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In recent years, the prediction of salient regions in RGB-D images has become a focus of research. Compared to its RGB
counterpart, the saliency prediction of RGB-D images is more challenging. In this study, we propose a novel deep multimodal
fusion autoencoder for the saliency prediction of RGB-D images. The core trainable autoencoder of the RGB-D saliency prediction
model employs two raw modalities (RGB and depth/disparity information) as inputs and their corresponding eye-fixation
attributes as labels. The autoencoder comprises four main networks: color channel network, disparity channel network, feature
concatenated network, and feature learning network. The autoencoder can mine the complex relationship and make the utmost of
the complementary characteristics between both color and disparity cues. Finally, the saliency map is predicted via a feature
combination subnetwork, which combines the deep features extracted from a prior learning and convolutional feature learning
subnetworks. We compare the proposed autoencoder with other saliency prediction models on two publicly available benchmark
datasets. The results demonstrate that the proposed autoencoder outperforms these models by a significant margin.

1. Introduction

With the rapid development in the consumer electronic
industry, various RGB-D applications and services have
become increasingly popular for enhanced user experience
[1-6]. The RGB-D image processing technologies for RGB-D
applications and services can be further improved by de-
veloping better models of RGB-D perception [7-10].
However, predicting the saliency in RGB-D images is a
particularly intractable problem [11-16]. Nevertheless, it is
promising, as it can certainly help in visually improving
approaches such as video coding [17], image quality mea-
surement [18-21], visual comfort prediction [22-24], and
image retargeting [25, 26].

In the last two decades, many saliency prediction
methods for RGB images have been significantly improved,
and numerous models have been proposed [27-37]. For
example, Itti et al. presented a saliency prediction metric for
RGB image by using a biologically plausible neural archi-
tecture, whereby hand-designed low-level visual features

could be extracted from intensity, orientation, and color
[27]. Later, Hou and Zhang presented a saliency prediction
model based on transform domain [28]. Harel et al. pro-
posed a graph-based visual saliency (GBVS) prediction
metric [29]. Fang et al. introduced a saliency prediction
model based on the biological visual system (BVS) and the
amplitude spectrum [30]. Zhang et al. presented a simple
saliency prediction approach, namely, SDSP, by integrating
three prior maps [31]. Other relevant works can be found
elsewhere [32-37].

Most previous studies employed human-designed
mechanisms to compute hand-designed low-level visual
features, which do not sufficiently obtain the high-level
semantic structural information that can help in saliency
prediction. Moreover, it would be insufficient to handle
large-scale data with complex distributions. As deep ar-
chitectures were primarily inspired by biologically simulated
neural networks, it would be appropriate to establish a
computational framework of saliency prediction using deep
architecture. Currently, with the recent advancements in
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deep convolutional neural networks (CNNs), RGB image
saliency prediction has improved considerably in compar-
ison to using conventional nondeep learning techniques. Vig
et al. proposed the ensemble of deep networks (eDNs),
which is an early deep architecture that automatically learns
the bio-inspired hierarchical features to predict RGB image
saliency [38]. Kiimmerer et al. proposed DeepGaze I [39]
and DeepGaze II [40] using feature representations from the
existing pretrained AlexNet [41] and VGGNet [42], re-
spectively. Li and Yu utilized nested windows as inputs to
extracted multiscale CNNs features and later integrated
them to generate a saliency map [43]. Liu et al. proposed a
deep architecture for RGB image saliency prediction using
multiresolution CNNs that learn both low-level saliency cues
and high-level factors [44]. Huang et al. proposed an ar-
chitecture including a deep CNN applied to two scales [45].
They compared CNN architectures of different standards,
such as AlexNet [41], VGGNet [42], and GoogLeNet [46],
and demonstrated the effectiveness of their architecture,
particularly the one based on the VGGNet. Thereafter,
several VGGNet based saliency prediction models have been
proposed [47-57]. The aforementioned deep-learning-based
saliency prediction models have achieved promising results.
However, these models are probably not very effective in
predicting the saliency maps of RGB-D images because the
feature representations in the models cannot adequately
simulate the binocular visual mechanism.

