblem

XWX'a = AXDX"a )

with the eigenvalue A, where D is a diagonal matrix whose
entries are the column sums of W, D;; = >, W);. This opti-
mization can be solved through regression by adopting the
regularization technique [7], and its solution is then given by

A N . ) L 2
a= argmalrlz (a X; — Vi) T Z "af“z
=1 j=1
(3)

)]
j=1

where v; is the ith element of v, the nonnegative regularization
parameter « is used to control the amount of shrinkage,
and some coeflicients will be shrunk to exact zero if the
nonnegative parameter f3 is large enough due to the nature
of the L, penalty. When the number of features is larger than
the number of samples, the sample vectors will typically be
linearly independent; thus the solutions to the optimization
problem in (3) are the eigenvectors of the eigenproblem in (2)
as o and f3 decrease to zero [7, 8]. The largest M eigenvectors
of a are obtained according to the expected dimensionality
of the reduced subspace in real applications. In this way, a
low-dimensional representation of the sample matrix X is
obtained as Z = X"a.

Similar to linear regression, by defining a nonlinear
embedding function in reproducing kernel Hilbert space
(RKHS), thatis, v = f(x) = Y2, a;K(x,x;) = K(x)"a, where
K(x,x;) is the Mercer kernel of RKHS and K(x) = [K(x,x,),
..., K(x,xy)]", the linear spectral regression approach can be
generalized to kernel spectral regression (KSR) [8].

2.2.3. Gaussian Mixture Model for Data Clustering. The
Gaussian mixture model (GMM) is widely used as a proba-
bilistic modeling approach to address unsupervised learning
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problems. Based on the expectation-maximization (EM)
algorithm [32] and an agglomerative clustering strategy using
Rissanen’s minimum description length (MDL) criterion,
a GMM-based clustering approach is developed [25]. The
process begins with an initial number of clusters and a set of
cluster parameters and iteratively combines the clusters until
only one remains.

LetZ = [z,,...,2y] € R™¥ be a set of M-dimensional
samples belonging to different subclasses or clusters and let
Y = [¥1>..., yn] be the subclass of each sample, where y; €
{1,...,c} denotes which Gaussian distribution the sample z;
belongs to and ¢ is the number of Gaussian components. The
detailed steps of the GMM cluster algorithm are then given
as follows.

(1) Initialize the parameters including the initial number
of clusters ¢, and the Gaussian model parameters Q© =
{{nio),y(lo),z(lo)}, i {nﬁo),ygo),iio)}}, where y, is the mean
vector, X, is the covariance matrix for the kth Gaussian
distribution, and 77, denotes the prior probability of the data
point generated from the kth component, k = 1,...,c. The
number of initial clusters in this case should be chosen to fit
the number of data types for discrimination.

(2) Apply an iterative EM algorithm until the change in
the MDL criterion (MDL(K, Q)) is less than a threshold &,
where e = 0.01 X (1 + M + (M + 1)M/2) x log(NM):

N c
MDL (¢, @) = - ) log < Y by, (2| K, Q))
i=1 k=1

(4)
+ %vlog (NM),

where p,,(z; | k,Q) is the Gaussian probability density
function for the sample z; given that y; = k, log(-) denotes
the log-transformation and v is the number of continuously
valued real numbers required to specify the model parame-
ters Q, v < 1/(2NM). '

(3) Record the model parameter Q©n) and the value of
the MDL(c, Q%)) where i, denotes the final iteration of
the EM updating process for each value of c.

(4) If the number of clusters is greater than 1, apply
a defined distance function [25] to reduce the number of
clusters, set ¢ «— ¢ — 1, and repeat Step (2).

(5) Choose the value ¢ and the model parameters QGtinat)
which minimize the value of the MDL criterion.

(6) Based on the optimal parameters ¢ and Q@) from
Step (5), sample vectors are distinguished into € classes using
the maximum likelihood classification.

