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Abstract

Selective sweeps, the genetic footprint of positive selection, have been extensively studied

in the past decades, with dozens of methods developed to identify swept regions. However,

these methods suffer from both false positive and false negative reports, and the candidates

identified with different methods are often inconsistent with each other. We propose that a

biological cause of this problem can be population subdivision, and a technical cause can be

incomplete, or inaccurate, modeling of the dynamic process associated with sweeps. Here

we used simulations to show how these effects interact and potentially cause bias. In partic-

ular, we show that sweeps maybe misclassified as either hard or soft, when the true time

stage of a sweep and that implied, or pre-supposed, by the model do not match. We call this

“temporal misclassification”. Similarly, “spatial misclassification (softening)” can occur when

hard sweeps, which are imported by migration into a new subpopulation, are falsely identi-

fied as soft. This can easily happen in case of local adaptation, i.e. when the sweeping allele

is not under positive selection in the new subpopulation, and the underlying model assumes

panmixis instead of substructure. The claim that most sweeps in the evolutionary history of

humans were soft, may have to be reconsidered in the light of these findings.

Author summary

Identifying the traces of adaptive evolution is still difficult, in particular when populations

are not in equilibrium. Using forward-in-time simulations, we studied adaptation by

selective sweeps in populations that are divided into demes with limited migration among

them. We applied different sweep tests, whose sensitivities are found to vary widely across

demographic scenarios and temporal stages. First, the temporal stage of a sweep (ongoing

vs completed) significantly affects detection, especially when machine learning algorithms

are used and training and test stages do not match. Second, imported alleles from a neigh-

boring deme with local adaptation can result in spurious sweep signals. In both cases, sig-

nals are often detected as “soft sweeps” (adaptation from standing variation) while in fact

they are “hard sweeps” (adaptation from single mutation), originating in the same sub-

population in the former case and in some other subpopulation in the latter case. We call

these phenomena “temporal” and “spatial softening”. Finally, under low migration, the
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time window in which a sweep can be detected becomes very narrow, and power tends to

be low. Generally, however, haplotype-based methods seem to be less affected than fre-

quency-spectrum-based tests.

Introduction

Methods to detect selective sweeps from population sequence data

Selective sweeps were originally studied in the context of panmictic populations of constant

size [1], [2], [3], [4], and later also in scenarios of changing population size or population sub-

structure (e.g., [5], [6], [7]). A large array of statistical methods is available, and is routinely

applied in genome annotation studies, to identify genomic locations which supposedly have

experienced recent selective sweeps (reviewed by [8]). These methods can roughly be grouped

into three types, or mixtures of them, according to their underlying theoretical considerations:

there are statistical tests for sweeps which are based on the site frequency spectrum (SFS) (see

[9]), tests which are based on haplotypes and their distribution [10], [11], and tests based on

properties of the inferred genealogical tree of a sequence sample [12], [13]. Some of the well

established methods such as the likelihood ratio test (LRT) of e.g., [14], [15], linkage-disequi-

librium (LD) [16] and Bayesian or Hidden-Markov-Model- (HMM-)based methods [17], [18],

[19] can be considered as combinations of these types.

More recently, machine learning methods have been used to detect selective sweeps [20].

Such algorithms have no pre-specified concrete model or formulas, but rather use training

datasets (train-sets) with known classification (selection or not) to create predictors. The pre-

dictor that separates a number of data points (loci) into categories is called a classifier. This has

the advantage of (1) combining the power of a multitude of summary statistics, and (2) being

unaffected by any a priori assumptions regarding how sweeps can affect the output. The down-

side of machine learning is that (1) the predictor algorithm is usually not easily human-inter-

pretable, in the sense that it is difficult, or impossible, to understand the algorithmic basis of

the classification. Furthermore, train- and test-sets must have the same, or at least similar,

demographic parameters so that demographic effects will not be mis-identified as selection sig-

nals. While robustness with respect to demographic effects is often tested in sweep-detection

methods (e.g., [15], [21]), such tests often limited to population size changes, and real popula-

tion histories may lie outside of the tested parameter space.

Selective sweeps in models of population subdivision

Demographic assumptions for standard population genetic models, such as panmictic and

constant-sized populations, are usually unrealistic for biological data. Demographic effects

may mimic or complicate the genetic footprint of selective sweeps [22]. A common complica-

tion is population subdivision, where multiple sub-populations (demes) exchange a limited

amount of migrants per generation, leading to partial differentiation and a neutral frequency

spectrum that is different from that of panmictic populations. We refer to the deme where the

adaptive mutation arises as the native deme, and the deme where the adaptive mutation is

imported to as the non-native deme. The number of migrants per generation, Nm (i.e. the

effective population size N multiplied by migration rate m per individual per generation), can

vary across multiple orders of magnitude, resulting in a wide spectrum of different scenarios.

In addition, an adaptive allele which causes a selective sweep can be globally adaptive (i.e., ben-

eficial in all demes), locally adaptive (i.e., neutral in non-native demes or demes where it is
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imported to) or even negatively selected in non-native demes, leading to a large number of dif-

ferent cases.

In earlier studies of selective sweeps in subdivided populations, the impact of a globally

adaptive allele sweeping through multiple demes by migration was analytically described [23],

[24]. It was noted that the difference between original and imported haplotypes can increase
inter-deme differentiation in linked loci despite global adaptation. Such linked loci can even

experience an increase in genetic diversity if rare alleles only manage to hitchhike to an inter-

mediate frequency [25]. Divergent selection (selection of different genotypes in different

demes) increases differentiation resulting in a local maximum, because different haplotypes

are fixed in different demes. In comparison, global adaptation results in two local differentia-

tion maxima around the adaptive site instead of a single one [26]. This is because recombina-

tion on both sides causes different haplotypes to be associated with the same adaptive allele,

and subsequently rise to high frequency in different demes [24]; this does not happen in the

middle (immediate surrounding of adaptive allele) because there is not enough recombination.

Another study explored the speed of an adaptation fixing in a sub-structured population [27],

distinguishing three situations based on different migration rates. If the migration rate is high,

the fixation will not be delayed, i.e. be as fast as in a panmictic population. If the migration rate

is intermediate, non-native demes will slowly, but steadily, receive migrants with the adaptive

allele; fixation slows down linearly with the logarithm of the migration rate. If the migration

rate is so low that the first migrant occurs after fixation of the adaptation in the native deme

where it originated from, the fixation time has an exponentially distributed component and is

highly unpredictable. Another deterministic model examined how different migration rates

affect homogenization of neutral loci linked to the adaptive allele across demes [28]. A lower

migration rate increases the time delay between fixations of the adaptation in the demes, pro-

vides more time and chance for the beneficial and neutral loci to become unlinked, thus

increasing the differentiation between the native and non-native demes.

Stochastic models, often based on simulations, attempt to determine how the randomness

in migrating haplotypes and the sweeping process affect the genetic structure during and after

sweeps. A simulation study [29] examined how sweeps in a subdivided population affect the

frequency spectrum. It was found that population subdivision with low migration results in

weaker depletion of intermediate-frequency alleles, but an enhanced effect of increasing link-

age disequilibrium. It was also found that the sweep signals along the migration route are too

erratic to be traced. On the other end of the parameter space, a recent study examined how

several haplotype-based methods perform with local selection and high migration rates [30].

They found that XPCLR [15] performs well when a neighboring deme, without selection, can

be used as a control group; however, none of the examined methods appears to be consistently

powerful across different stages of the sweep.

Hard and soft sweeps, and how to distinguish them

Selection from standing variation or recurrent adaptive mutations may lead to so-called “soft

sweeps” [31], [32], [33]. One hallmark of soft sweeps is the presence of multiple haplotypes at

the selected locus after its completion and a less pronounced reduction of nucleotide diversity

than under a hard (classical) sweep. Therefore, soft sweeps are more difficult to detect (but see

[33] and [21]), especially when using the mutation site frequency spectrum (SFS). Distinguish-

ing hard from soft sweeps can be accomplished by combining SFS- and LD-statistics [33],

[34]. If only one type of statistic is used, soft sweeps may only manifest as quantitatively weaker

selective sweeps. To summarize the results from multiple statistics and to detect and classify

sweeps is essentially a problem of dimension reduction, for which machine learning methods

Selective sweeps in subdivided populations
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can be powerful tools. When implemented as supervised learning methods, pre-classified data

(i.e. data for which the presence and type of sweeps are known) are needed to train and to test

the model. Typically, these are obtained from simulations. After training and testing, experi-

mental datasets with unknown selection status can be analyzed.

Assessing the relative roles of hard and soft sweeps has been a heatedly discussed matter of

debate. For instance, it has been claimed that over 90% of the recent adaptation events in

Homo sapiens have been soft sweeps, making hard sweeps the exception rather than the rule

[35]. This finding is consistent with an earlier study reporting that “classic selective sweeps,”

i.e., those characterized by a sharp reduction of diversity around an adaptive locus, are rare in

human populations [36]. Also, artificial selection, which by definition involves a change of

selective pressures, has been shown to mostly result in selection from standing variation [37],

[38]. There are, however, arguments that soft sweeps have been over-emphasized [39]. In con-

trast, recent Drosophila adaptations are largely attributed to hard sweeps [40], [41] (but see

[42]).