Owing to the fact that the saliency prediction methods
for RGB-D images are relatively less developed, little
progress has been made. For instance, Wang et al. proposed
a depth saliency-based RGB-D saliency prediction model
that combines the resulting depth saliency map with an
existing RGB saliency prediction model using two methods
[58]. Fang et al. introduced an RGB-D saliency prediction
model, where all the feature maps were extracted from
discrete cosine transformation (DCT) coefficients, which
were combined for the final saliency map [59]. Jiang et al.
proposed a visual comfort-guided 3D saliency prediction
model that not only considers the factors from depth per-
ception but also investigates visual discomfort in the pre-
diction model [60]. Moreover, Qi et al. presented an RGB-D
saliency prediction model by combining a texture saliency
map, a depth saliency map, and an RGB saliency map using a
linear pooling strategy. [61]. In these saliency prediction
models, they mainly calculate the saliency map of RGB-D
images by simply combining the depth feature map, RGB
saliency map, and other factors. Therefore, the performances
are limited. Several data-driven approaches have been
proposed, wherein machine learning techniques have been
used for saliency prediction. Ma and Huang presented a
learning-based RGB-D saliency prediction model that in-
cludes the depth map and its derived features [62]. Fang et al.
proposed an RGB-D saliency prediction model that collects
various low-level visual features and combines them using
the support vector regression (SVR) [63]. As deep learning-
based saliency prediction methods have achieved significant
results for RGB images, researchers have been trying to apply
these techniques to RGB-D images. Zhang et al. introduced
an RGB-D image saliency prediction model based on deep
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learning techniques. They used AlexNet to extract the color
and depth (high-level) features and then combined these to
obtain the RGB-D saliency information [64]. However, this
model is not learned in an end-to-end deep supervision
mean and only uses pretrained AlexNet in extracting the
color and depth features from the images. Therefore, the
performance is limited.

Deep architecture, the design of which was originally
inspired by the functioning of cells in the visual neurons, can
be used to obtain various rich features in a hierarchical
pattern. In this work, we propose novel CNNs for RGB-D
image saliency prediction in a deep supervision manner. The
proposed autoencoder comprises four main networks: a
color channel network, a disparity channel network, a
feature concatenated network, and a feature learning net-
work. The autoencoder ensures that the networks are
trainable in an end-to-end deep design and can automati-
cally learn their own priors from training data. The results
indicate that the proposed deep autoencoder, by incorpo-
rating a disparity channel network and a prior learning
subnetwork, helps significantly improve the prediction
performance.

In summary, the following are the three main contri-
butions of this work:

(1) The core trainable network of the proposed RGB-D
saliency prediction model employs raw RGB-D
images as inputs and their corresponding eye-fixa-
tion attributes as labels. The model comprises four
main networks: a color channel network, a disparity
channel network, a feature concatenated network,
and a feature learning network. These networks can
mine the complex relationship and make the utmost
of the complementary characteristics between both
color and disparity cues.

(2) We introduce a novel deep multimodal fusion
autoencoder that sequentially enhances the predicted
saliency maps. To the best of the authors’ knowledge,
our proposed deep autoencoder is a novel end-to-
end deep multimodal fusion autoencoder trained
and tested for the saliency prediction of RGB-D
images on two publicly available datasets.

(3) The results indicate that the proposed deep
autoencoder, by incorporating a disparity channel
network and learned priors, helps significantly im-
prove the prediction performance and achieve
outstanding results with competitive generalization
properties.

2. Proposed Autoencoder

Figure 1 shows a detailed description of the proposed RGB-
D saliency prediction model. The model comprises four
main networks: a color channel network, a disparity channel
network, a feature concatenated network, and a feature
learning network. We first briefly review the four networks
and show their mechanisms in predicting the saliency maps
of RGB-D images.
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FIGUre 1: The architecture of the proposed autoencoder.

2.1. Color Channel Network. The color channel network of
the proposed deep autoencoder is a CNN with five con-
volution blocks. This network takes an input color RGB
image and outputs the resultant feature maps for the feature
concatenated network.

