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Abstract

Recent models of movement generation in motor cortex have sought to explain neural

activity not as a function of movement parameters, known as representational models, but

as a dynamical system acting at the level of the population. Despite evidence supporting

this framework, the evaluation of representational models and their integration with dynam-

ical systems is incomplete in the literature. Using a representational velocity-tuning based

simulation of center-out reaching, we show that incorporating variable latency offsets

between neural activity and kinematics is sufficient to generate rotational dynamics at the

level of neural populations, a phenomenon observed in motor cortex. However, we devel-

oped a covariance-matched permutation test (CMPT) that reassigns neural data between

task conditions independently for each neuron while maintaining overall neuron-to-neuron

relationships, revealing that rotations based on the representational model did not uniquely

depend on the underlying condition structure. In contrast, rotations based on either a

dynamical model or motor cortex data depend on this relationship, providing evidence that

the dynamical model more readily explains motor cortex activity. Importantly, implementing

a recurrent neural network we demonstrate that both representational tuning properties

and rotational dynamics emerge, providing evidence that a dynamical system can repro-

duce previous findings of representational tuning. Finally, using motor cortex data in combi-

nation with the CMPT, we show that results based on small numbers of neurons or

conditions should be interpreted cautiously, potentially informing future experimental

design. Together, our findings reinforce the view that representational models lack the

explanatory power to describe complex aspects of single neuron and population level

activity.
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Author Summary

The question of how the brain generates movement has been extensively studied, yet mul-
tiple competingmodels exist. Representational approaches relate the activity of single neu-
rons to movement parameters such as velocity and position, approaches useful for the
decoding of movement intentions, while the dynamical systems approach predicts that
neural activity should evolve in a predictable way based on population activity. Existing
representational models cannot reproduce the recent finding in monkeys that predictable
rotational patterns underlie motor cortex activity during reach initiation, a finding pre-
dicted by a dynamical model in which muscle activity is a direct combination of neural
population rotations. However, previous simulations did not consider an essential aspect
of representational models: variable time offsets between neurons and kinematics.
Whereas these offsets reveal rotational patterns in the model, these rotations are statisti-
cally different from those observed in the brain and predicted by a dynamical model.
Importantly, a simple recurrent neural network model also showed rotational patterns sta-
tistically similar to those observed in the brain, supporting the idea that dynamical sys-
tems-based approaches may provide a powerful explanation of motor cortex function.

Introduction

Throughout the history of neuroscience research, the question of how motor cortex generates
movements has been investigated deeply [1]. Yet, substantial and conflictingmodels have been
proposed [2–7]. According to the representational view, motor cortex neurons encode abstract
or high-level aspects of movements, such as kinematic parameters [8]. In contrast, in the
dynamical systems view the firing of each neuron is a function of a population optimized to
control muscles directly [9]. It remains a point of considerable debate which model better
explains existing neural data and provides a mechanistic explanation of how movements can
be generated.
The representational view of neuron tuning, or ‘neuron doctrine’, is strongly rooted in the

history of neuroscience [10] and detailedmodels of single neuron tuning have been indispens-
able tools for a basic understanding of the brain’s computations [11–13]. However, recent
advances in electrophysiological recording technology [14,15] have made it possible to examine
network level hypotheses of movement generation that require large populations of neurons to
study [16–19].
Recently, it was suggested that motor cortex, operating as a dynamical system, might be suf-

ficient for generating required muscle activity [20–22]. Using simultaneous recordings in the
dorsal premotor cortex (PMd) and primarymotor cortex (M1) of non-human primates,
Churchland et al. [22] proposed that preparatory activity may act to prepare a dynamical sys-
tem, which, like a spring box, could be released to act as an ‘engine of movement’ and produce
muscle activity from a basis set of oscillators, which they termed the generator model or
dynamical model [9,23]. They supported their theory by developing a dimensionality reduction
method (jPCA), which revealed that predictable rotational dynamics underlie a large portion
of the variance observed in PMd/M1 during reach initiation, a direct prediction of the dynam-
ical model. Importantly, they showed that representational models of movement activity,
including those based on velocity tuning in single neurons [24] and complex kinematic models
[25], did not contain the robust rotational patterns they observed empirically, and therefore are
weak descriptive models [23].
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However, it has been shown that when fitting neural activity to kinematic variables, decod-
ing of movement intention can be improved by including variable time lags between single
neuron activity and kinematics (neuron-kinematic latency, [24,26–28]) and these offsets are
highly variable (SD: 70 ms; re-digitized data, Moran & Schwartz [24], their Fig 13A). Yet, these
offsets were not included in the comparison to representational models made by Churchland
et al. [22]. Furthermore, given that representational models of single neuron tuning have been
widely implemented in both an experimental and clinical setting, such as in the development
of neural prosthetics, it is not clear how those results can be interpreted under the dynamical
systems framework.
To clarify this, we first investigated whether or not jPCA would reveal rotational dynamics

in a velocity-basedmodel for center-out reaching in which neuron-kinematic latencies were
built into single neuron activity. We found that jPCA alone revealed rotational structure in
both the representational model and the dynamical model, but that implementing a novel
covariance-matched permutation test (CMPT) readily distinguished between these two, show-
ing that variable neuron-kinematic latency did not uniquely produce rotational structure due
to the condition structure. Secondly, we show that movement intention could be decoded from
a recurrent neural network (RNN) trained to complete the same task using representational
methods, such as the population vector, even though the preferred directions of single neurons
were highly unstable, suggesting that high levels of decoding performance using representa-
tional models do not necessarily inform the mechanistic operation of the underlying circuit.
Importantly, both simulated RNN data and real data collected in PMd/M1 of macaque mon-
keys show similar and significant rotations under the CMPT, providing further support for the
dynamical systems view. Furthermore, repeating the CMPT on subsets of the PMd/M1 data
showed clear minima in number of neurons and conditions required to draw statistical conclu-
sions, cautioning the use of such analysis methods on low numbers of conditions or neurons,
and thus informing the design of future experiments.