Aforementioned demographic processes can further complicate the classification of sweeps

in at least two ways. First, demographic effects can alter the type of selective sweep: for

instance, bottlenecks, together with drift, can cause all but one adapted haplotype to become

lost, turning a soft sweep into an apparent hard sweep [22]. Second, demographic effects can

affect summary statistics and cause mis-classification. In one of the original “soft sweep”

papers, recurrent migration is mentioned as one cause of soft sweeps [32]. However, in their

model the migration source population has the adaptive allele fixed “since a long time ago,”

thus the migrating haplotypes are not more related to each other than expected under a neutral

coalescent model. This may not be the case if the adaptive alleles fix in the demes in quick

succession.

In summary, classification of selective sweeps under population substructure still entails a

number of open problems. Here, we present the results of a simulation-based study to investi-

gate and quantify the ability of different methods to detect sweeps in a variety of scenarios,

including panmixis, population substructure, global and local adaptation, and different tempo-

ral stages of the sweep process. In particular, we examine the differentiation between hard and

soft sweeps and the conditions when misclassification (especially as “hard” instead of “soft”) is

likely. Future genomic studies, seeking to identify traces of adaptive selection in structured

populations, should benefit from these results.

Materials and methods

Model and simulations

Allele frequency trajectory at a single site. The single-site simulations were conducted

with a custom Perl script in a forward-in-time algorithm, considering migration, drift and

selection. An adaptive allele appears in a previously homogeneous population initially in one

individual in deme d1 and eventually fixes in both demes d1 and d2. We record the allele fre-

quency in both demes every generation, and discard the run if the adaptive allele is lost. In

addition, we simulated three-deme scenarios where the adaptive allele originates in a (hidden)

deme d0 and is imported to d1 and d2 by migration. The selection coefficient can vary between

the demes; in particular, for the three-deme model we considered situations where the focal

allele is favored in d0 and d2, but must travel through d1 where it is neutral or very weakly

selected for. The Perl scripts can be found in the supplement as S1 File.

Table 1 lists the population sizes and selection coefficients for the one-locus simulations.

Ne1 and Ne2 are the population size (haploid) of each deme, which are 10, 000 individuals

unless noted otherwise. The population size of d0 is always 10, 000. The selective coefficients of

Selective sweeps in subdivided populations
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the focal allele in demes d0, d1 and d2 are respectively s0, s1, and s2. In all cases we considered

five migration rates: Nm = 0.02, 0.2, 2, 20 and 200. This wide range of parameters are possible

because single-site simulations are much faster than the infinite site model; the results from

single-site simulations can therefore guide and motivate the choice of parameters for the full-

region simulations. Furthermore, for the three deme model, we consider the following migra-

tion graph layouts (Fig 1A): connected, forked, and stepping stone. This leads to a total of 55

parameter combinations for two-deme models and of 120 combinations for three-deme mod-

els. For each of these parameter settings we simulated 1, 000 replicates. To reduce the compu-

tational load, the deme d0 trajectories for all s0 = 0.02 situations were shared. We omitted the

cases where m = 0.02 (very low migration) and s = 0 (no selection) in either deme, because of

the exceedingly long waiting-time until fixation in that deme.

Genomic simulations. Again, we performed forward-in-time simulations with a custom

R algorithm. Essentially, we implemented an infinite-sites model, where each new mutation

results in a new SNP, uniformly distributed in the region. The population is divided into two

demes, each containing Ne = 10, 000 haploid individuals. To simulate a diploid population, we

assigned pairs of chromosomes to individuals; the fitness of each individual depends on the

diploid genotype.

Recombination is permitted within a pair. The breakpoint for recombination is uniformly

chosen along the genomic fragment simulated. The mutation rate of the entire region is μ =

0.006 per individual per generation, and the recombination rate is c = 0.006 per individual per

generation. This corresponds to about 600kb of DNA sequence when the mutation rate is μ =

10−8 per nucleotide per generation and the recombination rate is c = 1cM/Mb, typically

assumed for humans [43], [44]. Migration occurs with probability m for each individual and

Table 1. Single-site: List of (haploid) population sizes and selective coefficients. Each row is a scenario that contains

1, 000 replicates for each migration rate. For the scenarios marked with an asterisk, the migration rate Nm = 0.02 was

not used. s0, s1, and s2 are the selection coefficients for demes d0, d1, and d2 respectively.

Demes Ne different from 10000 s0 s1 s2

Two None NA 0.005 0.005

None NA 0.02 0.02

None NA 0.05 0.05

None NA 0.1 0.1

None NA 0.02 0.05

None NA 0.02 0�

None NA 0.05 0.02

Ne1 = 5000 NA 0.02 0.02

Ne1 = 1000 NA 0.02 0.02

Ne2 = 5000 NA 0.02 0.02

Ne2 = 1000 NA 0.02 0.02

Three None 0.005 0.005 0.005

None 0.02 0.02 0.02

None 0.05 0.05 0.05

None 0.1 0.1 0.1

None 0.02 0 0.02�

None 0.02 0.005 0.02

None 0.02 0.05 0.02

None 0.02 0.05 0.05

All population sizes are 10,000 per deme if not specified otherwise.

https://doi.org/10.1371/journal.pcbi.1007426.t001
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Fig 1. Schematic of evolutionary scenarios in this study. A: Possible demographies for single-site simulation; two-deme and three possibilities for

three-deme. Different shades indicate that selection strength can be different between demes. Migration rates are identical between deme pairs and

range from 0.02 to 200. B: Five scenarios explored in the full-locus simulation. Light red indicating selection in that deme and white indicates

neutrality. Only m20L and m0.2G were analyzed for mixed-deme samples from R simulations (second row). Only m0G and m20L were simulated

with SLiM (third row), of which only the latter were analyzed for mixed-deme samples from SLiM simulations (fourth row). Other scenarios listed

in Table 2 were used for FST analysis only.

https://doi.org/10.1371/journal.pcbi.1007426.g001
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each generation, resulting in an average of Nm migrants per generation per direction. A more

detailed explanation of the algorithm can be found in S2 File.

The initial equilibrium populations were generated with the program ms [45] with the fol-

lowing command line:

ms 20000 1 � t 120 � I 2 10000 10000 2 �m � r 120 5000 � p 10

This produces a neutral population at equilibrium with the same demographic parameters as

in our custom R program. From here, an advantageous mutation occurs in one chromosome

in one individual in deme d1 at the start of a simulation cycle. This selected mutation is located

at 100kb from the left end of the region. We assume a co-dominant fitness scheme such that

wild-type homozygotes have fitness 1, heterozygotes have fitness 1 + s and mutant homozy-

gotes have fitness (1 + s)2� 1 + 2s. We assume further s = 0.02. The population was propagated

with constant size, and reset to the initial state if the adaptive allele was lost underway.

In models where the population is subdivided, deme d1 is the origin of the adaptive allele

which has a selective coefficient s = 0.02; in global adaptation, the allele has the same selective

coefficient in deme d2, while in local adaptation it is neutral in d2. Seven migration-selection-

mutation models were simulated with forward-in-time script (S2 File) each with 100 replicates,

and four corresponding neutral scenarios were simulated with the coalescence-based program

ms [45] as control. The range of migration rates, from Nm = 0.2 to 20 is chosen with two rea-

sons: first, this is the range where most qualitative variation of fixation time was in the single-

site simulations (see previous section); second, this is consistent with the range of migration

rates estimated from human population data, with Nm = 0.2 close to the migration rate

between Africa and Eurasia [46], [47], [48] and Nm = 20 close to within-Africa rates [49]. We

used codes as described in Table 2 to identify the scenarios: the number after “m” indicates

number of migrants per generation per direction, and “G” stands for global adaptation while

“L” for local adaptation (Fig 1B). “m0G” is a panmictic population with the size Ne = 20, 000.

Snapshots of the population were recorded at the following time points: (1) when the adap-

tive allele reached a frequency of 20%, 40%, 60%, 80% and 99.5% in either d1 or d2; (2) 1, 000,

Table 2. All simulation parameters of two deme model.

Migration Rate High Intermediate Low Panmictic

Nem 20 2 0.2 NA

Global Adaptation m20G m2G m0.2G m0G
Replicates 100 100 100 100

Resamples 50 50 50 50

Time points 22 22 22 12

Local Adaptation m20L m2L m0.2L NA

Replicates 100 100 100

Resamples 50 50 50

Time points 22 22 200

Neutral m20NB m2NB m0.2NB m0NB
Replicates 2500� 2500� 2500� 5000

Resamples 1 1 1 1

Time points 1 1 1 1

Scenarios with selection and neutral control.

�For neutral background of subdivided populations, the two demes are considered two separate samples, effectively resulting in 5,000 replicates. Global (local)

adaptation: adaptive alleles is positively selected in both (only one of the) demes. Scenarios m2L and m0.2L were used for FST analysis only.

https://doi.org/10.1371/journal.pcbi.1007426.t002
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2, 000, 3, 000, 4, 000 and 5, 000 generations after the adaptive allele reached 99.5% in either d1

or d2; (3) the generation when the adaptive allele fixed in the entire population. A total of 21

snapshots were taken during each simulation run. From each population snapshot, 50 random

samples were taken. Each sample contains 50 haploid individuals from d1 and 50 from d2. All

the analyses and calculations below were done on the samples rather than whole populations.