We establish the color channel network based on the
standardized 16-layer network from VGGNet [42]. In this
study, we consider only convolution blocks and remove fully
connected layers. To be more specific, the first two blocks
include two convolutional layers each, whereas the subse-
quent three blocks include three convolutional layers each. If
we denote the input feature map as X, whose convolution
filters are decided by the trainable kernel weight matrix W
and the trainable bias term vector b,, then the resultant
feature map f, can be obtained as follows:

f(X;W,b) =W, X +b,, (1)

where # denotes the convolution computation with stride s.
Each convolution layer in the five convolution blocks is
restricted to a 3 x 3 convolutional kernel and operates with a
downsampling stride of 1. The small convolutional kernels
allow the convolution filter to have a highly deep archi-
tecture with a lower storage requirement while making the
model more discriminative. All the convolutional layers in
the autoencoder are followed by point-wise nonlinearity
(e.g., rectified linear unit (ReLU)) owing to its superior
effectiveness and efficiency:

0, if f,<0,
ReLU(fS):{f i £.20 (2)

Furthermore, to improve the translation invariance and
representation capability, all the convolution blocks in the

VGGNet are often followed by downsampling (e.g., max-
pooling) with a kernel pooling size of 2x2 and a down-
sampling stride of 2. For an input RGB image with a spatial
resolution of W x H, the spatial resolution of the resultant
feature map will be [W/8] x [W/8]. Thus, a CNN based on
the VGGNet would output a resultant feature map down-
sampled by a factor of 8. To maintain the spatial information,
we omit the last max-pooling layer, while keeping its stride
unchanged. Thus, the resultant feature maps of the color
channel network are downsampled by a factor of 8 compared
to the input. Starting at the first convolution block, the
channel dimension in the outputs of each convolution blocks
is slowly increased as 64 — 128 — 256 — 512 — 512.
This renders the color channel network to obtain rich
structural information of the inputs.

2.2. Disparity Channel Network. The disparity/depth infor-
mation in actual RGB-D environments is crucial to BVS but
has been usually underutilized in conventional RGB-D sa-
liency prediction models. Therefore, it is necessary to es-
tablish effective and efficient RGB-D saliency prediction
models by leveraging the disparity/depth information. In
this work, the disparity channel network of the proposed
deep autoencoder, which is identical in architecture to
VGGNet, is a network with only three convolution blocks.
This network takes the input disparity/depth map and
outputs feature maps for the feature concatenated network.

Similar to the color channel network, we build the
disparity channel network on the standardized 16-layer
network from VGGNet [42]. We consider only the first three
convolution blocks and remove the rest. The first two
convolution blocks contain two convolutional layers each,



whereas the subsequent block has three convolutional layers.
The convolution blocks end with a pooling layer, and each
convolutional layer in the network is followed by an ReLU
activity function. In the disparity channel network, there are
three pooling layers with a kernel pooling size of 2 x 2 and a
stride of 2. For an input disparity map with a spatial res-
olution of W x H, the spatial resolution of the resultant
feature map will be [W/8] x [W/8]. Thus, the resultant
feature maps of the disparity channel network are down-
sampled by a factor of 8 compared to the input. Starting at
the first convolution block, the channel dimension in the
outputs of each convolution blocks is slowly increased as
64 — 128 — 256.

2.3. Feature Concatenated Network. We first take the re-
sultant feature maps from three different positions of the
color channel network: the third max-pooling layer (256
resultant maps), the last convolution block (512 resultant
maps), and the last max-pooling layer (512 resultant maps).
We then take another set of resultant maps from the last
max-pooling layer (256 resultant maps) of the disparity
channel network. The various resultant maps can be con-
catenated to obtain a tensor with 1536 resultant maps. The
resulting tensor is then fed through a feature learning
network to acquire the RGB-D predicted saliency map.

2.4. Feature Learning Network. The feature learning network
comprises three subnetworks: a prior learning subnetwork, a
convolutional feature learning subnetwork, and a feature
combination subnetwork.

(1) Prior learning subnetwork: First, we obtain high-
level feature maps by convolving (two convolutional
layers with a kernel size of 3 x 3 and a downsampling
stride of 1) the output maps of the feature concat-
enated network. The channel dimension in the
output map of the convolution filters is gradually
reduced as 320 — 1. The ReLU activity function is
used in all the convolutional layers. Subsequently, we
construct a prior learning layer that can learn its own
center prior without using the hand-designed prior
maps. Toward this end, we learn a rough mask of size
wy X hy, initialize it to one, bilinearly upsample it,
and apply it to the high-level feature maps with
multiplication. Given the entire prior map O with a
spatial resolution of w; x h, the pixel values of O are
interpolated to obtain a learned prior map P of size
w x h. We calculate a sampling grid U of size w, x h,,
associating O with real coordinates into P. If
U;j= (xij» yij)> then O;; is equivalent to P at (x; y;,);
however, as (x;j, y;;) are coordinates, we can con-
volve these and set the following:

wy hy

Viy = Zl ZIY,-,jkx(x —x)k(y=yiy) )
i=1 j=

where k, (%) and k,(*) denote bilinear kernels,
k, (b) = max (0, (h/hy) — b)), and
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k, (b) = max (0, (w/w,) — |bl). ho and w, are set to
[h/10] and [w/10], respectively, in the experiments.