Results / Discussion

Incorporating variable neuron-kinematic latencies into the

representational model

Velocity-based models without variable neuron-kinematic latencies were shown to exhibit little
to no rotational structure [22]. To investigate how variable neuron-kinematic latencies may
affect rotational structure, we simulated 200 cosine-tunedmotor cortex neurons in a standard
13-direction center-out reaching task with variable neuron-kinematic latencies (Fig 1A; Meth-
ods) [13]. The simulation was based on the assumption of bell-shaped velocity profiles (Fig
1B). For activity with a movement duration of 300–400 ms and a latency distribution with a
standard deviation (SD) of 72 ms, we found that the first principal component (PC) of our pop-
ulation of simulated neurons resembled a condition-independent representation of the individ-
ual neuron profile, while the second PC resembled a condition-dependent representation (Fig
1C). Interestingly, all higher order PCs resembled a sequence of harmonic Fourier bases. In
general, it is well known that time-shifted versions of identical signals preferentially produce
PCs very similar to a Fourier series (S1A and S1B Fig) as a result of sinusoidal eigenvectors of
increasing frequency. This feature introduces a potential confound, since the higher-order PCs
show patterns of activity that are not present in any individual neurons. Furthermore, these
PCs produce rotational ‘horseshoe’ patterns when plotted in a plane (S1C Fig) [29], revealing
how rotations can emerge from signals that are not present in any individual neuron (for an
example of false interpretations made from application of PCA, see this well-known example
from genetics research [30,31]).
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In order to test the presence of rotational structure at the population level, we implemented
the same analysis developed by Churchland et al. [22], termed jPCA (Methods). jPCA is a
method for finding linear combinations of principal components that capture rotational struc-
ture in a population of neurons. In essence, jPCA finds low-dimensional planes in which neural
activity follows a predictable rotational trajectory from time point to time point (analogous to a
circular flow-field).We found that the introduction of the above-mentioned variable neuron-
kinematic latencies were sufficient to produce rotational dynamics (Fig 1D) when explored
with jPCA, unlike the representational model results of Churchland et al. [22], who found only
weak rotations. The level of rotational dynamics observedhere is similar to empirically
recorded PMd/M1 data in terms of visualization of the jPCA planes, amount of variance
explained per plane (30% in the first two planes, 16% in the first plane), rotational goodness-
of-fit ratio (RGR) betweenR2

Mskew
and R2

M (0.79 in the first three planes; Methods), which pro-
vides a measure of how much variance can be explained by purely rotational dynamics, and
how circular the rotation (0.72, where 1 is purely circular, computed as the average dot product
of angle between x and _x, and π/2; Methods).
To characterizemore generally how rotational structure arises with the addition of variable

lags, we varied the duration of movement period activity (expressed as the SD of normally dis-
tributedmovement activity;Methods) and the SD of the latency distribution systematically in
repeated simulations (Fig 1E). Interestingly, when the SD of the latency distribution exceeded
the SD of the movement activity, the level of underlying rotational structure increased rapidly.
Therefore, our results show that the application of jPCA alone on a population where neuron-
kinematic latency is more variable than the duration of movement leads to rotational
dynamics.

Disrupting the underlying condition structure–covariance-matched

permutation test

Based on the above results, it is clear that jPCA alone is not sufficient to distinguish between a
representational model with lags and the dynamical model proposed by Churchland et al. [22].
While Churchland et al. [22] performed extensive shuffling controls to test the possibility that
rotations emerge purely as a consequence of high-dimensional data, their controls do not dif-
ferentiate between the above cases. Therefore, we developed a covariance-matched permuta-
tion test (CMPT) to differentiate these models. The objective of our test was to determine if the
underlying condition structure, i.e., whether or not shuffling the neural data between different
task conditions independently for each neuron, uniquely determined the rotational structure as
is predicted by the dynamical model.
To provide intuition about the rationale of the test, consider the dynamical model proposed

by Churchland et al. [22]. They observed that muscle activity during reaching could be fit
extremely well (correlation coefficients� 0.97) by a summation of two sinusoidal oscillators,
each with fixed frequency, but whose phase, amplitude, and constant offset varied from

Fig 1. Simulation of a velocity-tuning based model with variable neuron-kinematic latencies. (a) Task design

of a 13-direction center-out reaching task. The firing of a simulated neuron is plotted around the reach directions. (b)

Two example neurons with differing latencies. (c) Principal components (PCs) for a simulated population of 200

neurons (latency SD: 72 ms, movement SD: 56 ms). (d) Exemplar jPCA plane for the first 6 PCs of the simulated

population from 0 ms before to 200 ms after neural movement onset (analysis was computed on entire movement).