For each deme, eleven snapshots were used: partial sweep of 20%, 40%, 60%, 80% and 99.5% in
that deme, fixation in the entire population, and each 1, 000 generations from 1, 000 to 5, 000

generations after reaching 99.5% in that deme. In the scenario m0.2L, the fixation time in d2 is

extremely long, so we took snapshots every 100 generations for 20, 000 generations and then

stopped the simulation regardless of fixation.

To obtain the threshold values for the subsequent selection tests, we also simulated neutrally

evolving samples with the program ms. First, we generated 5, 000 samples of 50 individuals

from single-deme populations of size Ne = 20, 000 (m0NB; NB stands for Neutral Back-

ground). Second, we generated 2, 500 samples from two-deme populations (Ne = 10, 000 in

each deme, Nm = 0.2 or 2 or 20; m0.2NB, m2NB and m20NB). Each deme in a sample is used

as an independent sample, thus a total of 5, 000 samples of 50 individuals for each migration

rate. These neutral datasets are called neutral background (NB).

Finally, we also used SLiM 3.2 [50] to simulate additional population samples, to test the

effects of increased replicate number and larger sample sizes. Only m0G and m20L models are

simulated with SLiM as they are representative of our main results (see sections below); 1, 000

replicates are simulated, and 10 samples are drawn from each replicate population (for m20L,

including d1, d2 and mixed samples). The sample size is 100 haploid individuals instead of 50.

100, 000 neutral samples are simulated with ms for the panmictic scenario and 50, 000 pairs of

neutral samples for Nm = 20 scenario. All methods, except evoNet, are applied on these sam-

ples with the same method as described below. For details, see S3 File.

Test statistics for selective sweeps

For scenarios m20G, m20L, m2G, and m0.2G we calculated 13 different summary statistics

at each time snapshot; preliminary analyses showed m2L and m0.2L having identical signa-

tures as the global adaptation counterpart in d1 while behaving entirely neutral in d2, so they

were excluded in the analyses except for population differentiation. These are θπ (average

number of pairwise differences), θw (number of polymorphic sites divided by the harmonic

number of sample size), θh (the sum-of-square of derived allele frequency), Tajima’s D [51],

Fay and Wu’s H [52], number of haplotypes (nH), and the haplotype-based statistics H1, H12,

H2/H1 [42], Nielsen’s parametric composite likelihood ratio (CLR, as implemented in

Sweepfinder2 (SF2), [14], [53]), iHS [10], [54], nSL [55] and XPCLR [15]. These methods

represent both frequency-spectrum-based and haplotype-based families, and comprise of

the most commonly used ones from the past three decades. All the statistics were calculated

for sliding windows of 100kb with a step size of 10kb producing 51 windows per sample

[10], [56].

For iHS and nSL every single SNP may take the role as pivot nucleotide, necessitating a

modified derivation of the false positive rate. We used a method based on [10], taking the pro-

portion of SNPs in a window that is significant (absolute value of the normalized statistic larger

than 2) as the statistic for that window. iHS and nSL values were normalized with the means

and standard deviations (separate for each frequency from 0.06 to 0.94) obtained from the

neutral background data. For XPCLR, which is a two-population method which requires a

control population, we use deme d1 and deme d2 as each other’s control, to show how its power

behaves when both demes are undergoing the same sweep (not applied to model “m20L”).

Selective sweeps in subdivided populations
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Sweepfinder2 (Nielsen’s CLR) uses grid-based computation instead of a window-based one;

we set the distance between two grids as 10kb, equal to the step size for windows.

Of the 13 statistics, θh, H1, H12, XPCLR, SF2-CLR and the proportion-of-significance of iHS
and nSL are expected to be higher in selected samples than neutral samples, while the other

ones are expected to be lower; hereafter by “beyond (the threshold)” we mean “higher” in for-

mer cases and “lower” in latter cases. For each sample and each statistic, we say that the statistic

detects a sweep if at least one of the first 11 windows (i.e. first 200kb, centered on the adaptive

locus) gives a score beyond a threshold (see next paragraph). This is to mimic an experimental

data analysis that scans a genome far larger than 600kb. The power is the percentage in 5, 000

samples (100 replicates × 50 samples) detected as positive. We also determined the power

when only at least one among all 51 windows (600kb) gave a score beyond the threshold.

To control for false positives, we derived the thresholds from the NB data. For each statistic,

we separate each NB region into three (non-overlapping) 200kb blocks; the highest or lowest

value (depending on the expected direction of change in sweeps) from the 11 windows entirely

within a block was used as the representation of the block, giving 15, 000 values; the quantiles

for 5%, 1% and 0.1% on the same direction were used as thresholds (Table 1). For thresholds

used on entire-region tests, we used the highest or lowest value of all 51 windows instead. In

this way, we can ensure that a neutral region has a 5%, 1% or 0.1% chance of being detected as

a sweep (false positive rate). Separate thresholds were produced for the three different migra-

tion rates, as well as for the panmictic NB.

Finally, we calculated inter-deme differentiation as measured by FST; from each sample, the

mean FST value of all sites in the first 200kb was computed. For each replicate and each time

stage, the FST value used is the mean of all 50 samples. Here all six scenarios m20G, m20L,

m2G, m2L, m0.2G and m0.2L were analyzed.

The detection of selective sweeps with machine learning

We used two machine learning methods, evolBoosting [57] and evoNet [58] to detect selective

sweeps by combining multiple summary statistics across sliding windows. A machine learning

method does not have a fixed model or algorithm; it must be produced from training datasets

(train-sets). To test the effects of different train-sets, we trained the algorithm with backward-

simulated single-deme hard and soft sweeps in different stages. The simulation was conducted

with discoal [59], a ms-like simulator that can produce samples under different types of selec-

tive sweeps. Five stages were examined: (1) an ongoing sweep at 60%, (2) 80%, (3) and 99.5%

completion; a sweep (4) at fixation, and (5) at 1, 000 generations after fixation. These train-sets

were simulated from a panmictic population of size Ne = 20, 000, with mutation and recombi-

nation rates identical to those in the forward-in-time simulations. An additional train-set was

produced by pooling a fifth of the data from each stage. Each stage includes 1, 000 hard sweep

samples and 1, 000 soft sweep (initial frequency 10%) samples each of 50 haploid individuals.

The initial frequency is arbitrarily chosen to establish the difference of hard and soft sweeps. A

set of 2, 000 neutrally-evolving samples were simulated with the same demographic conditions

as null models in train-sets.

A pair of evolBoosting predictors was trained from each stage to detect and distinguish soft

and hard sweeps, and named respectively p60, p80, p99.5, p100, p100+ and pmix. As above,

the statistics used in evolBoosting were calculated for a sliding window of width 100kb and

step size 10kb. We trained six pairs of predictors with the first 200kb (100kb before and after

the selected site), and six pairs with the entire 600kb region. In each predictor pair, the first

predictor is produced from 2, 000 neutral samples as a null model (y = 0) and 2, 000 sweep

samples, hard and soft combined, as alternative model (y = 1); the second predictor is
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produced from 1, 000 soft sweep samples as null model and 1, 000 hard sweep samples as alter-

native model. A predictor converts the sample into a number, and the higher it is, the more

the data is considered “similar” to the alternative model. To control false positives, 5, 000 neu-

tral samples (see section Model and Simulation; independent from the train-set) were tested

with the first predictor, and thresholds were chosen to obtain 5%, 1% and 0.1% false positive

rates. Thresholds were produced from one-deme and two-deme neutral background samples.

For the second predictor (which distinguishes hard from soft sweeps), we used the default

threshold (0.5) in all cases, because we want to avoid an a priori bias towards either type of

selective sweep.

Cross-testing of train-sets was done to assess the sensitivity of sweep detection when train-

set and test-set are not synchronized in their stages; hard and soft sweep datasets of all five

stages are tested. Testing of our forward simulation datasets are done in the following way: a

test-set is derived from either deme d1 or deme d2 in a snap-shot stage of a migration-selection

model; 100 replicates of sample size 50, i.e. a total of 5, 000 sequences, were produced for a

test-set. All test-sets were tested with all six predictor pairs. A sample is classified as “neutral” if

it scores below the threshold in the first predictor; as “soft sweep” if above the threshold in the

first predictor but below 0.5 in the second; and as “hard sweep” if above the threshold in the

first predictor and above 0.5 in the second. The percentage classified as soft sweeps and hard

sweeps were recorded for each test-set and each predictor pair.

For evoNet [58], a deep learning algorithm, predictors were trained with the same training

sets as above, from samples at 99.5% allele frequency, at fixation, and at 1, 000 generation after

fixation. Only 200kb fragments were used. Because multiple-category classification is possible

with evoNet, we trained the models with neutral data, hard sweeps and soft sweeps at the same

time. The size of the neural network is 8+8 hidden nodes. Using these models, we analyzed all

data simulated by R, including m0G, m20G, m20L, m2G, m0.2G scenarios. However, because

the result is probability-based instead of giving a output statistic, it is impossible to control the

threshold with a fixed false positive rate. Therefore, the classification proportions are directly

based on the output of the program.

