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SUMMARY

Predicted structures submitted for CASP10 have
been evaluated as molecular replacement models
against thecorrespondingsetsof structure factoram-
plitudes. It has been found that the log-likelihood gain
score computed for each prediction correlates well
with common structure quality indicators but is
more sensitive when the accuracy of the models is
high. In addition, it was observed that using coor-
dinate error estimates submitted by predictors to
weight the model can improve its utility in molecular
replacement dramatically, and several groups have
been identifiedwho reliablyprovideaccurateerrores-
timates that could be used to extend the application
of molecular replacement for low-homology cases.

INTRODUCTION

About two-thirds of crystal structures deposited in the Protein

Data Bank (PDB) (Berman et al., 2003) are now solved by the

method of molecular replacement (MR), and it has been esti-

mated that about 80%could have been solved byMRusing tem-

plates available at the time of deposition (Long et al., 2008).

Traditionally, MR has been the method of choice when there is

a template with a sequence identity greater than 30%–40%. If

such a sequence identity threshold could be pushed down,

MR could be applied even more widely. For this reason, there

has been significant interest in the application of homology

modeling to improve templates prior to MR. As recently as 5–

10 years ago, the perception was that homology modeling

tended to make templates worse instead of improving them,

but in the last few years it has become apparent that homology

modeling can now add value to the templates, making them bet-

ter models for MR. This has become an active area of research

and several pipelines have been developed for ready use, e.g.,

mr_rosetta (DiMaio et al., 2011) in the PHENIX package (Adams

et al., 2010).

In CASP7, Read and Chavali (2007) introduced an MR score

to judge the quality of models submitted to the high-accuracy

template-based modeling category. The scores explored were

the log-likelihood gain (LLG) computed for the best potential

MR solution found by the MR program Phaser (McCoy et al.,
2007) and the Z score of the top correct solution (if any). One so-

bering result was that, of 1,588 models evaluated, only 33 (2.1%)

proved to be better for MR than the best available template. In

retrospect, however, the high-accuracy template-based model-

ing category was least likely to reveal an improvement from ho-

mology modeling, as one of the criteria for entry was that there

was already a good template!

At the time, computing these scores was computationally pro-

hibitive because a complete MR search had to be carried out for

each model, so this scoring procedure was not applied at the

time to models from other categories of CASP. Unfortunately,

for this purpose, the MR search as implemented in Phaser is

adaptive; the poorer the model, the longer the search takes,

withmodels that are too poor to find a solution taking the longest.

More recently, a fast procedure has been developed to calculate

the LLG scores for any models, given the availability of a reason-

ably good solution onto which the models can be superposed

(typically, the target structure). Augmented with the increase in

available computing power, this enabled a large-scale evaluation

of predictions from the CASP10 experiment, including models

from all categories.

Read and Chavali (2007) suggested that success in MR might

be improved by translating estimates of coordinate uncertainty

into an inflation of the crystallographic B factors, to smear the

atoms in the model over their range of possible positions. This

suggestion was taken up by Pawlowski and Bujnicki (2012),

who showed that perfect knowledge of coordinate errors would

have a very large impact on MR success and that the use of esti-

mated coordinate errors could have a smaller but still significant

impact. Here we show that the best model quality assessment

algorithms indeed add substantial value to MR models, even

when only a single model is available.
RESULTS AND DISCUSSION

Quick LLG Calculation
There are several problems with performing a full-scale MR

search to calculate the LLG score for an arbitrary model. First,

it can be very time consuming, especially if the unit cell contains

several copies of the molecule. Second, if the correct solution is

not found, the resulting LLG value is not valid. In addition, an

automatic test to check whether a solution has been found or

not depends on arbitrary cutoffs and decisions, e.g., whether

to keep or discard partially correct solutions.
Structure 23, 397–406, February 3, 2015 ª2015 The Authors 397

mailto:rjr27@cam.ac.uk
http://dx.doi.org/10.1016/j.str.2014.11.020
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2014.11.020&domain=pdf


A B

C D

Figure 1. Typical LLG versus GDT_TS Scat-

ter Plots Observed for Targets

(A) Target TR705 contains two domains and

refinement of one of these was requested. If the

second domain is not taken into account in the

likelihood calculations, the black curve is ob-

tained, which shows no correlation between the

two scores. However, by taking the contribution

from the second domain into account (grey curve),

a clear correlation is obtained (for scores shown,

the contribution of the second domain alone is

subtracted for the plot). ASU, asymmetric unit.

(B) Uninformative LLG plot for target T0653 with all

models falling into the low accuracy zone.