Individual conditions are colored based on their activity at neural movement onset in the first jPC. (e) Proportion of

change in neural trajectory explained by rotational dynamics (in all jPCA planes) for various latency offsets and

movement durations. A value of 1 indicates that rotational dynamics completely explain the transformation between

each time point and its temporal derivative.

doi:10.1371/journal.pcbi.1005175.g001
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condition to condition (Methods). They proposed that these oscillators underlie the neural
population activity during movement, providing a basis set from which the muscle activity can
be generated, while the preparatory activity sets the phase and amplitude of these rotations.
Since the phase and amplitude of these rotations are unique to each condition and defined
jointly across the entire neural population, disrupting the condition structure should eliminate
rotational structure. In Fig 2A we show one of two example oscillators (2.8 Hz), which con-
sisted of a pair of leading and lagging sinusoids. To simulate neurons in the model, we ran-
domly combined the oscillatory signals and offset, where each condition had a different phase,
amplitude, and offset (Fig 2B; Methods; see Churchland & Cunningham [23], their Fig 2, for
another illustration).
After applying jPCA, Fig 2C shows that strong rotations exist at the population level for

both the representational model (same as Fig 1D) and the dynamical model (28% variance
explained in first two planes, 14% in the first plane, 0.97 RGR, 0.98 circularity). In order to test
if the underlying condition structure was uniquely responsible for the observed rotations, the
CMPT consisted of reassigning task conditions within individual neurons while maintaining
the overall covariance matrix between all neurons to a reasonable threshold (95% similarity;
Methods). This method disrupts the underlying relationship between neurons and conditions,
but not other measures, such as average rate per neuron, relationship between neurons in the
population (covariance), and each neuron’s contribution to each PC, since the results of PCA
are dependent on covariance. If rotations are disrupted as a result of our control, the underly-
ing relationship between neurons and conditions is uniquely essential to the emergence of rota-
tions. On the other hand, intact rotations indicate that many possible condition assignments
produce similar rotational patterns, at odds with the findings of Churchland et al. [22] in PMd/
M1 data.
Initially randomly permuting conditions without covariance matching destroyed rotational

structure in both the representational and dynamical models (Fig 2D). However, after repeat-
ing the CMPT procedure (1000 repetitions) and comparing the RGRs between the observed
and permuted data sets to generate a p-value (Methods), we found that the rotational structure
found in Fig 2C was restored after covariance matching in the representational model (Fig 2E,
p = 0.71), but not for the dynamical model (p< 0.001, Fig 2E). As a furthermeasure of statisti-
cal power, the effect size of rotations in the dynamical model was quite high (effect size: 3.2; Eq
4 in Methods).
In the representational model, permuting disrupts the condition structure, but not the lag

relationships, since no data is exchanged between neurons. Once the overall neuron-to-neuron
relationship is restored after covariance matching, the rotations are restored as well, even
though the condition structure is still disrupted, showing that rotational structure in the repre-
sentational model does not emerge because of a unique condition structure, as it does in the
dynamical model. Repeating the same analysis on additional simulations where neurons were
permitted to achieve both positive and negative firing rates (bn,c = cos[θc – θn] in Eq 1), or
when the magnitude of kinematic tuning per neuron varied randomly, did not alter this result
(p = 0.92 and p = 0.22, respectively). Furthermore, the CMPT did not simply ‘unshuffle’ the
data, as there was no significant correlation between the RGR of a given permutation and how
similar the condition assignment in that permutation was to the original condition assignment
in the observeddata (Methods; representational model: r = 0.03, p = 0.30; dynamical model:
r = 0.03, p = 0.49).
It remains an open question whether or not the CMPT can also distinguish rotations arising

in a dynamical model from those generated by a complex-kinematic model with varying neu-
ron-kinematic latencies, in which neurons are not only sensitive to velocity, but also to posi-
tion, acceleration, and occasionally jerk [25]. Therefore, we simulated a population of neurons
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identically to the representational model (Methods; Fig 1D), but further implemented sensitiv-
ity to these additional kinematic parameters with the same weights as Churchland et al. [22]
(S2A Fig; assuming a reach radius of 20 cm).While complex-kinematic model simulations
with no varying neuron-kinematic latencies only produce weak rotations (see Churchland et al.
[22], their Fig 4), the inclusion of lags generated rotational structure (S2B Fig; RGR: 0.89, circu-
larity: 0.82). However, similar to the representational model, these rotations were not signifi-
cant under the CMPT (p = 0.09), further emphasizing the power of the CMPT in identifying
rotations that are uniquely dependent on the underlying condition structure.
Repeating the CMPT on the representational model for all parameter combinations in Fig

1E revealed that these data generally had no significant rotational structure (p-values above
0.05, 100 permutations). Occasionally, p-values below 0.05 occurred, but the magnitude of
these effects were extremely small and completely disappeared for stricter implementations of
the CMPT (similarity 99%), a modification that had no impact on the dynamical model. Taken
together, these findings suggest that a broad variety of simulated populations of classically
cosine-tuned neurons can exhibit reasonably strong rotational dynamics when explored using
jPCA, but that proper controls disrupting the underlying relationship between conditions
while conserving other features can distinguish these rotations from those proposed by the
dynamical model.