Results and discussion

Speed of adaptation by imported beneficial alleles

To determine the speed of adaptation, i.e. the time it takes for a beneficial variant to become

common within a deme, we first simulated the trajectory of frequencies of a single adaptive

SNP across subdivided populations (single-site simulations, Table 1; see S1 File for the simula-

tion script). We define the “completion” of adaptation as when the allele frequency reaches

99.5%, because the time for the last 0.5% is highly variable with drift dominating this stage. In

addition, we also defined the duration of the selection phase as the time interval it takes for the

adaptive allele to increase in frequency from 5% to 99.5%. Here deme d1 refers to the deme in

which the adaptive allele originated, and deme d2 to the one which received the adaptive allele

by migration. The detailed results for each scenario can be found in S1 Table.

The migration rate, as intuitively expected, strongly affects the time required to reach 99.5%

in deme d2 (Fig 2A; p< 0.0001, r2 = 0.3555, with Nm log-transformed). At a migration rate of

Nm = 20 (chromosomes per generation) or higher, both demes complete their selection phase

almost simultaneously. With smaller migration rates, fixation in deme d2 is delayed compared

to deme d1. However, their relationship is not linear, reciprocal or logarithmic (Nm = 2,

�t ¼ 838:5; Nm = 0.2, �t ¼ 1041:5; Nm = 0.02, �t ¼ 1861:5; where �t refers here to the median
time to fixation). The duration of the selection phase is largely independent from the migration

rate (Fig 2B; r2 = 0.0039). This implies that migration plays a role only for the first one, or few,
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Fig 2. Single-site simulation: Migration rate and time. A: The time taken for an adaptive allele from the beginning

(mutation event) to reach a frequency of 99.5%. B: The duration of selection phase, defined as the time between the

adaptive allele reaching 5% and 99.5%.

https://doi.org/10.1371/journal.pcbi.1007426.g002
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adaptive alleles which enter deme d2, but not for the selection phase itself. The correlation

between log Nm and the time required to reach 5% in deme d2 is r = 0.3545, almost identical

with the correlation between log Nm and time to 99.5% as shown above. This is because the

time from beginning to 5% is determined by the arrival time of first successful migrant carry-

ing the adaptive allele, while the selection phase is entirely determined by the strength of

selection.

In contrast to migration and selection coefficients, population size has only a minor effect

on the durations (S1 Fig). The theoretical time length for selection is proportional to log(Ne)/s
[60], therefore a 25% reduction for Ne = 1, 000 and a 7.5% reduction for Ne = 5, 000 is expected,

compared to a default of Ne = 10, 000. However, an exception occurs for d1 at an intermediate
migration rate (Nm = 2): the selection phase in d1 is instead extended when Ne1 is small (S1D

Fig; p< 0.0001, r2 = 0.0616), due to unadapted migrants from d2. If the migration rate is

lower, the influx of unadapted migrants is not strong enough to matter (p< 0.0001, r2 =

0.0851); if the migration rate is higher, the allele frequency will be synchronized so that

migrants from d2 are as likely to carry the adaptation as a native d1 individual (p< 0.0001, r2 =

0.0423). In both of these cases duration of selection is positively correlated with Ne1, consistent

with the expectation from a panmictic model. The difference in total time for d2 is negligible

because the waiting time for adaptive migrants has high variance and outweighs the effect of

varying Ne. With high migration rate (S1E and S1F Fig), the differences between different Ne

values are even smaller than with an intermediate migration rate. When migration is very

high, the entire population can be considered panmictic with Ne = Ne1 + Ne2; therefore, Ne

only varies between 11, 000 and 20, 000, which corresponds to a 6.4% difference in selection

time length.

We also simulated the trajectory where both demes d1 and d2 imported the adaptation from

a third deme (deme d0) which underwent a classic selective sweep. The results for each sce-

nario and parameter combination can be found in S1 Table. In general, the time to fixation is

similar to the two-deme situation, as the migration rate dictates when the first adapted migrant

become established. Under the “forked” demography, the fixation process is slightly slower

due to inability of d1 and d2 to exchange migrants, but the difference is tiny even under low

migration. This is likely because the situations where one deme received an adaptive migrant

far before the other, and exported an adapted migrant to the latter, are exceedingly rare. How-

ever, the variance of fixation time is increased compared to the “connected” case under the

lowest migration rate of Nm = 0.02, due to aforementioned rare situations skewing the distri-

bution. For the “stepping stone” scenario, the variance of fixation time in d2 is very high, while

the variation in d1 is similar to the “forked” case; this can be easily understood as the fixation

time in d2 is the sum of two random waiting times.

A special case for the three-deme model is a stepping-stone migration matrix where the

allele is neutral in the middle deme d1. In this case, the allele must travel through a neutral

deme to arrive at deme d2 where it is again beneficial. The total time, from origination of an

adaptive allele in d0 and fixation in d2, is logarithmically reduced with increasing migration

rates (Fig 3A). However, The length of the selection phase does not behave monotonically (Fig

3B); under the high migration rate of 20 migrants per generation the selection phase is longer

than under a higher or lower migration rate. When migration rate is Nm = 200, there is practi-

cally no distinction between d1 and d2, thus the process is equivalent to selection in a popula-

tion twice as large under half the selective coefficient. However, when Nm increased from 0.2

to 20, the allele has consistently a higher frequency in d2 than d1, meaning that migrants from

d1 are less likely to be adapted than an average individual in d2. See Fig 3E for the joint fre-

quency trajectory in d1 and d2. If the allele is not neutral in the “middle deme” but only slightly

positively selected (s = 0.005), the total time until fixation in d2 can be extremely shortened
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(Fig 3C), but the non-monotonic behavior still persists (Fig 3D). In other words, a neutral

middle deme can serve as a barrier even though selection occurs in both demes connected

with it.

Selective sweeps in the panmictic model

We describe now in detail the results from our genomic-region simulation experiments (see

S2 File for the simulation script), starting with the panmictic scenario in this section. Power is

the percentage of the 5,000 samples (100 replicates each giving 50 samples) detected as being

under selection, based on a threshold which corresponds to a 1% false positive rate on neutral

background samples. While false discovery rate (FDR) is a common measure of a detection

method’s accuracy, it requires a dataset in which positive and negative instances occur in “nat-

ural” proportions. Our data do not meet this criterion, because the relative sizes of selection

and neutral datasets are arbitrarily decided. For each deme, twelve time points were tested:

neutral (before selection starts), adaptive allele frequency within deme reaching 20%, 40%,

60%, 80% and 99.5% (abbreviated below as f s
20

, f s
40

, f s
60

, f s
80

, f s
99:5

,); 100% in the entire population

(global fixation, f s
100

); 1, 000, 2, 000, 3, 000, 4, 000 and 5, 000 generations after f s
99:5

(tr
1K , tr

2K , tr
3K ,

tr
4K , tr

5K). A total of 5, 000 parallel samples (100 independent populations, and 50 samples from

each) were produced from each scenario, each deme and each time point.

Fig 3. Single-site simulation: Through a middle-deme. A, C: The time taken for an adaptive allele from the initial mutation event to reach a frequency

of 99.5% in the destination deme d2. B, D: The duration of selection phase, defined as the time between the adaptive allele reaching 5% and 99.5%, in the

destination deme d2. The allele has no fitness effect (A, B), or a very weak one (C, D) in the middle deme d1. E: The average joint trajectory of the

adaptive allele frequency in d1 and d2, where the allele is neutral (solid lines) or very weakly selected (s = 0.005, dash lines) in d1. In the left-top half, the

frequency is lower in d1. Different colors indicate different migration rates.

https://doi.org/10.1371/journal.pcbi.1007426.g003
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First we observed the performance of summary statistics in a panmictic population (Fig

4A). The methods can be separated into two classes. Those that are based on the site frequency

spectrum, including Tajima’s D, Fay and Wu’s H and Nielsen’s CLR, reach high power at f s
80

and stayed high until tr
3K (Except H which loses its power faster). In contrast, methods based

on haplotype length and structure, such as H1, iHS and nSL, already have very high power at

f s
20

to f s
40

, but lose it by tr
2K . (Number of haplotypes, H12 and H2/H1 are not shown because they

are almost identical to, or of lower power than, H1.) In other words, haplotype-based methods

excel with ongoing and early-stage sweeps while frequency-spectrum-based ones are more

powerful for completed sweeps. This is consistent with the fact that the methods such as iHS
are designed for ongoing sweeps rather than for completed ones.

The machine learning algorithm EvolBoosting combines multiple summary statistics to dis-

tinguish between pre-determined scenarios [61], [57]. We trained six pairs of predictors, each

containing one predictor capable of detecting sweeps from neutrality and one to distinguish

hard sweeps from soft sweeps. The train-sets are simulated with panmictic populations with

Ne = 20, 000. Five pairs of predictors are based on sweeps in different stages, while the sixth

derives from a mixture of five stages. These predictors are called p60 (f s
60

), p80 (f s
80

), p99.5

(f s
99:5

), p100 (f s
100

), p100+ (tr
1K) and pMix (mixture). A predictor converts the statistics from a

region into a single number; the larger it is, the more “sweep-like” the region is determined to

be. We derived cut-off values for sweep detection from controlling false positive rates (α =

0.05, 0.01 or 0.001) on samples of neutrally evolving regions; these samples are same as the

neutral background mentioned in the previous section, and independent from the train-sets.

Fig 5 shows the result of cross-testing, i.e., using each other’s train-sets to test the predictors.