(2) Convolutional feature learning subnetwork: The
convolutional feature learning subnetwork works in
a convolutional encoder-decoder model. The en-
coder part obtains feature maps by convolving (three
convolutional layers with a convolutional kernel size
of 3x3 and a downsampling stride of 1) and
downsampling (two pooling layers with a pooling
size of 2x2 and a downsampling stride of 2) the
output maps of the feature concatenated network.
Thus, the resultant maps are downsampled by a
factor of 4 compared to the input. The decoder part
obtains the feature maps by convolving (three
convolutional layers with a convolutional kernel size
of 3x3 and a downsampling stride of 1) and
upsampling (two deconvolution layers with kernel
size of 3x3 and an upsampling stride of 2) the
output maps of the encoder part and then outputs
with a resolution same as that of the input. Again, the
ReLU activity function is employed in all the con-
volutional layers. The channel dimension in all the
convolutional feature learning subnetworks is set as
64.

(3) Feature combination subnetwork: We take the
resultant maps from two subnetworks: the output
of the prior learning subnetwork and the output of
the convolutional feature learning subnetwork.
The feature maps have equal dimension and can be
concatenated to obtain a tensor. Finally, the
output from the feature combination subnetwork
is fed to a convolutional layer with one filter and
ReLU activity function, the output of which is
considered the final saliency map with a spatial
dimension of [W/8] x [W/8] because the down-
sampling strides in the pooling layers of the first
three convolution blocks are greater than unity.
We upsample this map to obtain the predicted
saliency map with the original size using bicubic
interpolation.

To generalize the model and to avoid overfitting, the
dropout (a dropout rate of 0.5) is introduced in the output of
the feature combination subnetwork.

2.5. Training and Testing. 'The proposed deep autoencoder is
executed using the Keras deep learning framework. During
training, the parameters (e.g., weights and bias) of the color
and disparity channel networks are initialized from the
pretrained VGGNet [42], whereas the other parameters can
be initialized from a standard deviation (SD) of 0.01 and zero
mean Gaussian distribution. The autoencoder is encouraged
to minimize the values of loss function in the training
procedure through Stochastic Gradient Descent (SGD)
using back-propagation. The loss function is inspired by one
objective: the predicted saliency map should be similar to the
corresponding ground-truth saliency density map. There-
fore, mean squared error (MSE) or Euclidean distance is a
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TaBLE 1: The evaluation results of various saliency models.

Datasets Criteria Itti GBVS QFT Fang Qi DeepFix ML-net DVA Proposed
CC 0.341 0.396 0.163 0.333 0.371 0.4322 0.446 0.4549 0.5310
NUS KLDiv 1.457 1.374 1.795 1.560 1.505 1.8138 1.780 2.4349 1.2323
AUC 0.788 0.824 0.682 0.795 0.806 0.7699 0.766 0.7236 0.8501
NSS 1.236 1.441 0.568 1.209 1.357 1.6608 1.821 1.7962 2.1195
CC 0.449 0.533 0.292 0.542 0.595 0.7974 0.696 0.6834 0.8034
NCTU KLDiv 0.738 0.619 0.893 0.674 0.616 1.3083 0.900 1.1045 0.3593
AUC 0.753 0.789 0.698 0.806 0.816 0.8650 0.835 0.8035 0.8671
NSS 0.978 1.184 0.695 1.264 1.373 1.8575 1.588 1.5546 1.8405

reasonable choice for the evaluation. The overall loss
function can be expressed as follows:

| M
LMSE:M;(S]‘—G]‘)Z, (4)
where S; denotes the j™ predicted saliency map and G;
denotes the j" saliency density map. A mini batch of 8 color
and disparity pairs is applied in each iteration. The SGD is
applied with a Nesterov momentum of 9x 107", a weight
decay of 5x107% and a polynomial learning policy with a
learning rate of 107>,

During testing, the RGB-D saliency map can be obtained
from the feature combination subnetwork. The processing
speed of the model is as fast as 0.1 s per RGB-D image, which
is conducted on a PC with an 1080Ti GPU and 8 GB of RAM.