Hallmarks of representational tuning and rotational structure in a

recurrent neural network model

Given that representational tuning models have been used extensively to characterizemotor
cortex activity, how can findings of robust single neuron tuning be reconciled with a dynamical
model of movement generation? To address this question, we implemented a simple recurrent
neural network (RNN), operating as a dynamical system, from which the velocity profiles
required to complete the previously described center-out reaching task can be read out (Fig 3A;
Methods). Recent studies have augmented the original findings of Churchland et al. (2012) by
generating biologically plausible RNNs that seek to produce complex activity patterns
[20,32,33] and using cortical circuit models to explain population activity [34].
In accordance with recent work [20,32], we constructed two time-varying inputs represent-

ing the location of the target in 2-D space, and one input representing a hold signal that is
released at the go cue. As in the representational model, we generated a network with 200 inter-
nal neurons (Methods). The outputs of the network were the x- and y-velocity profiles of the
reach. After training, the RNN was able to withholdmovement for the entire delay period and
execute accurate velocity profiles with a normalized error of less than 0.1% (Fig 3B). Integrating
the decoded velocity over time produced the desired kinematics for each reach direction (Fig
3C). A benefit of such a framework is that preparatory activity cancels out at the level of the
output signal (null-space), as output must be suppressed during planning to avoid premature
movement, a quality observed empirically between PMd/M1 and muscles [35].

Fig 2. Comparing rotational structure between the representational and the dynamical models. (a)

One of the two oscillatory modes (2.8 Hz) used to generate the simulated muscle activity of all conditions (2.8

Hz and 0.3 Hz). (b) Firing rate of an example neuron of the dynamical model for all 13 conditions. Each

neuron is generated from a random combination of the two underlying oscillatory modes and offset for each

condition. (c) Rotational dynamics in the first jPCA plane for the observed data. p-value shows results of

CMPT for the representational and dynamical models evaluated by the rotational goodness-of-fit ratio (RGR:

R2
Mskew

=R2
M). (d) Same as c, but for permuted data without covariance matching. (e) Same as c, but for

covariance-matched data. Data is plotted for 200 ms regardless of time period used to generate statistics.

Colors are based on the preparatory activity in the first jPC.

doi:10.1371/journal.pcbi.1005175.g002
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Fig 4A shows the responses of three example neurons that showed very similar tuning pat-
terns during the delay and movement. Fig 4B shows examples in which the delay tuning was
unrelated to movement tuning, and Fig 4C shows examples where the tuning preference
flipped at various times during the movement. The overall diversity of tuning is similar to
motor cortex neurons presented in Churchland et al. [22] and Sussillo et al. [20].
Fig 4D shows the preferred reach direction (highest firing) of all 200 simulated neurons

over time. Preferred directions remained relatively stable during the late delay period, but
shortly after the go cue the preferred directions changed rapidly [36]. In this framework the
neurons themselves are not explicitly tuned for any given reach direction and are expected to
vacillate when the network is released, a property observedpreviously in a feed-forward net-
work with state feedback (Lillicrap & Scott [7], their Fig 2F).

Fig 3. Schematic of recurrent neural network performing center-out reaching. (a) Schematic of RNN, with

input layer, hidden layer, and output layer. The three inputs were a condition-independent hold signal that was

released at the go cue and two inputs representing the target angle. The two outputs were a linear combination of

the internal neurons and read out velocity in the x and y direction. All weights were modified during training. The

network received no feedback from the output layer. (b) Output velocity profiles produced by the RNN compared

with target velocity used in training. The normalized error was less than 0.1%. (c) Simulated kinematics produced

by integrating the velocity profiles over time, with corresponding targets for illustration.

doi:10.1371/journal.pcbi.1005175.g003
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One of the most iconic movement prediction techniques is the population vector, which has
been used extensively to decode intendedmovement direction and instantaneous velocity
using knowledge about the preferred direction of all neurons in a population [37,38]. Fig 5A
shows the preferred directions of our model neurons (Methods), which were distributed
throughout the Cartesian space. Fig 5B shows contribution vectors of all individual neurons
over the entire movement of each condition, revealing a remarkably good prediction of move-
ment direction (mirroring results of Georgopoulos et al. [38], their Fig 1). Lastly, Fig 5C shows
the result of integrating all population vectors over the course of movement, producing pre-
dicted trajectories that well match the desired trajectories (mirroring results of Georgopoulos
et al. [38], their Fig 5). In addition, tuning curves of individual RNN neurons visually resem-
bled those observed empirically (S3 Fig). Together, these results reveal that readouts based on
the assumption of “preferred direction” can accurately reproduce intended trajectories even
when consistent individual neuron tuning was neither included nor observed in the model, a
feature of the population vector that has beenmathematically outlined by Sanger [39].
As we saw in Fig 4D, preferred direction seemed to fluctuate throughout movement. By cor-

relating the average firing of each neuron for each condition between neural movement onset
and later time points during the movement, we can track the stability of tuning over time. The
more time has elapsed since neural movement onset, the lower the correlation between delay
tuning and movement tuning (Fig 5D; mirroring results of Churchland et al. [40], their Fig 4),
both in the model and in example data from PMd/M1 (data from [22], Monkey N). Further-
more, the distribution of correlation coefficients across the population is not bimodal, a finding
that would be expected if one subpopulation of neurons was positively correlated over time
and one subpopulation inversely tuned during movement.