The risk of over-fitting is limited by comparing the (false) positive rate from the three 200kb

parts of neutral regions (Fig 5A), in which only the first part is involved in training. Fig 5B

shows how hard sweep regions were classified, which is determined by an interaction between

Fig 4. Full-locus simulation: The detection rate of various methods in a panmictic scenario. The proportion of samples detected as selective sweeps

by various methods, under the scenario m0G. The vertical line indicates time of 100% fixation. A. Power of seven summary statistics; dashed lines

indicate haplotype-based methods. B. Proportion detected by six EvolBoosting predictors correctly as hard sweeps. C. Proportion detected by six

EvolBoosting predictors incorrectly as soft sweeps. See S3 Fig for a zoomed-in version for early stages.

https://doi.org/10.1371/journal.pcbi.1007426.g004
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time-stage of the test set and the time-stage on which the predictors were trained. With the

exception of f s
60

, all train-sets are identified by all predictors as sweeps, in which a proportion

was misclassified as soft sweeps. In particular, more than half of the samples with f s
60

were mis-

classified by all predictors except p60, and tr
1K samples were misclassified by early-stage predic-

tors. Surprisingly, p60 is the best-performing predictor for all datasets, except for tr
1K . This is

likely because a sweep’s signature gradually increase with adaptive allele frequency, thus p60,

trained on weaker signals, is most sensitive. Generally, we observe a tendency to mis-classify

hard sweeps as soft when there is a stage mismatch between train- and test-sets of a predictor.

We call this effect temporal softening. The same phenomenon is observed from the results of

evoNet, a deep learning algorithm for selective sweep classification [58] (S2 Fig); misclassifica-

tion as soft sweeps is common at both ends of the timeline but rare at time stages close to

fixation.

We observe similar patterns when the entire 600kb region was used to train the predictors

instead of the 200kb fragment around the selection site (S2 Table). While cross-testing only

contains the result between f s
60

and tr
1K , Fig 4B shows the power of the predictors throughout all

time stages. Early on during the selection phase, p60 gains power the fastest as expected (Fig

4C; for the details see S2 Table and S3 Fig). For stages later than tr
1K , power of different predic-

tors decays at different speed. As expected, power of later-stage predictors remains long after

fixation. For instance, p100+ retains over 60% power for hard sweeps (over 80% for hard +

soft) at tr
5K . Concomitant with a decay of power, especially for early-stage predictors, such as

Fig 5. Full-locus simulation: Cross-testing EvolBoosting predictors in simulated panmictic populations. A: False positive of neutral data, where

only the segment 0–200kb (circles) is used as training sets. Similarity among the three segments indicate absence of over-fitting. B-D: The proportion of

samples detected as soft (lighter color) or hard (darker color) selective sweeps, using each other’s training sets for testing. B: Cross-testing using hard

sweep samples of different stages, using the region within 100kb from selection site. C: Cross-testing using soft sweep samples of different stages, using

the region within 100kb from selection site. D: Cross-testing using hard sweep samples of different stages, but using the region 100–300kb away from

selection site. The down-arrow indicates where the tested dataset matches the stage of predictor.

https://doi.org/10.1371/journal.pcbi.1007426.g005
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p60 and p80, we observe a strong tendency for softening (Figs 5B and 4C). In conclusion, tem-

poral softening occurs on both ends of the sweep process. By using only one type of predictor

it is very difficult, if not impossible, to make a reliable distinction between hard and soft

sweeps. For sweeps of unknown time-stage, it would be more prudent to use both early- and

late-stage predictors jointly.

An opposite effect can be observed when some of the predictors are used on soft sweep

samples (Fig 5C). Among all six predictors and in our tested datasets except for tr
1K , p60 is

most likely to classify a soft sweep sample as hard. The predictors p100+ and pmix also mis-

classify soft sweeps as hard. Note that, unlike in the situation with hard sweeps, the best and

worst predictors are consistent, instead of a complex interaction between predictor and test-

set. This phenomenon can be similarly called “temporal hardening”; collectively, “temporal

misclassification” denotes the classification of hard sweeps as soft, and soft sweeps as hard,

when the training model and tested data mismatch in time stage. Additionally, we trained pre-

dictors only with soft sweeps, and cross-tested them on the same soft sweep training sets. The

percentage detected with soft-only predictors are almost identical with the hard + soft predic-

tors, with the exception that soft sweeps at f s
60

are better detected by soft-only p80, p99.5 and

p100 predictors by 5 to 10% (S2 Table).

Finally, a decay of sweep detection power based on distance from the selection site can be

easily observed. The 600kb region was split into three 200kb ones, and the selection site is at

the center of the first of them. When we use the predictors on the second region (0.1 to 0.3 cM

from selection) instead, the “soft shoulder” effect [21] can be seen as the region next to a hard

sweep can be recognized as a soft sweep (Fig 5D). Similar to “temporal softening”, the p60 pre-

dictor was the least affected. In the third (more distant; 0.3 to 0.5 cM from selection) 200kb

region predictors have a lower detection rate (highest is 6–8% for f s
99:5

) and almost exclusively

detected as soft sweeps.

Increasing the sample size from 50 to 100 haploid individuals caused the power of most

methods to be marginally improved; see S3 File for details.

Classification of sweeps as “hard” and “soft” often relies on ideal assumptions such as

known time stage and genomic location of the selection site, as well as demographic assump-

tions such as a panmictic population of constant size. In regard to the location-based effect

known as “soft shoulder”, potential solutions include explicitly modeling regions linked to

hard sweeps as well as classify sweeps based on signal peaks only [21], [20]. On the contrary,

our “temporal softening” is caused by an early-stage hard sweep mimicking the signal of later-

stage soft sweeps: multiple haplotypes at locus, weaker reduction of genetic diversity, and a

one-peak patterns for statistics like Fay and Wu’s H or linkage-based ones [20] (two-peak pat-

terns occur for fixed hard sweeps). The peaks refer to the shape of the statistics along the chro-

mosomes, surrounding the site of the adaptive allele.

When a machine-learning algorithm is trained with sweeps of only one time stage, or a sta-

tistic (especially a likelihood-ratio test) is created based on only ongoing or fixed sweeps, it can

be unable to recognize patterns for other stages; this is independent of which type of algorithm

it is based on. Most studies before have been focusing on only ongoing [62] or fixed [21]

sweeps. So far, little attention has been paid to the question of how robust the tools are with

respect to stage mismatch and how much false positive and negative rates may be inflated by

this problem. We thus argue that searches for sweeps in genomic data, especially those that

also try to distinguish hard and soft sweeps, need to explicitly account for the different stages

(ongoing, recent or ancient) in the models and (if applicable) machine-learning training sets.

One caveat, though, is that our soft sweep training sets were simulated using 10% as the initial

frequency, to increase the probability that there are multiple haplotypes carrying the adaptive
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allele in the population. If the number is reduced, for example, to 0.75% (the median allele fre-

quency in a population with Ne = 10000, instead of the mean), a larger number of soft sweeps

would be indistinguishable from hard sweeps, reducing the rate for correct classification.

In our simulation studies here we did not explicitly include incomplete sweeps that stopped

(became neutral) before reaching fixation. This can be caused by either environmental change

or frequency-dependent selection. If caught when selection ceases, they should behave in the

same way as ongoing hard sweeps—a case we did consider. When the allele loses the advantage

before a strong sweep signal has built up, the deterioration of the signal from this time point

onwards will more quickly render it undetectable, compared to completed sweeps.

Global selective sweeps in a sub-structured population

For a population with subdivision into two demes we study how sweep detectors are affected

by migration and which differences, if any, exist between the deme where the adaption is

native to d1 and the one it is imported into d2. Our scenarios include global selection with low,

intermediate and high migration, and local selection (see the following section) with high

migration (abbreviated “m0.2G”, “m2G”, “m20G” and “m20L”, respectively, where the number

indicates the migration rate per generation per direction). Deme d1 is the origin of the adaptive

allele which has a selection coefficient s = 0.02; in global adaptation, the allele has the same s in

deme d2, while in local adaptation it is neutral in d2. Samples were taken during the selection

phase as well as after fixation.

When migration is high (m20G) or intermediate (m2G), the overall situation is similar to

the panmictic case (Fig 4A). Fig 6A, 6D and 6G shows the results from summary statistics in

d1; the results from d2 is similar (S4A, S4D and S4G Fig). Both frequency-spectrum-based and

haplotype-based methods, except XPCLR, reach a very high power (80% or higher) peaking at

around f s
80

to f s
99:5

. Compared to the panmictic scenario, Fay and Wu’s H has reduced power

particularly for m2G. In addition, the power of iHS and nSL decays before the adaptive allele

has globally fixed.

The cross-population comparison method XPCLR assumes (1) selection occurs only in

the focal deme and not in the control deme, and (2) there is no migration between the demes

and they have recently diverged. For global adaptation in populations with migration, both

assumptions are violated in our study. Under such a condition, XPCLR is not a reliable method

for sweep detection. This incorrect application leads to the lowest power among the tested sta-

tistics. XPCLR performs similarly in both demes under m20G, but much better in d1 than d2

under m2G. This is because when the adaptive allele reaches high frequency in d1 but not in d2,

the latter seems more “neutral”. Interestingly, the power of XPCLR slightly increases in both

demes after global fixation under m2G.