2.2.4. Identification Algorithm for Information-Bearing IMFs.
In this section, we introduce our algorithm for discriminating
between informative and noninformative IMFs. The detailed
steps of our method (KSR-GMM) are described as follows.
(1) Generate (n + I)-channel multivariate signal consist-
ing of the input n-channel signal and an I-channel uncorre-
lated Gaussian white noise time-series of the same length as
the input and then perform the MEMD decomposition [20]
on the multivariate signal, obtaining (n + [)-variate IMFs
denoted by (n + [) x J x L matrix, where J is the number
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of decomposition scales and L is the length of samples per
channel.

(2) On the jth (j = 1,...,]) scale of the resulting
multivariate IMFs from Step (1), combine the I-channel
IMFs corresponding to the noise with the one-channel IMFs
from the original signal, giving n-groups of (I + 1)-variate
composite data given by n x (I + 1) x L matrix.

(3) Atagiven (jth) scale, the unsupervised KSR algorithm
is performed, respectively, on the ith (i = 1,...,n) group of
composite data obtained in Step (2), yielding n-groups of low-
dimensional representation vectors denoted by n x (I + 1) x
M matrix in the reduced subspace, where M is the number of
reduced dimensions.

(4) At the given scale, for each group of representation
vectors extracted in Step (3), the optimal number of clusters
¢ is estimated by the GMM clustering approach and, based on
the value of ¢ and the corresponding model parameters, the
representation vectors are then classified into ¢ classes using
the maximum likelihood classification.

(5) At the given scale, the information-bearing IMFs
are identified according to the clustering results in Step (4):
if an IMF from any individual signal channel is clustered
with the IMFs from noise channels, then IMF is rejected as
noninformative. All remaining IMFs are considered to be
significantly information-bearing.

In this work, the initial number of clusters is chosen to
be two in the GMM clustering, since we only discriminate
two kinds of data: informative and noninformative IMFs.
Additionally, it should be noted that excessive noise levels
can compromise the data-driven ability of the NA-MEMD,
though there is no technical limit on the number of the noise
channels that can be added. As a rule of thumb, the variance
of the noise is required to be within 2-10% of the variance of
the input signal to produce reliable results [20].

2.3. Common Spatial Patterns for Feature Extraction. In the
context of EEG signal processing, the common spatial pat-
terns (CSP) approach aims at finding linear spatial filters that
maximize the variance of EEG signals from one class while
minimizing their variance from others [33]. Mathematically,
the spatial filters are the stationary points of the following
optimization problem:

Tp BT
u E Eju uTClu

u"EElu  u'Cu (5)

max J(u) =
st.  ull, =1,

where u denotes a spatial filter, E; represents the n x L data
matrix from class i where 7 is the number of channels and L
is the number of samples per channel, and C; is the estimated
spatial covariance matrix from class i € [1,2]. Using the
Lagrange multiplier method, the solution can be obtained
as the eigenvectors of the generalized eigenvalue decomposi-
tion: C;u = {C,u, where { denotes the eigenvalue associated
with u. The spatial filters are then the eigenvectors of C,'C,,
which correspond to the largest and lowest eigenvalues.

With the projection matrix U = [u,, ..., u,], the spatially
filtered signal of a trial E is given as S = U'E. For discrimi-
nating between two classes of MI tasks, the extracted feature

vectors are the logarithm of the spatially filtered signal:

var (§]) )
.= lo P E— 5 (6)
Jy=log < > var (5)

wheres; (j = 1,...,2m) denotes the m first and last rows of

S and the symbol var(-) denotes the variance.

2.4. Support Vector Machine Classification of MI EEG. The
support vector machine (SVM) algorithm [34] is believed
to be a state-of-the-art classification method due to its
robustness to outliers and favorable generalization capability.
The central idea of SVM is to separate data by finding the
hyperplane that produces the largest possible margin, which
is the distance between nearest data points of different classes.

The detailed steps of EEG processing are outlined as
follows:

(1) Preprocess the n-channel EEG data using a 5th-order
Butterworth filter, obtaining filtered data with the
frequency band 8-30 Hz.