3. Experimental Results

3.1. Datasets. To evaluate the superior performance of our
deep autoencoder, two publicly available benchmark data-
sets were utilized: the NUS-3D Saliency dataset (denoted as
NUS) [65] and the NCTU-3D Fixation dataset (denoted as
NCTU) [62]. Detailed information of the benchmark
datasets is summed up as follows.

The NUS includes 600 RGB-D images including indoor
and outdoor scenes. The color stimuli provide a diverse and
comprehensive understanding of RGB-D visual scenes for
eye tracking analyses. The ground-truth saliency density
map was constructed from the human fixations of 80 par-
ticipants. The age of the participants ranged from 20 to 33
years. Among them, 54 were males and 26 were females.

The NCTU is a collection of 475 RGB-D images along with
their raw depth maps and human eye-fixation data. RGB-D
content mainly comes from existing RGB-D movies or videos.
The depth maps in the dataset were obtained from a Kinect
depth sensor. The ground-truth saliency density maps were
obtained from 16 subjects using a Tobii TX300 eye tracker, and
each RGB-D image stimulus was presented for 4s.

Following the existing common processing methods
[1, 2, 8], the proposed autoencoder requires a train-test
procedure. Therefore, in each train-test procedure, 80% was
for training, and the remaining was for testing. To ensure
robustness of the proposed model, multiple iterations were
executed by applying the randomly divided training and
testing samples; the median predictions of the indicators

from 100 training and testing operations were chosen as the
experimental results.

3.2. Evaluation Criteria. There are several methods of
evaluating the agreement between the fixation density map
and the predicted saliency map. Previous works on criteria
[66] indicate that it is difficult to obtain an equity com-
parison for assessing saliency prediction models using one
criterion. Here, four widely accepted and known standard
evaluation criteria were used to quantitatively compare the
fixation density map and the predicted saliency map,
namely, Pearson’s correlation coefficient (CC), area under
the receiver operating characteristic (ROC) curve (AUC),
Kullback-Leibler divergence (KLDiv), and normalized
scanpath saliency (NSS). For simplicity, we denote the sa-
liency density map as G, the binary fixation map as Q, and
the predicted saliency map as S. Then, we illustrate the
evaluation criteria in detail.

(1) CC: The CC is a statistical criterion used to deter-
mine the level of linear correlation or dependency
between two distributions (S and G).

_ 0(S,G) ’ (5)
o(S) x o (G)

where (S, G) denotes the covariance of G and S,

ranging between —1 and+1, and ¢(G) and o(S)

denote the SDs of S and G, respectively. A value

closer to —1 or +1 indicates a good agreement be-
tween the two saliency maps.

(2) AUC: The AUC criteria are extensively utilized to
assess the predicted maps obtained using saliency
prediction models. Given an image and its corre-
sponding ground-truth binary fixation map Q, the
nonfixation and fixation regions can be viewed as
negative and positive parts, respectively. The pre-
dicted saliency map is then binarily categorized into
nonfixation points and fixation points at various
thresholds. Through altering the threshold between 0
and 1, the ROC curve is acquired by plotting the false
positive rate against the true positive rate, with the
area below the curve computed as the AUC value.

(3) KLDiv: The KLDiv assesses the information loss

when the distribution § is utilized to approximate
the distribution G, thus making a probabilistic
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FIGURE 2: The results of various saliency models. (a) RGB. (b) GT. (c) Itti. (d) GBVS. (e) QFT. (f) Fang. (g) Qi. (h) DeepFix. (i) ML-net.
(j) DVA. (k) Proposed.
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TaBLE 2: The prediction performances of models A, B, and C, as well as our proposed autoencoder.

Datasets Criteria Model A Model B Model C Proposed
CC 0.5220 0.5227 0.5097 0.5310
NUS KLDiv 1.2538 1.3408 1.5606 1.2323
AUC 0.8353 0.8351 0.7841 0.8501
NSS 2.1198 21727 2.1301 2.1195
CC 0.7607 0.8043 0.7967 0.8034
NCTU KLDiv 0.3900 0.4152 0.3869 0.3593
AUC 0.8552 0.8641 0.8618 0.8671
NSS 1.7348 1.8914 1.8227 1.8405

(0

FIGURE 3: Some failure cases. (a) RGB. (b) Ground-truth. (c) Proposed.