While EvolBoosting predictors were trained with one-deme Ne = 20, 000 samples, the

thresholds for sweep detection can be adjusted based on two-deme neutral background sam-

ples. For high migration (m20G) (Fig 6B and 6C; S4B and S4C Fig), the general pattern is simi-

lar to the panmictic model (Fig 4B and 4C), except for slightly reduced power at f s
40

in all

predictors and earlier power decay after fixation in early-stage predictors. For intermediate

migration (m2G) (Fig 6E and 6F; S4E and S4F Fig), fast loss of power by early-stage predictors

is more clear. Comparing to a panmictic model, the following can be observed: (1) at f s
60

, late-

stage predictors are more likely to detect a hard sweep; however the total detection power

(hard and soft) is lower. (2) p60 performs much worse in m2G than under panmixia both in

detection window and power. On the other hand, after fixation, the datasets detected as selec-

tion are less likely to be misclassified as soft in m2G than under panmixia (Fig 5B). In both

m20G and m2G, the difference between d1 and d2 is slight. However for m2G, the power of all
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predictors are reduced in d2 at early (f s
60

) and late (tr
1K to tr

3K) stages with slightly increased mis-

classification as soft.

When migration rate is lower (m0.2G), all sweep-detection methods suffer a reduced power

and/or a smaller detection window (Fig 6G, 6H and 6I; S4G, S4H and S4I Fig). For instance,

power of Tajima’s D quickly drops after fixation. While iHS and nSL still have a peak power

Fig 6. Full-locus simulation: The detection rate of various methods in global adaptation scenarios in the native deme. The proportion of samples

detected as selective sweeps by various methods, under the scenarios: A-C. m20G, D-F. m2G, G-I. m0.2G, in d1 where the adaptive allele arises. The

vertical line indicates time of 100% fixation. A,D,G. Power of seven summary statistics; dashed lines indicate haplotype-based methods. B,E,H.

Proportion detected by six EvolBoosting predictors correctly as hard sweeps. C,F,I. Proportion detected by six EvolBoosting predictors incorrectly as soft

sweeps. See S3 Fig for a zoomed-in version for early stages of m0.2G.

https://doi.org/10.1371/journal.pcbi.1007426.g006
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near 100%, it lasts very briefly; in comparison, only H1 has power over 80% at global fixation,

and performs better than all other methods at this time point. Fay and Wu’s H and XPCLR are

virtually unable to detect any sweeps in any stage. In addition, the dynamics of detection

power through time are different between the two demes. Frequency-spectrum-based meth-

ods, particularly Tajima’s D, has clearly lower power in deme d2 compared to d1. On the con-

trary, haplotype-based methods are better with d2. In general, low migration between demes

has less adverse effects on the power of haplotype-based methods than of frequency-spectrum-

based ones.

Under low migration, the detection rate by EvolBoosting predictors is also reduced. All pre-

dictors have little power before f s
60

and after fixation, particularly p60 and p80. In late selection

phase, p99.5, p100 and p100+ have reasonable power. Interestingly, we do not observe any

temporal softening; all detected sweeps are classified as hard. Because of the higher thresholds

needed to achieve the same false positive rate, only the most “obvious” sweeps are detected;

these are also sweeps that have signals that match best “hard sweeps” in the training set. The

samples that would be caught in temporal softening became false negatives instead. The pat-

terns for deme d1 and d2 over time are slightly different; at global fixation, detection power is

almost lost in d1 but not d2, because d1 is already recovering from the sweep by that time. In

general, the lower the migration rate is, the narrower becomes the time window during which

the sweep is detectable, and the stronger becomes the difference between d1 and d2. Sweeps in

deme d1 need to be detected in an earlier stage than in deme d2.

We want to point out that these results are also contingent on the false positives being con-

trolled with neutral regions of the same demographic scenario. If the neutral null model is pan-

mictic (i.e., incorrect demographic assumptions), all thresholds will become more lenient,

leading to rampant false positives under low-migration (see S2 Table). This is expected as a

panmictic population with Ne = 20, 000 is equivalent to a two-deme population each of size Ne

= 10, 000 where the migration rate is m = 0.5, which is numerically closer to our high migra-

tion scenario. Among the methods, iHS and nSL, and to some extent Tajima’s D, are less

affected by such false positives; particularly iHS is almost unaffected.

Population subdivision with limited migration is an important modification of the panmic-

tic-equilibrium assumption in population genetics. We demonstrated that frequency-spec-

trum-based, haplotype-based and machine learning methods are capable of detecting hard

sweeps in subdivided populations, but their power and detection window (the time window in

which a sweep can be detected) are reduced in low-migration scenarios. However, with popu-

lation subdivision, detection power of haplotype-based methods is generally higher across a

wider range of migration rates, including low migration, than of frequency-spectrum-based

ones. Still, haplotype methods have little power to detect sweeps after fixation. Together with

the limited power of frequency spectrum methods under subdivision, this severely limits the

ability to reliably detect—in practice—anciently completed sweeps in subdivided populations.

There are two main reasons that lead to reduced sweep detection power under low migra-

tion. First, subdivided populations with low migration produces a neutral frequency spectrum

that already looks like sweeps. These include an excess of rare alleles brought by rare migrants

leading to a negative Tajima’s D and lower haplotype diversity than panmictic populations

with the same θ. In the case of Fay and Wu’s H, the signal is diluted by high-frequency derived

alleles in neutral background, caused by a few migrant chromosomes carrying the ancestral

allele into a deme where the derived one is otherwise fixed. High-frequency derived alleles

should be very rare in panmictic neutral datasets, thus a small increase by migration can

strongly affect the result. We observed a very high false positive rate if thresholds were con-

trolled with a panmictic null model. Similar results are observed with evoNet (S2 Fig), where
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close to half of the neutral samples are incorrectly labeled as soft sweeps. By controlling false

positives using neutral regions of the same demography, this can be avoided; in biological data

this translates to using the genomic data of the samples instead of theoretical parameters. Sec-

ond, the between-loci variation in such populations is much larger than in high migration or

panmictic populations, leading to more stringent thresholds if the same false positive rates are

desired, thus reduced power. This is mainly because different loci have different numbers of

chromosomes carrying migrant haplotypes. A migrant allele enters the deme with a very low

frequency, and can be rapidly lost in a few generations or increase to a intermediate frequency

by drift. Sampling error (50 from a deme of 10, 000) exacerbates this problem. Compared to a

locus without migrant haplotypes, a locus with one migrant haplotype would have a deeper

coalescent tree and more singleton alleles; a locus with i migrant haplotypes has an excess of

alleles with the frequency i/Ne.

Finally, a slight but visible difference exists between deme d1, where the adaptive mutation

arises, and deme d2, where the mutation is imported to. The difference in a high migration sce-

nario is negligible, because the demes are homogenized very quickly and the haplotypes are

readily shared. With low migration, a reduction of power in deme d2 is observed for fre-

quency-spectrum-based methods, especially at f s
60

to f s
80

. A possible reason is that when the

arriving migrant alleles (and haplotypes by extension) increase their frequency to 60–80% and

the rest are alleles that are originally in d2, an increase, instead of decrease, of intermediate-fre-

quency alleles destroys the signals that are usually picked up by statistics such as Tajima’s D or

Fay and Wu’s H.

Local selective sweeps in a sub-structured population with high migration

In the m20L scenario (Fig 7), the selective sweep is limited to deme d1, while the derived allele

is neutral in deme d2. In such cases, migration from deme d1 would lead to an eventual fixation

of the derived allele in d2. With a sufficiently high migration rate, the time scale of fixation is

similar to that of the global adaptation regime, resulting in a sweep-like genetic signature in d2,

i.e., a false positive. With lower migration rates, fixation in d2 may take too long to manifest as

a sweep signal. We analyzed the behavior of summary statistics and of EvolBoosting to exam-

ine the feasibility of identifying local adaptation under the high migration model, and the

extent of such false positive detections.

Methods based on the frequency spectrum performed generally similar between global and

local adaptation, with the exception that Fay and Wu’s H is much less powerful around the

time of global fixation. This is likely because recombination during the long pre-fixation phase

breaks up close linkages, resulting in less high-frequency derived alleles near the adaptive site.

Haplotype-based methods show a clear difference between global and local adaptation. The

haplotype-based methods, H1, iHS and nSL, lost the most power at fixation as the longer time

needed broke up the haplotypes. In the non-adapting deme d2, H1, iHS and nSL has peak

(false) detection rate of 80% at f s
60

(S3 Fig). In other words, haplotype-based methods could dis-

tinguish global and local adaptation if the tests are done in d2, particularly if caught slightly

before fixation; however the neutral deme could still be tested positive for selection earlier on

at f s
60

or f s
80

. XPCLR, being a cross-deme comparison, has very high power in d1 while lower

than 20% in d2.

Between f s
60

and tr
2K , most EvolBoosting predictors can correctly detect a large proportion of

d1 samples as sweeps, although at a lower proportion than under global adaptation. There are

considerable differences among the predictors in their (false) positive rate and classification

results. Power of p60 degrades quickly after fixation and sweeps are almost always classified as

hard. In contrast, p80, p99.5 and p100 have a relatively high false positive rate and classify a
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large proportion of samples as soft sweeps. This is the case in all stages in deme d2. But they are

correctly identified as hard at f s
80

and f s
99:5

in deme d1.