Fig 4. Tuning properties of RNN neurons. (a) Three example units for which the pattern of directional tuning remained highly correlated

between the delay period and movement. (b) Same as a, but for example units that have delay tuning that is not correlated with movement

activity. (c) Same as a, but for example units that invert their tuning between delay and movement. (d) Preferred reach direction (highest

firing) of all 200 units, sorted by preferred direction at go cue. If there was no firing rate difference (< 1e-4) between the preferred direction

and non-preferred direction, units were deemed un-tuned and are marked in white. Firing rates are displayed from 0 to the maximum firing

rate of each neuron.

doi:10.1371/journal.pcbi.1005175.g004
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Based on the above finding that preferred directions are highly variable during movement,
how can it be that representational tuning models explain large amounts of variance in firing
rate in empirical studies [24]? Interestingly, regressing the movement activity of each neuron
on a full model of velocity tuning (Methods) produces fits very similar to empirical data (Fig

Fig 5. Representational tuning in an RNN for center-out reaching. (a) Preferred movement direction in Cartesian space of all units,

corresponding to the magnitude of bi,2 and bi,3 in Eq 9. (b) Summary of contribution vectors of all individual neurons (one vector each)

over the entire movement, with black population vector showing the overall predicted movement direction. (c) Integrating the population

vectors in panel b over time traces out a predicted trajectory (solid) that largely matches the actual trajectory (translucent). (d) Mean

correlation between condition tuning order at neural movement onset compared to later time points during movement (in steps of 10 ms)

for the RNN model and an example PMd/M1 data set presented in Churchland et al. [22]. Insets show full correlation histograms for two

time points. (e) Adjusted R-Square obtained by regressing the activity of each neuron (from the go cue to the end of movement 300 ms

after go) on a representational cosine model of velocity tuning (Methods). (f) Movement activity of three example neurons and the

corresponding velocity based regression fits. The overall fit performance to these units is high (Adjusted R-Square above 0.8), but the

regression fails to capture the multiphasic and varied nature of the underlying signal. (g) Time lag between neural activity and velocity,

per neuron, obtained from the velocity tuning regression in panel e, showing a large range of values.

doi:10.1371/journal.pcbi.1005175.g005
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5E, mean Adjusted R-Square: 0.63, mirroring results in Moran and Schwartz [24], their Fig
12A and 12B). However, the actual model fits do not well capture the dynamic properties of
the individual units (Fig 5F), such as the changes in preferred direction that occur over the
course of the movement or non-linear changes such as when neurons cease firing (0 Hz).
Importantly, the optimal neuron-kinematic offsets obtained in the regression cover a range of
values, very similar to those observedpreviously (Fig 5G, mirroring results in Moran and
Schwartz [24], their Fig 13A and 13B), providing a potential explanation of how variable neu-
ron-kinematic latencies can improve the performance of representational tuning models even
when fixed offsets between neurons is not a property of the underlying circuit.
Yet, it remains unclear if significant rotational structure underlies the activity of our RNN.

Therefore, we repeated the jPCA analysis and CMPT with both example data from PMd/M1
and our RNNmodel. As seen in Fig 6, the PMd/M1 data contained robust rotational structure
explaining 56% of the variance in the first two planes (40% in the first plane), an RGR of 0.77
over all jPCA planes, a circularity of 0.63, and the rotational structure was highly significant
(p< 0.001, CMPT with 1000 repetitions). Importantly, the RNNmodel also produced robust
rotations, explaining 54% of the variance in the first two planes (26% in the first plane), an
RGR of 0.74 over all jPCA planes, a circularity of 0.73, and the rotational structure was highly
significant (p< 0.001, CMPT with 1000 repetitions). In both cases the effect size was also very
large, 4.1 and 3.7 for the PMd/M1 data and RNNmodel, respectively. In addition, similarly to
the representational and dynamical models, the CMPT did not simply ‘unshuffle’ the condition
assignment, as the correlations between the RGR of each permutation and the similarity in
condition assignment to the observeddata was not significant for the PMd/M1 data (r = 0.06,
p = 0.06) or the RNNmodel (r = -0.002, p = 0.94).
Although significant rotational structure was found in the PMd/M1 data, it is unclear how

many recorded neurons and conditions are necessary for jPCA to reveal this result. Therefore,
we repeated the CMPT on many subsets of the PMd/M1 data by randomly sampling condi-
tions and neurons to determine howmany neurons or conditions might be required to produce
statistically significant rotations (Fig 7). This analysis revealed that our test was able to identify
clear minima in number of neurons and conditions that are necessary to achieve significance,
in general more than 30 neurons and more than 8 conditions, a finding that may guide the
design of future experiments and encourages skepticism of experiments with small numbers of
neurons or conditions.
It is important to note that the CMPTmay not necessarily distinguish between all possible

models, as there exist cases of the dynamical model for which our test would find no significant
rotational structure. For example, if the required oscillator phases required to fit muscle activity
were identical between all conditions, while rotational structure would be found using jPCA,
our test would find these rotations to be non-significant. Therefore, we do not propose the
CMPT as a singular test of rotational structure to accompany jPCA, but rather as an additional
control.
We posit that future studies should seek to explain single neuron characteristics as a func-

tion of population or circuit activity rather than imbue single neurons with complex tuning
characteristics [9,10]. Furthermore, RNNs provide an ideal medium for more detailed study, as
the ground truth of synaptic connectivity, plasticity, noise, trial-to-trial variability, and
responses to unexpected perturbations are known and can bemanipulated directly. However,
“exploring an artificialmodel universe comes with its own risk” [41] and proper models must
resist the temptation of explaining purely idiosyncratic properties, but rather those that are
able to explain large amounts of variance in electrophysiological data. Our results also empha-
size that explaining a large amount of variance in neural data in and of itself does not necessary
lead to mechanistic insight [42], as the observation of rotational structure arose under multiple
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models, and future work is needed to determine the biological circuit mechanism underlying
population level rotational structure.
Fundamentally, as representational [43,44] and dynamical [20,32,45] models becomemore

complex in their implementations, their ability to explain empirical data becomesmore strik-
ing and convincing. Ultimately, what will signify the usefulness of either framework will be
their utility in generating testable hypotheses of how the brain executes complex behavior in
basic research contexts, and in developing new solutions in applied research contexts. In terms
of application, the representational view has been indispensable in developing neural prosthet-
ics for paralyzed patients [46–48], but this trend may be changing as prosthetic algorithms are
augmented by the inclusion of dynamical systems into their underlying framework [49,50].