(0

d) (e)

(

FIGURE 4: Some failure cases. (a) RGB. (b) GT. (c) DeepFix. (d) ML-net. (e) DVA. (f) Proposed.

interpretation of S and G. The KLDiv for S and G
can be expressed as follows:

S.
KLDiv (S| G) = ZG,.log< o ’+ o s), (6)

where i represents the i pixel and & denotes a
regularization term. The KLDiv is a dissimilarity
criterion, and a lower score shows a better ap-
proximation of G with S.

(4) NSS: The NSS is a criterion specifically defined for
the evaluation of saliency prediction models. For S
and Q, we have the following relationship:

1S
NS = Y S(i) x Q(i),
i=1 (7)
where 8 = ZQ (i)and S = S(—T(—[g()S)’

where § denotes the total number of fixated pixels
and p (S) represents the mean of S.

3.3. Comparison of State of the Art. To evaluate the efficiency
and effectiveness of our deep autoencoder, we performed a
quantitative and qualitative evaluation by comparing it to



eight models on the NUS and NCTU datasets, namely, Itti
etal. [27], GBVS [29], QFT [30], Wang et al. [58], Fang et al.
[59], DeepFix [47], ML-net [51], and DVA [57]. These sa-
liency prediction models have been introduced and have
been extensively utilized for comparison. We use the rec-
ommended parameter settings provided by the authors.
Table 1 lists the quantitative comparison results on the NUS
and NCTU datasets in terms of the CC, KLDiv, NSS, and
AUC. From the table, the proposed autoencoder outper-
forms the rest by a significant margin, thus verifying its
robustness and generality.

For further illustration, Figure 2 shows some RGB-D
saliency prediction examples for the models. The examples
clearly show the computed performance of the proposed
deep autoencoder in predicting the RGB-D saliency maps,
which are more similar to their corresponding saliency
density maps. In contrast, the saliency maps predicted using
the other saliency models are significantly less consistent
with their corresponding saliency density maps. In partic-
ular, the proposed deep autoencoder obtains high saliency
values for people, objects, faces, and other predominant
cues.

3.4. Model Ablation Study. We investigate various types of
deep autoencoders from several aspects to shed more light
on the proposed deep autoencoder, objectively evaluate the
contribution of different networks in the proposed deep
autoencoder against the two datasets, and evaluate the
performance in terms of the CC, KLDiv, AUC, and NSS. To
this end, we devised prediction performance comparison
models, namely, A, B, and C. In model A, the deep
autoencoder is without the disparity channel network. In
model B, the deep autoencoder is without the prior
learning subnetwork. In model C, the deep autoencoder is
without the convolutional feature learning subnetwork.
Table 2 summarizes the prediction performances of
models A, B, and C, including that of our model. The
results demonstrate that the prediction performance of the
saliency model improves when combining the color and
disparity channel networks. Furthermore, it can be con-
cluded that the prediction performance can be enhanced
by optimally combining the prior learning and the con-
volutional feature learning subnetworks. In summary, the
predictions obtained by comprehensively employing the
different networks are found to be complementary, and the
complete deep autoencoder can obtain more accurate
saliency maps.

3.5. Analysis of Some Failure Cases. Figures 3 and 4 show
some typical failure cases. When there is no definite object in
the RGB-D image attracting attention, human eye attention
is inclined to be directed at the visual center. The proposed
autoencoder fails to predict the same. In Figure 4 note that
the prediction performances of the DeepFix, ML-net, and
DVA, which are also based on CNNss, are not better than that
of the proposed autoencoder when it comes to the RGB-D
images.
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4. Conclusion and Future Work

To reduce the semantic gap between model saliency pre-
diction and human behavior, this work presents a first-of-
its-kind deep multimodal fusion autoencoder for an accurate
saliency prediction of RGB-D images. The main novelty of
this study is the disparity channel network, which was
specifically designed to boost the saliency prediction
performance. Furthermore, the model optimally learns a
combination of features extracted from a prior learning
subnetwork and a convolutional feature learning sub-
network and applies it to predict the saliency maps. The
effectiveness of each component was validated through
extensive evaluations. The quantitative and qualitative
comparisons with other models on two benchmark
datasets indicate the efficiency and effectiveness of our
deep autoencoder for the saliency prediction of RGB-D
images.

In the future, we plan to design more effective saliency
prediction models based on another deep multimodal fusion
autoencoder and offer a deep investigation into the ad-
vantages of depth cues for RGB-D image saliency prediction.
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