In deme d1 additional differences between the global and local selection regimes can be

observed. For instance, p60 has a reduced detection window in the m20L scenario. Further-

more, p80, p99.5 and p100 classify 30–50% of the samples incorrectly as soft sweeps at fixation

and at tr
1K , while the classification is mostly correct (hard sweeps) under the m20G regime.

Similarly, p100+ and pmix mis-classify sweeps as soft at tr
2K to tr

5K much more often under the

m20L regime than under the m20G regime. We call this effect “spatial softening”. While in

m20G sweeps are usually correctly identified as hard in both demes, in m20L it is likely that it

is correctly detected as hard in d1 but soft in d2 where it should be neutral. Spatial softening

can be also observed with deep learning algorithm evoNet (S2 Fig), where a larger proportion

of samples are misclassified into soft sweeps in both demes, for scenario m20L compared to

m20G; this occurs across almost all time stages.

Fig 7. Full-locus simulation: The detection rate of various methods in a local adaptation scenario. The proportion of samples detected as selective

sweeps by various methods, under the scenario m20L. The vertical line indicates time of 100% fixation. A. Power of seven summary statistics in d1;

dashed lines indicate haplotype-based methods. B. Proportion detected by six EvolBoosting predictors correctly as hard sweeps in d1. C. Proportion

detected by six EvolBoosting predictors incorrectly as soft sweeps in d1. D. False positive rate of seven summary statistics in d2. E. Proportion detected by

six EvolBoosting predictors incorrectly as hard sweeps in d2. F. Proportion detected by six EvolBoosting predictors incorrectly as soft sweeps in d2. See S3

Fig for a zoomed-in version for early stages.

https://doi.org/10.1371/journal.pcbi.1007426.g007
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Additionally we simulated the m20L scenario with SLiM [50], with 1, 000 replicates and a

sample size of 100 haploid individuals per deme. Compared to the sample size of 50, we

observed an improvement of power across time, i.e. power was higher in more windows than

in the scenario with a smaller sample size. However for EvolBoosting, misclassification as soft

sweeps (spatial softening) is also increased. See S3 File for details.

Here we attempt to explain the different results between m20G and m20L scenarios. First,

we noticed that the first deme, where selection always occurs, has a delay in the case of local

adaptation. This is because the inflow of unadapted migrants reduces the frequency of the

adaptive allele every generation. Second, haplotype-based signals degrade in an earlier stage

for local adaptation, compared to global adaptation. This is because a long period of the fixa-

tion process is spent when selection is mostly completed in deme d1, while the frequency of the

new allele is increasing only via migration in deme d2. During this extended period haplotypes

are broken up by recombination.

XPCLR, the only cross-deme comparison method is able to find the origin of the adaptive

allele in a local selection scenario, but fails to efficiently identify such cases in global selection.

This is likely because its “control” population is also under selection too, so a strong contrast

cannot be produced. We showed that XPCLR’s assumption about recently diverged but iso-

lated demes can be relaxed. However, if the XPCLR comparison is done with a neutral deme

importing a selected allele and another neutral deme further distant from selection, it is still

possible to falsely detect selection in the former neutral deme [30].

Ideally, a good test should not return a signal for deme d2 in a local adaptation scenario,

because no selection has occurred there. However, the rapid importing of selected migrant

alleles shortens the coalescent trees and produce sweep-like genetic footprints. If migration

is even higher, such a case eventually converges to a Levene model, where all demes are

completely mixed at the reproduction stage. Theory suggests that selection in a Levene model

can be approximated by the average level of selection of each deme [63], [64]. In our study, all

methods, except XPCLR, return high “power” for positive selection in deme d2 of m20L. In

addition, EvolBoosting analyses classified a substantial proportion of such imported “sweeps”

as soft sweeps. Natural populations, including human populations, are often characterized by a

complex spatial distribution and heterogeneous selective pressure. Therefore, it is possible that

the large amount of “soft sweeps” discovered from the human genome [36], [35] are “sweeps

by proxy”, i.e. hard sweeps occurring in other populations imported by migration.

To solve this conundrum, we need either a method that explicitly takes into account

imported alleles that were fixed by selection in their source deme, or try to sample as many

demes as possible and find the source of such alleles by pairwise comparison methods, such as

XPCLR. In the second case, it is also important to test the presence or absence of selection in

each sampled deme.

Detection of selective sweeps from mixed samples

An additional situation often encountered in natural populations is “cryptic substructure”,

where a substructured population is assumed panmictic, and thus samples are taken from dif-

ferent demes and mixed together [65], [66]. To determine how this affects the detection of pos-

itive selection, we analyzed mixed samples, i.e. a sample selected randomly from both demes,

in two scenarios: m20L and m0.2G. Both scenarios involve a strong distinction between

demes, the former in selective strength and the latter in low migration rate (thus high

differentiation).

In m20L, mixed samples performed generally similar to deme-specific samples (Fig 8A).

For ongoing sweeps, all methods have higher power in d1 than mixed samples, and higher in
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mixed samples than d2. This is consistent with the fact that the adaptive allele frequency is

higher in d1 than d2, and between them in mixed samples. For completed sweeps, summary

statistics perform almost identically between the two demes and mixed samples; EvolBoosting,

on the other hand, detects more sweeps in mixed samples than in samples taken separately

from either deme (Fig 9A). However, the additional power by EvolBoosting manifests almost

Fig 8. Full-locus simulation: Comparing summary statistic detection rate of sweeps between deme-specific samples and mixed samples. The

proportion of samples detected as sweeps from d1, mixed samples and d2 (noted below the bars as “1”, “x” and “2”) in various time stages, for scenarios

A: m20L, B: m0.2G. Different hues indicate different methods, and the shades represent d1, mixed and d2 from dark to light. f s
100

(global fixation) is

shared by both demes, thus the graph in the middle contains results from d1, mixed and d2. The other four time points are deme-specific, thus we must

compare only one deme with mixed data.

https://doi.org/10.1371/journal.pcbi.1007426.g008

Selective sweeps in subdivided populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007426 November 11, 2019 23 / 32

https://doi.org/10.1371/journal.pcbi.1007426.g008
https://doi.org/10.1371/journal.pcbi.1007426


entirely as misclassification into soft sweeps. In other words, mixed samples intensify the “spa-

tial softening” effect in local adaptation scenarios.

The results from m0.2G showed a different picture. Across most time stages and methods,

mixed samples yielded far better detection power then both demes (Fig 8B). The major excep-

tion is haplotype-based methods (H1, iHS) during earlier stages, consistent with that they are

less affected by population substructure. In the most extreme cases, EvolBoosting cannot

detect any completed sweeps (at tr
2K and later) from separate demes, but have a close to 100%

power (hard + soft combined) from mixed samples (Fig 9B). The proportion of sweeps mis-

classified as soft follows the same pattern of “temporal softening” as in panmictic datasets.

Further examination of the threshold values for m0.2G mixed and non-mixed samples

explained the stark contrast of the detection powers. Thresholds for detecting positive selection

Fig 9. Full-locus simulation: Comparing evolBoosting detection rate of sweeps between deme-specific samples and mixed samples. The

proportion of samples detected as hard (darker shade) or soft sweeps (lighter shade) by six EvolBoosting predictors, from d1, mixed samples and d2

(noted below the bars as “1”, “x” and “2”). Scenarios are A: m20L, B: m0.2G. f s
100

(global fixation) is shared by both demes, thus the graph in the middle

contains results from d1, mixed and d2. The other four time points are deme-specific, thus we must compare only one deme with mixed data.

https://doi.org/10.1371/journal.pcbi.1007426.g009
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are derived from quantiles of the neutral distribution of a statistic under the same demo-

graphic model, to control for false positive rates. For frequency-spectrum-based summary sta-

tistics and EvolBoosting predictors, the thresholds are far more stringent in separate-deme

datasets in m0.2G than panmictic ones, while those for mixed samples are less stringent than

panmictic ones. In other words, neutral loci from mixed samples have a distribution of allele

frequencies that make sweep loci “standing out” more clearly relative to neutral loci from sepa-

rate-deme samples. The reason is two-fold: First, separate-deme samples have an excess of rare

alleles (migrant haplotypes) and a negative Tajima’s D, while mixed samples have an excess of

intermediate-frequency alleles (because the deepest split in the coalescence tree represents

deme split) and a positive Tajima’s D. Sweeps introduce more rare alleles so the contrast with

the latter is stronger. Second, mixed samples have a smaller variation among neutral loci than

separate-deme samples. In separate-deme samples, the number of external migrant haplotypes

in each locus can be highly variable; the site frequency spectra are vastly different between a

locus with zero migrant haplotypes and a locus with one. On the other hand, mixed samples

always consist of two types of haplotypes which—on average—makes the site frequency spectra

more homogeneous among loci.

This implies a warning that, in some cases, it is not a good idea to study demes separately

when it comes to selective sweeps, especially under scenarios where demes exchange

migrants occasionally. On the flip side, it also means that detailed demarcation of popula-

tions is not necessary for such analysis, and looking for selection signatures from the entire

sample (without worrying about cryptic structure) does not generally pose a problem. Of

course, the caveat of temporal and spatial softening still holds; in particular, if a soft sweep is

detected, it could be because the allele is under selection only in a part of the population (our

case of m20L).