(C) Very sensitive LLG plot for target T0717,

domain 2 (taking the unpredicted domain 1 into

account). Predictors have managed to model

residues Val67 to Gly119 (out of 166 residues) very

accurately, and this gives a clear signal in scoring

with the 1.9 Å X-ray data. For the ‘‘outlier’’ models

above GDT_TS = 35, the accuracy of the named

residue segment is comparable with that of the

rest of the structure.

(D) Atypically small signal observed for target

T0704.
Targets for the CASP experiments all have known structures

and, although these are kept secret from predictors they are

used for assessment. Therefore, the predicted structure can

be superposed onto all copies of the target chain and an LLG

score can be calculated. Since structural superposition does

not in general yield identical results to those based on electron

density, an additional positional refinement is necessary to

obtain the best fit. It is important to note that if no meaningful su-

perposition can be made, the initial structure will not be within

convergence radius of refinement and the resulting score will

be invalid. In addition, for structurally periodic targets and an

imprecise superposition, refinement can move the structure

out of register, also resulting in an invalid score.

The LLG calculation is also dependent on the assumed error

(variance root mean square [vrms]), which is normally estimated

based on the sequence identity. For predicted structures, an es-

timate could be calculated from superposing them onto the true

structure; however, this value will still need to be refined to obtain

a best fit, and the vrms refinement in Phaser (McCoy et al., 2007)

does not need a precise estimate for convergence. The refine-

ment can sometimes terminate prematurely, since the LLG land-

scape can contain multiple maxima, but this only seems to

happen in about 0.5%–1% of cases, and these can easily be

identified from GDT_TS versus LLG score plots. Restarting

refinement from another starting value usually results in a valid

score.

Correspondence with Other Metrics
LLG scores were calculated for all predictions submitted for

CASP10 targets that were determined by X-ray crystallography

and for which the measured X-ray diffraction amplitudes were

available. The relationship with theGDT_TS score was examined

on scatter plots (Figure 1). For the majority of cases, the LLG

score showed a clear functional relationship with the GDT_TS

score. At GDT_TS < 40–50, the LLG scoreswere almost constant

(average Spearman correlation coefficient for segment GDT_TS
398 Structure 23, 397–406, February 3, 2015 ª2015 The Authors
% 50, 36%); they started to increase slowly for GDT_TS values

above 50–60 and then very rapidly for GDT_TS > 80 (average

Spearman correlation coefficient for segment GDT_TS > 50,

71%), although some deviations have also been observed (Fig-

ures 1C and 1D). This suggests that the LLG score cannot

discriminate among predictions with large errors but can accu-

rately rank good-quality predictions.

This functional relationship between the two scores is not un-

expected. Both the GDT_TS and the LLG measure deviations

from a reference structure and, unlike root-mean-square devia-

tion (rmsd), the penalty given to deviations is limited. This limit

is imposed in GDT_TS by a series of cutoff values and in LLG

by a smooth function deriving from the difference between the

observed and calculated structure factor values in the presence

of errors (Read, 1990), which does not continue to degrade once

errors are large compared with the resolution of the diffraction

data. However, there are also important differences between

the two. The LLG score depends on the measured X-ray data

and therefore is also affected by the resolution of the structure.

It is an all-atom score and therefore downweights pure Ca pre-

dictions on the basis of low completeness. Nonetheless, even

relatively small fragments can receive significant LLG scores if

the prediction is very accurate.

Although the LLG score measures the composite effect of the

accuracy and completeness of predicted structures, it is also

possible to describe their accuracy alone using MR calculations.

This is expressed in the refined vrms value, which is independent

of the completeness. The vrms is an effective rmsd value that

calibrates the likelihood functions, based on the level of agree-

ment between observed and calculated structure factors that

would be obtained if the errors in all the atomic positions were

drawn from the same gaussian error distribution. If the errors

were drawn from a gaussian distribution, the vrms would be

equivalent to the rmsd but, compared with the rmsd, the effects

of outliers are downweighted. Therefore, for predictions with

approximately the same completeness, a clear negative



correlation can be found between GDT_TS and vrms, which is

approximately linear. In addition, for predictions that are reason-

ably complete, vrms shows a linear relationship with the com-

mon rmsd from Local-Global Alignment (LGA) (Zemla, 2003).

LLG scores of predicted structures are only comparable if

calculated against the same X-ray data set. The LLG score can

therefore not be used to evaluate cross-target performance of

predictors, so two indicators based on the LLG score have

been selected for this purpose. The first of these is the common

Z score calculated for each target, which measures how well a

predictor is performing with respect to others. Because of the

standard deviation in the denominator of the Z score, it gives

more weight to targets for which most predictors submitted

similar quality models. The individual Z scores of predictions

are then averaged for each group. The second score measures

the improvement with respect to a suitably chosen baseline

model, and gives more weight to targets where the baseline

has low quality. This is referred to as improvement score (I score,

defined in Equation 4 below), and is calculated using the best

prediction of the group for a given target only.