(2) Perform the proposed identification method on the
composite signals which are acquired by combining
an additional /-channel Gaussian white noise with the
n-channel EEG data obtained in Step (1), identifying
the information-bearing IMFs on each scale.

(3) For the n-channel EEG data, the informative IMFs
distinguished from Step (2) are added together to
construct the band-pass filtered signals.

(4) Process the reconstructed signals from Step (3) with
the CSP algorithm to extract the feature vectors for
different motor imagery tasks.

(5) Employ the SVM classifier to identify the classes of
EEG during different MI tasks based on the extracted
feature vectors in Step (4).

3. Experimental Results and Discussion

In this section, several experiments on simulated data and
real world EEG data were performed to show the effectiveness
of our proposed method. The new algorithm was constructed
based on the spectral regression code (http://www.cad.zju.edu
.cn/home/dengcai/Data/data.html) and the GMM clustering
code found in the software package (https://engineering.pur-
due.edu/~bouman/software/cluster/). We used the LIBSVM
toolbox [35] to implement the SVM classification of EEG
data. For all methods using kernel applications, a Gaussian
kernel function is chosen due to its validity and stability in
experiments, that is, exp(—||x; — X; 1/ 2712), where the parame-
ter 1 is the Gaussian kernel width. All the methods are
implemented in MATLAB 2013a environment on a PC with
a 2.5 GHz processor and 4.0 GB RAM.
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3.1. Simulation Results. Our proposed method is first per-
formed on the simulated data to verify its effectiveness.
Unless otherwise specified, 15-channel noise data was gener-
ated using an uncorrelated Gaussian white noise time-series
which has the same length as that of the input signal. More-
over, the variance of noise was set to be 6% of the variance of
the input according to suggestions in [20]. Additionally, the
number of nearest neighbors (p = 5) and the regularization
parameters (¢ = 0.001 for L, penalty and 8 = 0.01 for L,
penalty) were chosen by cross-validation in this simulation.

In this experiment, the same simulated data was gener-
ated as in [24]. A 3-channel synthetic signal [X(¢), Y (t), Z(t)]
with the length N = 1000 and the sampling rate f, = 1000 Hz
is

X (t) = sin (27f,t) + sin (27f,t) + sin (27f5t)

+q, (@), t=1,2,...,1000

Y (t) = sin (27tf,t) + sin (27f5t) + g, (t),
7
t=1,2,...,1000 7

Z (t) = sin (2nf,t) + sin (27f5t) + g5 (),
t=1,2,...,1000,

where f, = 12/f,, f, = 26/ f,, f5 = 50/ f,, and q, (), q,(¢),
q;(t) represent Gaussian white noises.

(I) To study the clustering performance of our method. A
set of 3-channel input signals with SNR =20 dB was generated
and an additional 15-channel white noise with SNR = 6.1dB
was added to the input signal to create the composite signal.
Our method was then performed on the composite signal and
the information-bearing IMFs on each scale were identified.
Figure 2 shows a scatter plot with class labels of sixteen sam-
ples from a two-dimensional feature vector at the first seven
scales, including one sample corresponding to one signal
channel and fifteen samples from noise channels. Here, the
data points corresponding to signal channels are represented
by “*” while those corresponding to noise channels are dis-
played by “0” in blue.

It can be seen from Figure 2 that the composite data points
on the 4th, 5th, and 6th scales in X-group are all clustered into
two classes, with the same being true for the 4th and 6th scales
in Y-group and the 4th and 5th scales in Z-group, while the
composite data on the remaining scales of each channel falls
into one class. According to the proposed method, these IMFs
with two clusters are regarded as informative and the identi-
fication results are consistent with the IMFs containing the
true frequency components decomposed by the NA-MEMD
algorithm, as shown in Figure 3. The first seven IMFs are
denoted as C,-C, and the residuals are represented as C,,,,
which are the sums of the remaining scales of IMFs. It can be
seen that the underlying frequency components occur in the
4-6th IMF components, which are displayed in red.