Genetic differentiation between demes during and after selective sweeps

Fig 10 shows how FST, a inter-deme differentiation measure, changes during a selective sweep

and during the recovery phase afterwards. FST is calculated as the mean value for all SNPs in

the first 200kb and further averaged from 50 samples in each replicate. Here we considered six

different scenarios: high (Nm = 20), intermediate (Nm = 2) and low (Nm = 0.2) migration,

each including global and local adaptation. In all scenarios, within the first 1,000 generations,

the adaptive allele reaches fixation or near-fixation in its native deme d1, resulting in an

increase of FST. The exact trajectories during the increase and afterwards, however, differs

qualitatively between global and local selection scenarios.

With global adaptation, while generally FST reaches the peak at 400–500 generations, con-

siderable variation exists between replicates; in a large fraction of them, FST remained at the

baseline level. In particular, for low migration (m0.2G), the high baseline variance almost

obscured the FST peak. As the adaptive allele takes over d2, FST quickly reduces and with lower

migration even dips below the initial values. Even after 5,000 generations of recovery, under

m0.2G, it has not returned to the baseline. In other words, the homogenizing effect of global

selection lasts longer with lower migration, and persists even as most sweep-detection methods

have lost their power (see previous sections). In theory, for deme pairs with low migration,

exceedingly low FST values can be a signal of global selection.

Local adaptation at both high (m20L) and intermediate (m2L) migration, however, see a

uniform increase of FST during the selection phase of d1. The peak is higher compared to the

global adaptation counterpart, and every replicate reaches a higher value of FST than the base-

line. With low migration (m0.2L), the FST values sometimes rose above the baseline but do not
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form a discernible peak. The return to baseline is much slower as d2 only fixes the allele by

migration without selection, and the speed of returning is inversely proportional to migration

rate. Note that the FST value does not go below the baseline. For m0.2L, the variance between

replicates are so large that distinguishing different phases based on FST is impossible.

Fig 10. Full-locus simulation: FST. The change of between-deme FST during a selective sweep and recovery. Red indicates the period before the

adaptive allele reaches 99.5% in d1, blue indicates the period after global fixation, and gray for the period in-between. Each line is one replicate

population. The scenarios are: A. m20G; B. m20L; C. m2G; D. m2L; E. m0.2G; F. m0.2L. For m0.2L the time points are fixed number of generations

(every 100 generations) instead of based on allele frequency. Horizontal dash lines denote the 95% range of the neutral baseline FST, i.e. the value at 0

generations.

https://doi.org/10.1371/journal.pcbi.1007426.g010
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In conclusion, the relationship between selection and FST is complicated and cannot be sim-

ply described as “increased” or “decreased” differentiation. FST or other differentiation mea-

sures have been extensively used as a proxy for selection detection [67], [68], [69]; in

particular, a higher FST than the genomic baseline is considered a signature of local adaptation.

A metastudy has suggested that the high neutral variation of FST baseline can cause false posi-

tive of local adaptation [70], which can occur when migration rate is low. Our results suggests

that the efficacy of FST outliers (higher than baseline) as a marker of local adaptation depends

qualitatively on the migration rate, and is particularly useful for intermediate to high migration

rates (Nm>= 2). Higher migration leads to short detection window as FST recovers quickly

when the adaptive allele “diffuses” to other demes, while lower migration causes the neutral

variation to be too high to produce a meaningful contrast.

We also would like to emphasize that while FST—selection links are mostly discussed in

the context of local adaptation, it can also prove useful for global adaptation. In this case, it is

a reduced FST value, particularly when the baseline is high (lower migration), being a signa-

ture of adaptation. However, note that purifying selection can also decrease FST values of

sites directly affected [4], and adaptive sites tend to occur around conserved sites because

they are both in “functional” regions like coding or promoter sequences. On the other hand,

background selection slightly increases FST of surrounding neutral sites by reducing local

Ne; the effects are complicated but should not be as quantitatively prominent as those

incurred by selective sweeps. It remains to be tested, therefore, how much would adapta-

tion-caused FST reduction “stand out” in an already functional (negatively selected) region.

In addition, purifying selection does not reduce haplotype diversity in contrast to sweeps

[71], thus a round of screening with haplotype-based methods (such as iHS) can alleviate

this problem.

Conclusion

We have established the concepts of temporal misclassification and spatial softening. Temporal

misclassification, including softening and hardening, refers to classification of hard sweeps as

soft or vice versa, because the training model mismatches with the tested data in time stage.

Spatial softening can cause hard sweeps in neighboring demes to be falsely detected as soft. In

addition, if a panmictic population model is used in data analysis but the real situation involves

occasional migration, false positive sweeps (mainly classified as soft) may ensue. All three pro-

cesses can produce signals of soft sweep without an actual soft sweep present. Therefore, the

claim that human populations have overwhelmingly soft sweeps as the mode of adaptation

may be a result of biased classification. To have a more complete view of hard and soft sweep

frequencies in human and other populations, one needs to take into account migration as a

demographic process (instead of only population size change), and explicitly distinguish differ-

ent stages of selective sweeps.

Under lower migration, especially when the migration rate between demes is at or below

the order of 1-2 migrants per generation, panmictic assumptions break down and extra care

must be exercised. This affects frequency-spectrum-based methods more than the haplotype-

based ones. Thus only the latter can be reliable in low migration cases to detect ongoing or

recent sweeps. The effects of occasional migrants must be taken into account when searching

for selective sweeps. Inter-deme differentiation statistics, in particular FST, make it difficult to

distinguish global and local selection in early stages, but they have better sensitivity for local

selection under higher than lower migration. Our results can guide future studies on popula-

tions in patchy habitats, such as island and desert populations, for example, Tillandsia land-
beckii in the Atacama Desert (Merklinger et al. Under Review).
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S1 File. The single-site simulation algorithm with documentation. The Perl script used for

simulating single-site adaptation allele frequency trajectory, under two-deme and three-deme

scenarios.
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S2 File. The full-locus simulation algorithm with documentation. The R script used for sim-

ulating 600kb genomic regions under a selective sweep, including all custom-defined functions

and the main script.
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S3 File. Simulations with the program SLiM, with a higher number of replicates and a

larger sample size. The methods and results from simulating m0G and m20L scenarios with

SLiM, and analyzing the data with the same methods as in the main text.

(DOCX)

S1 Fig. Single-site simulation: Population size and time. A, C, E: The time taken for an adap-

tive allele from the beginning (mutation event) to reach a frequency of 99.5%. B, D, F: The

duration of selection phase length, defined as the time between the adaptive allele reaching 5%

and 99.5%. The migration rates are 0.02 (A, B), 2 (C, D) or 200 (E, F).

(PDF)

S2 Fig. Results from evoNet, a deep learning algorithm for detecting and classifying selec-

tive sweeps. The proportion of samples classified as hard (darker colors) or soft (lighter colors)

by three evoNet classifiers trained with sweeps in different time stages. A: Panmictic popula-

tions. B-I: Subdivided populations, including four scenarios each containing two demes.

(PDF)

S3 Fig. Full-locus simulation: The detection rate of various methods in various scenario,

zoomed in version for pre-fixation time stages. The proportion of samples detected as selec-

tive sweeps by various methods, under the scenarios: A-C. m0G, D-F. m20Ld1, G-I. m20Ld2,

J-L. m0.2G. Only the time stages at or before global fixation are shown; the horizontal axis

denotes adaptive allele frequency instead of generations. The vertical line indicates time of

100% fixation. A,D,G,J. Power of seven summary statistics; dashed lines indicate haplotype-

based methods. B,E,H,K. Proportion detected by six EvolBoosting predictors correctly as hard

sweeps. C,F,I,L. Proportion detected by six EvolBoosting predictors incorrectly as soft sweeps.

The general qualitative pattern is similar to d1.

(PDF)

S4 Fig. Full-locus simulation: The detection rate of various methods in global adaptation

scenarios in the non-native deme. The proportion of samples detected as selective sweeps by

various methods, under the scenarios: A-C. m20G, D-F. m2G, G-I. m0.2G, in d2 where the

adaptive allele is imported to. The vertical line indicates time of 100% fixation. A,D,G. Power

of seven summary statistics; dashed lines indicate haplotype-based methods. B,E,H. Proportion

detected by six EvolBoosting predictors correctly as hard sweeps. C,F,I. Proportion detected by

six EvolBoosting predictors incorrectly as soft sweeps. The general qualitative pattern is similar

to d1.

(PDF)

S1 Table. Summary of single-site simulations. For all two-deme and three-deme scenarios,

the parameters, mean and standard deviation of key time points and time lengths. “Waiting

Period” is the length of time from beginning of simulation to the last generation where d1 and
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d2 do not contain any adaptive allele.

(XLSX)

S2 Table. Selective sweep detection rate. The proportion of all samples detected as selected

sweeps by all our detection methods. Here “2p” indicates a demographically correct neutral

control, while “1p” indicate control with panmictic neutral samples. “200k” indicates only the

first 200kb of data is used for analysis, and “600k” indicates that the entire region is used.

(XLSX)

S3 Table. Selective sweep detection rate, comparison between different sample sizes. Com-

parison of detection rates by summary statistics and evolBoosting, on population data simu-

lated by R (n = 50) and SLiM (n = 100).

(XLSX)
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