Accounting for Model Errors
The accuracy of a structure as an MR model often varies along

the chain. In general, it is the highest in the core and lowest on

the protein surface. Methods to estimate model quality are eval-

uated as part of the CASP exercises, and several such methods

have been shown to give reasonably reliable estimates of local

coordinate accuracy (Kryshtafovych et al., 2014). It is possible

to take this predicted variation in accuracy into account for the

MR calculation bymanipulating the atomic displacement param-

eters (B factors) of constituent atoms (Read, 1990), incrementing

the B factors by an amount proportional to the expected posi-

tional error squared as defined in Equation 1, where jDrj is the

absolute error in angstroms:

DB=
8p2

3

D
jDrj2

E
(Equation 1)

Note that Pawlowski and Bujnicki (2012) omitted the factor of 3

in the denominator, which may have reduced the size of im-

provements they observed. This factor (frequently omitted or

poorly explained in the crystallographic literature) is required to

account for the fact that the component of the mean-square co-

ordinate error in any particular direction (specifically, in this case,

parallel to the diffraction vector) is one-third of the overall mean-

square coordinate error for an isotropic distribution of error.

The error estimates provided with themodels by CASP predic-

tors were used to establish whether MR results could be

improved by taking them into account, and at the same time

whether the error estimates are accurate enough for this to

have a measurable effect. The average improvement found is

rather modest; however, this can be attributed to the fact that

the majority of predictors do not actually submit error estimates.

When the average is calculated for predictors TS026 (ProQ2-

clust), TS130 (Pcomb), TS273 (IntFOLD2), TS280 (ProQ2clust2),

TS285 (McGuffin), TS388 (ProQ2), and TS498 (IntFOLD), which

were judged (as discussed below) to have submitted meaningful

error estimates, the improvement in the LLG score is a staggering

25% with respect to the same models with constant B factors

applied throughout the chain. This considerable improvement in
model quality suggests that success of MR could be vastly

enhanced if error estimates were taken into account, in agree-

ment with the results from Pawlowski and Bujnicki (2012). To

judge the effect of omitting the factor of 3 from Equation 1, LLG

scores have been recalculated for the aforementioned groups us-

ing the formula of Pawlowski and Bujnicki (2012). This has re-

sulted in an average LLG score almost 10% lower than with

Equation 1, although with a large variability, and sometimes the

‘‘wrong’’ formula gave better results. However, it is important to

note that Phaser requires the errors to be on an absolute scale,

and scale-factor errors in prediction methods could account for

occasional deviations from the theory. Multiple calculations

involving different scale factors would quite possibly improve re-

sults even further but this was not explored.

All the predictors submitting meaningful error estimates were

using a specified model quality assessment program (MQAP)

to predict the model error. The MQAPs ModFOLD3 (McGuffin

and Roche, 2010) and ModFOLD4 (McGuffin et al., 2013) were

used to predict errors in models from IntFOLD (Roche et al.,

2011) and IntFOLD2 (Buenavista et al., 2012), respectively.

ProQ2, ProQ2clust, and ProQ2clust2 (Ray et al., 2012) as well

as Pcomb (Wallner and Elofsson, 2006) are all MQAPs that

were used to predict errors in models submitted to the server

category of CASP.

Refinement Targets
For a refinement target, a starting model is provided by the orga-

nizers and predictors are asked to improve it. However, since the

best refinement models did not contain useful error estimates,

these were not considered for this category (data not shown).

On the other hand, the given starting model establishes a well-

defined base level that can be used tomeasure the improvement

in the structure.

There were 13 refinement targets assigned with X-ray data

available. In all cases, the best prediction was of higher quality

than the starting model, sometimes considerably. On average,

the best prediction had a 30%higher LLG score than the starting

model. On the other hand, only about 20%of all predictions were

better than the starting model.

Average prediction quality has been calculated for predictors

that submitted models for at least seven targets. Based on this

measure, the best-performing predictors are TS049 (FEIG;Mirja-

lili et al., 2014), followed by TS197 (Mufold; Zhang et al., 2010),

which improve the starting model in terms of the LLG score by

40% or 30%, respectively, followed by numerous others around

the 10% mark.

Since there was very little variation in the extent of modeled re-

gions, with almost all predictors predicting the full structure re-

quested, the LLG scores showed a very clear correlation with

theGDT_TS score. In addition, the vrms showed a linear relation-

ship with the GDT_TS score (with a negative slope). Predictions

that did not obey this latter relationship were of lower complete-

ness; e.g., side chains or whole loops were missing.

Template-Based Modeling Targets
Out of 97 template-based modeling (TBM) targets, 68 had X-ray

data available. All models submitted by predictors were evalu-

ated if they could be meaningfully superposed onto the target.