(IT) To test the effect of noise with different SNRs on our
method, it was necessary to verify this performance since
measured data often suffers from noise contamination in
real applications. Our method was compared with several
approaches for identifying information-bearing components:
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(i) Hus method [24], which uses the Wasserstein distance
to assess the similarity between the reference IMFs from
noise channels and the IMFs from signal channels and
subsequently establishes a confidence interval (e.g. 95%) for
the distance by employing a Monte-Carlo technique, denoted
as WD-CL; and (ii) three algorithms for dimensionality
reduction together with GMM clustering: PCA, kernel PCA
(KPCA) [36], and L,-norm PCA (L,PCA) [6]. In order to
facilitate performance comparison, two kinds of error were
evaluated. These are defined as (1) Type I error, which is
the failure to identify true IMF components bearing relevant
information, and (2) Type II error, which is the improper
identification of information-free IMF components.

First, different SNRs were varied by systematically chang-
ing the variance of the white noise superimposed in the input
signal, combined with separate 15-channel white noise (SNR
6.1dB) as reference channels. Overall, sixteen SNR levels were
tested with 100 trials performed at each level. In each trial,
the SNR of the white noise superimposed on the input signal
was first changed, the relevant IMFs were identified by the
different algorithms, and the corresponding error rates were
calculated. The results from this test are shown in Figure 4.
Low rates of Type I and Type II error were found at the higher
SNR levels for all methods. On the whole, with the exception
of Type I error rates in PCA-based approaches, increases in
SNR led to decreases in error rates. When compared with
other identification approaches, PCA-GMM, KPCA-GMM,
and L, PCA-GMM showed lower Type I error rates but higher
Type II error rates, while WD-CI yielded the lowest Type II
error rate. The proposed method showed an improved Type
I error rate with a slightly higher Type II error rate than
the WD-CI algorithm, though the overall Type II error rates
of both the new method and the WD-CI algorithm remain
very small, even at low SNRs. These results indicate that our
method is able to effectively identify the information-bearing
components at low SNRs and is highly resistant to white
noise.

Next, considering that the noise contained in the signal
channels is mismatched with the noise in the reference
channels, the effects of red noises (1/ f 2 noise) with different
SNRs were tested on the proposed method. Figure 5 shows
the identification error rates at different noise SNR levels.
Results indicate that both the new method and the WD-CI
algorithm work well even when there is a mismatch between
the noise contained in the data and the noise in the reference
channels. This further demonstrates the robustness of our
method when identifying the informative components in
noisy data at low SNRs.

3.2. MI EEG Classification Results. This section evaluates the
performance of our proposed method on MI EEG datasets.
It has already been shown that the greatest result of motor
imagery is a modulation of the SMRs [27]. Differential mod-
ulations in the SMRs were decomposed using the NA-MEMD
method with locally orthogonal and narrowband IMF bases.
Based on the identified information-bearing IMFs, relevant
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red noise superimposed on the signal.

IMFs from the same channel were summed to get the
reconstructed signal, and CSP-based feature extraction and
SVM-based classification were performed.

For each trial in the BCI Competition IV Dataset I, we
selected the EEG data from 0-4 s after the initiation of MI,
as performed in [21]. In contrast, the window from 0.5-2.5s
after initiation was used for the BCI Competition III Dataset

IVa, as in [37]. The ll-channel EEG data was regarded
as the input signal and combined with an additional 15-
channel noise (SNR 20 dB). Several parameters chosen by
cross-validation in our identification algorithm are p = 5,
« = 0.1, and = 0. For both EEG datasets, the best model
parameters were determined by fivefold cross-validation
from {27'%,...,2'° in SVM models. According to the
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FIGURE 6: The average power spectra of C; ~ C, for all four subjects in BCI Competition IV Dataset I. Note that our method computes the
average power spectra from the identified information-bearing IMFs at the first four scales for all 200 trials of each subject.

aforementioned steps, experimental results are presented as
the following.