Methods

Representational model

Preparatory and movement activity were simulated for a population of 200 neurons in a
13-direction center-out reaching task. Neurons were cosine-tuned for velocity during both
preparation and movement with respect to their randomly assigned (uniform) preferred direc-
tion. The average firing rate, fn,c, of a given simulated neuron, n, for a particular reach condi-
tion, c, at time t is given by,

fn;cðt; tn; sÞ ¼ bn;ce
�

ðt � tn � m0Þ
2

2s2 þ ε; t � tn

φbn;c þ ε; t < tn

; bn;c ¼
1þ cos½yc � yn�

2
ð1Þ

8
>><

>>:

Fig 6. Significant rotational structure in PMd/M1 data and RNN model. Comparison of rotational

dynamics for (a) observed, (b) permuted without covariance matching, and (c) covariance-matched data in

the first jPCA plane. p-values in a are from the CMPT for the rotational goodness-of-fit ratio (RGR: R2
Mskew

=R2
M)

in all jPCA planes. Conditions and neurons were randomly down-sampled in the PMd/M1 data to match the

RNN model. Data is plotted for 200 ms regardless of time period used to generate statistics. Colors are

based on the preparatory activity in the first jPC.

doi:10.1371/journal.pcbi.1005175.g006

Fig 7. Number of neurons and conditions required for statistically significant rotations. The CMPT was

carried out (500 repetitions) for many subsets of example PMd/M1 data including from 10–120 neurons and 2–20

conditions. (a) Map of p-values for the rotational goodness-of-fit ratio (RGR: R2
Mskew

=R2
M). (b) Map of effect size

(difference between observed RGR and mean of permuted distribution, divided by the SD of the permuted

distribution). For every permutation, random neurons and conditions were drawn from the example set. Contours

show the 0.05 and 0.01 significance levels.

doi:10.1371/journal.pcbi.1005175.g007
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where τn is the neural response latency (normally distributed) of each neuron, σ is the duration
parameter of the movement activity, which never differed between neurons of the same simula-
tion, bn,c is the gain factor for each neuron and condition, θc is the angle of the reach target in
condition c, θn is the preferred reach angle of neuron n, φ a constant which determines the
magnitude of preparatory activity, μ0 a constant and given by m0 ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2lnφ

p
, and ε is random

noise drawn from a normal distribution.
For all analyses, φ was fixed at 0.2, i.e., preparatory activity was always one fifth of the maxi-

mummovement activity for that condition; however, our results do not depend on this factor.
The distribution of latency factors, τn, and the movement duration parameter, σ, were varied
systematically to produce the results in Fig 1E. For visualization purposes we chose the noise
distribution, ε, to have an SD of 0.01 for all analyses. However, this value did not greatly affect
the outcome. We found it necessary to increase the noise more than 300 times to eliminate all
structure.

Rotational dynamics

jPCA is a method for finding linear combinations of principal components that capture rota-
tional structure in data (Churchland et al., 2012). The method is based on finding a transfor-
mation between a neural system at each time point and its temporal derivative, using the
following steps. First, the average firing rate of many neurons is extracted and aligned to the
execution of a movement, starting whenever the neural activity begins rapidly changing pre-
cedingmovement onset, termed neural movement onset (typically 100–200 ms before overt
movement). Next, each neuron is normalized and reduced, using standard principal compo-
nent analysis, to a set of principal components, Xred, of size d × ct, in which the d largest com-
ponents are retained, and c is the number of conditions and t is the number of time points
selected. Then, via linear regression, the unconstrainedmatrixM and the skew-symmetric
matrixMskew (whereMskew = −MskewT) can be found to satisfy _Xred ¼ MXred and
_Xred ¼ MskewXred , where _Xred is the difference in adjacent time points of Xred (temporal deriva-
tive). The jPCA planes are then constructed from the eigenvectors ofMskew, with the added
constraint that the net rotation in each plane is anticlockwise.
In order to avoid finding spurious rotations, only the first 6 PCA dimensions explaining the

most variance were fed into the jPCA algorithm (sampled in steps of 10 ms). For the represen-
tational model, the data fed into jPCA began at neural movement onset, which was defined as
the time when the average signal exceeded 10% of the difference between preparatory activity
and maximum activity, and ended when the average activity fell below this level. Given the var-
iable lags between neurons, it was necessary to define the above procedure for determining
neural movement onset, which is similar to the one performed by Churchland et al. [22]. For
the dynamical model and RNNmodel, neural movement onset was simply defined as the time
of the go cue, and the entire movement (300 ms) was used. On the other hand, for the example
PMd/M1 data (presented as Monkey N in Churchland et al. [22]) the analysis was replicated as
done in Churchland et al. [22], from -50 to 150 ms relative to neural movement onset, a time-
course specifically chosen to avoid sensory feedback not present in our simulation. jPCA was
performed using a freely available toolbox (http://churchlandlab.neuroscience.columbia.edu/
links.html).