(I) To demonstrate the identification capability of the
informative IMF components in EEG data using the pro-
posed method: it is noted that, for EEG data, unlike the
simulations, we do not know the ground truth of the IMFs
that have been identified. For all 200 trials of each subject in
the BCI Competition IV Dataset I, the average power spectra
of the identified information-bearing IMFs were computed
and then compared to those obtained using the existing
method (NA-MEMD-PK) [21].

Figure 6 shows the logarithm of average power spectra
for each subject using the new method. It can be seen

that the beta and mu rhythms, which are contained in the
2nd (C,) and 3rd IMFs (C;), respectively, are separated
clearly. Moreover, the frequency bandwidths in the 1st IMFs
(C,) are generally broad, containing some parts of the 15-
30 Hz frequency band. Consequently, there is a trade-off in
the choice of C,; ignoring it would sacrifice some useful
information, whereas conserving it could introduce noise.
To resolve this problem, the role of the first scale is decided
according to the optimal classification results combined with
CSP-based feature extraction. For all four subjects, a paired
t-test revealed no significant differences between the two
approaches in the power spectra of all 200 trials at the first
three IMFs but found a significant difference at the 4th IMF,



12 Neural Plasticity
TABLE 1: p values comparing the power spectra of the first four IMFs identified by two approaches.
Subjects Ist IMFs 2nd IMFs 3rd IMFs 4th IMFs
a 0.581 0.995 0.536 0.007
b 0.899 0.989 0.866 0.004
f 0.656 0.998 0.958 0.030
g 0.540 1.000 0.777 0.010
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FIGURE 7: Classification accuracies (mean and standard deviation)
m = 1,2, 3, 4, respectively.

as shown in Table 1. This demonstrates the validity of the
proposed approach when identifying information-bearing
IMFs from real EEG data.

(II) An evaluation of the classification performance of the
proposed method using a fivefold cross-validation study on
two MI datasets: the classification process here was repeated
100 times using the new method, the NA-MEMD-PK algo-
rithm [21], and the non-EMD based approach in which raw
data is directly processed by CSP-based feature extraction
and SVM-based classification for a varying number of spatial
filters m = 1,2,3,4). The average accuracy and standard
deviation were obtained for each method and used for direct
comparison.

3 NA-MEMD-PK
E Our method
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(d)

obtained for the four subjects of BCI Competition IV Dataset I when

Considering the size of the total data for each subject in
BCI Competition IV Dataset I, the number of EEG blocks was
set at 140 for each training set and 60 for each testing set, as
in [21]. To ensure a valid comparison between the different
methods, the same data partitions were used in cross-
validation. Figure 7 shows the classification performances for
all four subjects from the BCI Competition IV Dataset I. The
results show that the NA-MEMD-PK approach yielded the
best averaged results, with an average classification accuracy
of 81.01% for all four subjects—a 0.24% improvement over
the CSP algorithm and a 1.81% improvement over the new
method. The CSP method yielded the best performance
among the three approaches in two subjects (a and g),
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FIGURE 8: Classification accuracies (mean and standard deviation) obtained for the five subjects of BCI Competition III Dataset [Va when

m = 1,2, 3,4, respectively.

whereas NA-MEMD-PK vyielded the best mean accuracy in
the two remaining subjects (b and f), while our method
performed slightly higher than the CSP algorithm when
m = 2, 3. Nevertheless, a paired t-test revealed no significant
difference between our method and the NA-MEMD-PK
algorithm (p = 0.195,0.096 for m = 2, 3, resp.), no significant
difference between our method and the CSP approach (p =
0.074 when m = 2), and a significant difference between
our method and the CSP approach (p = 0.003 for m = 3).
These results show that, when compared to the NA-MEMD-
PK algorithm, our method can achieve similar results without
the use of prior knowledge.

Finally, the classification performances for the five sub-
jects from the BCI Competition III Dataset IVa are demon-
strated. For each subject, the CSP filters and classifier models
were trained on the available training sets. Figure 8 illustrates
the classification accuracies (mean and standard deviation)
obtained from these sets. The results showed that the average
classification accuracy for all five subjects obtained by our
method was 74.06%, yielding a 0.94% improvement over
the NA-MEMD-PK approach. A paired t-test revealed no

significant difference between our method and the NA-
MEMD-PK algorithm (p = 0.225, 0.027 for m = 2,3,
resp.),and a significant difference between our method and
the CSP approach (p values less than 0.01). When applied to
the BCI Competition IIT data, the CSP method yielded the
best performance among the three approaches in two subjects
(al and ay), while the proposed algorithm performed the best
in subject aa when m = 1,2, 3,4. Additionally, our method
outperformed the NA-MEMD-PK approach in two subjects
(aa and ay), whereas the NA-MEMD-PK algorithm per-
formed better in two subjects (al and av) and yielded similar
performance in subject aw for all four groups of spatial filters.

3.3. Discussion. In these experiments, the NA-MEMD algo-
rithm exhibited an accurate localization of the task-specific
frequency bands with favorable separability for feature
extraction and classification, as demonstrated in its applica-
tions to MI EEG data. For the simulations, the new method
was further shown to be robust to white and colored noises
with different SNRs. When compared with other identifi-
cation approaches (WD-CI, PCA-GMM, KPCA-GMM, and
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L,PCA-GMM), the proposed method obtained relatively
improved performances in terms of both Type I and Type II
error rates. For real EEG data, the information-bearing IMFs
were discriminated clearly for nine subjects during MI tasks.
When compared with the NA-MEMD-PK approach, which
selects IMFs based on average power spectra, the proposed
method yielded similar classification performance though it
did not require prior knowledge to achieve such favorable
results. Despite the favorable capability of the new algorithm
when distinguishing the informative IMFs containing task-
related frequency bands and classifying MI EEG signals, it
should be recognized that individual subject differences may
still have a great deal of influence on the recognition ability
of the algorithm.

4. Conclusions

In this paper, we have shown how to discriminate the
information-bearing components of motor imagery (MI)
EEG independent of prior knowledge. The noise-assisted
MEMD (NA-MEMD) algorithm was first performed on
original datasets to obtain a set of multivariate IMFs, with
the subsequent application of unsupervised kernel spectral
regression (KSR) to generate low-dimensional feature vectors
by mapping the decomposed IMFs into lower-dimensional
subspace. For the low-dimensional feature vectors from each
signal channel, a Gaussian mixture model (GMM) clustering
approach was employed to estimate the optimal number
of clusters and corresponding model parameters and then
identify the information-bearing IMFs. The common spatial
pattern (CSP) approach was exploited to train spatial filters
to extract the task-related features from the reconstructed
signals by adding the informative IMFs together. A support
vector machine (SVM) classifier was applied to the extracted
features and recognized the classes of EEG signals during
different MI tasks. Using these techniques, we have demon-
strated that our proposed method is effective at identifying
the information-bearing IMF components in simulated data
and MI EEG datasets and achieves excellent classification
performance.

In conclusion, a novel method for scale-dependent sig-
nal identification in a low-dimensional subspace has been
proposed for MI task classification. Although our method is
independent of prior knowledge, entirely data-driven, and
robust to different types of noise, several questions remain
to be investigated in future work; the spectral regression-
based dimensionality reduction approach selects the nearest
neighbor graph; however this is not the only natural choice.
Recently there has been a great deal of interest in exploring
the different ways to construct a graph to model the intrinsic
geometrical and discriminant structures within EEG datasets
[38]. In addition, semisupervised clustering methods [39]
have also yielded promising results when compared with the
traditional unsupervised clustering approaches. To improve
the clustering performance, it will be necessary to exploit
the underlying manifold structure of the data along with
additional knowledge from unlabeled data. Advancements
such as these, in conjunction with the algorithm presented

Neural Plasticity

in this paper, will serve to improve the detection, classifica-
tion, and evaluation of MI signals. This, in turn, can lead
to improvements in EEG-based rehabilitation technologies,
improving both the prediction and elicitation of motor
recovery in a multitude of diseases worldwide [40].
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