Dynamical model

The dynamical model is based on the finding that muscle activity during reaching can be well
explained by a summation of the lagging components of two oscillatorymodes, each with a
fixed frequency, but with varying phase, amplitude, and offset for each movement condition
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[22,23]. Following Churchland et al. [22], we simulated for each condition c = 1,. . .,13 an offset
oc, and the two complex oscillations (k = 1,2)

Fc;k ¼ ac;k e
ið2pfk t� yc;kÞ ð2Þ

for the two underlying frequencymodes f1 = 2.8Hz and f2 = 0.3Hz (however, the specific fre-
quencies used did not alter the results). Phases, θc,k, amplitudes, ac,k, and offset, oc, were ran-
domly drawn for each condition to match both the variance explained per plane and the
similarity between conditions in the representational model (phase drawn from uniform distri-
bution, range: 0 to π/2; amplitude drawn from uniform distribution, range: -1.5 to -2.5; offset
drawn from uniform distribution, range: -4.5 to -5.5). For simplicity, we did not implement the
windowed gamma functions used in Churchland et al. [22], as these only increase the realism
of neural responses and do not contribute to the main result.
To generate simulated neurons in the dynamical model (N = 200), the activity rn,c(t) of each

neuron n 2 {1,. . .,N} and condition c was generated as a neuron-specific combination of the
condition-specific oscillations and offset (Fc,1, Fc,2, oc)

rn;cðtÞ ¼ Reðwn;1 Fc;1ðtÞ þ wn;2 Fc;2ðtÞÞ þ snoc þ εn;cðtÞ ð3Þ

with the real and imaginary components of the complex coefficients,wn,1 and wn,2, and the off-
set coefficient sn drawn from a standard normal distribution (zero mean, unit variance). As
described above, each neuron had a unique set of 5 weights that were used for all conditions,
and the small amount of normally distributed noise εn,c(t) that was matched to the representa-
tional model. Preparatory activity (rn,c(t) for t<0) was generated by simply extending the first
data point, i.e., rn,c(0) including noise, for 100 ms back in time.

Covariance-matched permutation test for rotational dynamics

In order to test if the rotational dynamics found in neural population data depended on the
underlying condition structure, we developed a covariance-matched permutation test to dis-
rupt the condition-wise relationships while sparing other features of the data. In this iterative
procedure the entire time-course of each condition, for each neuron separately, was first ran-
domly reassigned to another condition. Then, individual pairs of conditions were randomly
exchanged (within, but not between random neurons) and the similarity of the covariance of
all neurons was compared to the observeddata for the time period of interest (i.e. the time
period analyzed using jPCA). Covariance between neurons was calculated from the matrix n ×
ct, where n is the number of neurons, c the number of conditions, and t the time period of
interest. Covariance similarity was calculated as the sum of the squared difference between the
observed covariance matrix and the covariance matrix of the permuted data, divided by the
variance of the observed covariance matrix. If the similarity was increased by a given permuta-
tion, it was accepted, otherwise it was rejected and the process continued.When the covariance
similarity between the observeddata and the permuted data exceeded 95%, the process was
complete (this process generally lasted many thousands of permutations). In this way, no data
values were altered. Correspondingly, the average firing rates, total firing rates of all neurons,
and the approximate covariance relationship between all neurons were conserved.
To test significance, the permutation procedure was repeated many times (100–1000 repeti-

tions) and the covariance-matched data was fed into jPCA in the same fashion as the observed
data. The rotational goodness-of-fit ratio (RGR: R2

Mskew
=R2

M) over all three jPCA planes (span-
ning 6 principal components), which provides a measure of how much variance can be
explained by rotational dynamics, was evaluated for all permutations. Subsequently, the
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fraction of repetitions that the above statistic computed from the permuted data exceeded the
observeddata determined the p-value, as is standard procedure for permutation tests.
To measure statistical power, effect size was computed as

effect size ¼
RGRobserved � RGRpermuted

sRGRpermuted
ð4Þ

similar to Cohen’s d.
To test if the results of the CMPT procedure were simply due to ‘unshuffling’ the conditions

and restoring the original condition assignment, we checked what percentage of the assignment
matrix (c × n) retained its original condition assignment at the end of the CMPT and correlated
this measure with the RGR of the corresponding permutation repetition. Importantly, since
even ‘unshuffled’ data would not be guaranteed to be in the same order as in the original data,
before correlating we first sorted the rows of the above mentioned assignment matrix by the
most common condition in each row (condition 1 most common assigned to row 1, condition
2 most common assigned to row 2, etc.), to achieve the most conservative comparison possible.

Recurrent neural network

In order to examine a system in which velocity profiles of a 13-direction center-out reaching
task could be read out over time, we implemented the dynamical system, _x ¼ Fðx; uÞ, using a
standard continuous RNN equation of the form

t _x iðtÞ ¼ � xi þ
XN

k¼1

JikrkðtÞ þ
XI

k¼1

BikukðtÞ ð5Þ

where the network has N units and I inputs, x are the activations and r the firing rates in the
network, which were related to the activations by the rectified hyperbolic tangent function,

such that r ¼
0; x < 0

tanhðxÞ; x � 0

(

. The units in the network interact using the synaptic weight

matrix, J. The inputs are describedby u and enter the system by input weights, B. The time
integration constant of the network is τ.
For all simulations N was fixed at 200. The three inputs were a condition-independent hold

signal that was released at the go cue, and two inputs representing the target position that cor-
responded to sin(θ) and cos(θ), where θ is the angle of the target around the circle. The ele-
ments of B were initialized to have zero mean (normally distributed values with SD ¼ 1=

ffiffiffiffi
N
p

).
The elements of J were initialized to have zero mean (normally distributed values with
SD ¼ g=

ffiffiffiffi
N
p

), where the synaptic scaling factor, g, was set at 1.5 [51]. We used a fixed time
constant of 50 ms for τ, with Euler integration every 10 ms.
To produce the two desired velocity profile outputs, which were the x-velocity and the y-

velocity of the 13-direction center-out reaching task describedpreviously (bell-shaped velocity
profiles lasting 300 ms), we defined a linear readout of the internal network

ziðc; tÞ ¼
XN

k¼1

Wikrkðc; tÞ ð6Þ

where z represents the two velocity readouts (i = 1,2) and is a linear combination of the internal
firing rates using weight matrixW, which was initialized to all zero values.
The input weights, B, internal connectivity, J, and output weights,W, were trained using Hes-

sian Free Optimization [52] using freely available code (https://github.com/sussillo/hfopt-matlab)
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also utilized in Sussillo et al. [20]. The error function used to optimize the network considered the
difference between the output of the linear readout and the desired velocity profiles, v,

Eiðc; tÞ ¼ ziðc; tÞ � viðc; tÞ ð7Þ

at each time point, t, each output dimensions, i, and eachmovement direction, c. We report nor-
malized error, which is the sum of the squared error from Eq 7 over all times, dimensions, and
conditions, divided by the total variance of the target signal. In addition to the above error signal,
we also implemented three regularizations designed to encourage the network to produce biologi-
cally-plausible activity (implemented as in Sussillo et al. [20]). The three penalties were a cost on
the mean firing rate, the squared-sumof the input and output weights, and a penalty encouraging
the network to avoid complex state trajectories (similar to local space contraction [53]). The
hyper-parameters used for these regularizationwere 1e-2, 2e-5, and 5e-5, respectively.
In order to discourage internally-timed responses, the network was trained to produce

movements after three varying delays of 600, 800, and 1000 ms. All results used came from the
800 ms delay set and the reaction time (time between go cue and movement onset) of the net-
work was fixed at 100 ms. We opted not to model any feedback, since the goal of the study was
to illustrate the main points parsimoniously and without relying on confronting the issue of
what kind of feedback is most biologically plausible in such a network.

Population vector

The population vector decoding technique was performed as described in Georgopoulos et al.
[38] and Schwartz et al. [37]. Specifically, the preferred direction of each neuron was deter-
mined via linear regression

Ri;c ¼ bi;1 þ bi;2sinyc þ bi;3cosyc ð8Þ

where R is the average firing rate of neuron i over time from the go cue to the end of movement
(300 ms after go) for condition c, b are constants, and θc is the angle of the current target. The
preferred direction of each neuron was then defined as

Ci ¼
bi;2
ki
;
bi;3
ki

� �

ð9Þ

where

ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
i;2 þ b2

i;3

q
ð10Þ

To make predictions about direction and magnitude of movement [38], the population vec-
tor at time t during movement was computed using the instantaneous firing rate of all neurons
(R) and each neuron’s previously determined preferred direction (C), such that

PðtÞ ¼
XN

i¼1

ðRiðtÞ � bi;1ÞCi ð11Þ

whereN is the number of neurons. The sum of P over all time points during the movement of a
given trial then determined the overall predicted direction of movement. Alternatively, P could
be integrated over time points to trace out a predicted trajectory, as in Fig 5C. Fitting procedure
was performed using the Matlab fit function using the least-squares method.
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Velocity regression

In order to investigate the presence of representational tuning in the RNN, we regressed the
movement period activity of each neuron (starting at the go cue until the end of movement 300
ms after go) on the followingmodel of directional and speed tuning,

Rðt � tÞ ¼ a1 þ kV
!
ðtÞkða2 þ a3 sin½y� þ a4cos½y�Þ þ a5ða3 sin½y� þ a4cos½y�Þ ð12Þ

where R is instantaneous neural activity, τ is the time lag between neural activity and its expres-
sion as movement, a are constants, θ is the direction of the current target, which stays constant
during center-out reaches, and V! is the velocity profile. Fitting procedure and resulting good-
ness-of-fit statistics were obtained using the Matlab fit function using the least-squares method.
The final term of the equation was appended in addition to the factors presented in Moran &
Schwartz (1999) in order to account for differences in preparatory activity between reach direc-
tions, an aspect not utilized in the original experiment when no delay periodwas present. Tun-
ing during the preparatory periodwas the same as duringmovement, scaled by a factor, a5,
which also allowed for inverted tuning during movement.

Supporting Information

S1 Fig. Latency offsets produce derivative-likeprincipal components. (a) Firing rates of six
simulated neurons (normal distributions with identical SD) over time with random time offsets
(drawn from normal distribution). (b) The first three principal components of the simulated
units. (c) The plane formed by the first two principal components, showing a ‘horseshoe’ pat-
tern.
(EPS)

S2 Fig. Simulation of a complex-kinematic tuning basedmodel with variable neuron-kine-
matic latencies. (a) Four example neurons with differing latencies. (b-d)Comparison of rota-
tional dynamics for (b) observed, (c) permuted without covariance matching, and (d)
covariance-matched data in the first jPCA plane. p-value in b are from the CMPT for the rota-
tional goodness-of-fit ratio (RGR:R2

Mskew
=R2

M) in all jPCA planes. Data is plotted for 200 ms
regardless of time period used to generate statistics. Colors are based on the preparatory activ-
ity in the first jPC.
(EPS)

S3 Fig. Tuning curvesof RNN neurons during movement.Mean firing rate during the move-
ment epoch of all movement directions for 16 randomly selected RNN neurons.
(EPS)
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