Predictions were evaluated with three B-factor schemes: (a) B
Structure 23, 397–406, February 3, 2015 ª2015 The Authors 399



Table 1. Summary of Results for Groups that Submitted Meaningful Error Estimates, Compared with the Three Best Structure-Only

Predictors

Code Name

% Rms B

Factor

I Score Constant

B Factor

I Score Rms

B Factor

Models above

Baseline (%) Citation

TS026 ProQ2clust 68 �0.304 �0.149 14.5 Ray et al., 2012

TS088 Panther 77 �0.534 �0.426 2.7 Chida et al., 2013

TS130 Pcomb 66 �0.276 �0.098 13.7 Wallner and Elofsson, 2006

TS273 IntFOLD2 81 �0.416 �0.248 6.5 Buenavista et al., 2012

TS277 Bilab-ENABLE 42 �0.429 �0.327 6.0 Ishida et al., 2003

TS280 ProQ2clust2 66 �0.293 �0.122 15.1 Ray et al., 2012

TS285 McGuffin 59 �0.268 �0.153 11.3 Buenavista et al., 2012

TS388 ProQ2 80 �0.308 �0.204 11.2 Ray et al., 2012

TS479 Boniecki_LoCoGRef 55 �0.465 �0.408 7.2 Boniecki et al., 2003

TS498 IntFOLD 48 �0.411 �0.380 6.8 Roche et al., 2011

TS028 YASARA NA �0.183 9.8 Krieger et al., 2009

TS301 LEE NA �0.200 9.3 Joo et al., 2014

TS330 BAKER-ROSETTASERVER NA �0.186 12.4 Leaver-Fay et al., 2011

%RmsB factor is the percentage of models for which B factors calculated from submitted error estimates gave the highest LLG score from all B-factor

schemes evaluated. I scores are defined in Equation 4. Models above baseline indicate the percentage of models yielding higher LLG scores than the

corresponding baseline structures used in the I score calculation. NA, no data available; rms, root mean square.
factors as present in the PDB file, (b) B factors calculated

assuming that the submitted values are expected errors, using

Equation 1, and (c) constant B factors.

As can be expected, results were more diverse than for the

refinement targets. For several targets, most predictions were

below the quality requirements of the LLG score and were given

a flat nondiscriminative LLG score.

Since the templates used by predictors for a particular TBM

target are not necessarily known, this presented a challenge to

establish a baseline formodel quality. Therefore, archived results

from HHPRED (Söding et al., 2005) searches conducted on the

day the target was released for predictions were used to deter-

mine which templates would have been available. Homologs

found by the search were processed using the default protocol

of Sculptor (Bunkóczi and Read, 2011) using the HHPRED align-

ment. This corresponds to a typical workflow in macromolecular

crystallography, and the quality of the models is close to what

would routinely be used. LLG scores were calculated for all of

these, and the best template was selected and used as a basis

for comparison. On the one hand this procedure cannot use in-

formation from multiple good-quality homologs and could be

outperformed bymodeling protocols but, on the other hand, pre-

dictors were not able to evaluate their templates with the exper-

imentally observed structure factor amplitudes.

Of the 68 evaluated targets, a prediction better than the best

available template was submitted for 30. On average, the best

prediction was 30% better in quality than the best template

(including targets where the best predictions were worse than

the best template), indicating that for the best prediction the

improvement is more often than not higher than the average

loss of quality. On the other hand there were many poor predic-

tions and only 1,680 of the evaluated 26,421 predictions were

better than baseline (6.4%). However, significant variability was

observed among predictors and this is illustrated for a selected

set of groups in Table 1.
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Identifying Error Estimates

Predictors are asked to submit error estimates in the B-factor

column along with the predicted coordinates. However, the

submitted values are often zeros or actual B factors carried

over from the template, and there is no explicit indication of

how the B-factor column should be interpreted. To identify pre-

dictors submitting meaningful error estimates, the average

Z scores were calculated for all three B-factor evaluation

schemes (Figure 2). Assuming a predictor either submits error

estimates with all predictions or none of them, it was expected

that the average Z score for the B-factor scheme assuming er-

ror estimates (scheme (b) above) should be higher than for the

other two, and tentatively a cutoff Z score difference of 0.1 was

used. This highlighted 11 predictors. However, for one of these

(TS311, Laufer), only three data points were available so this

group was removed from the list. For the others, an additional

check was performed by calculating the frequency with which

the highest scoring prediction for a particular target was calcu-

lated with B-factor scheme (b). Results in Table 1 show that

although the majority of the highest scores are achieved

when interpreting the submitted numbers as error estimates,

this is not exclusively the case. A potential explanation for

this could be that the LLG score does not discriminate among

low-quality predictions, hence the resulting ranking is not

reliable.

It is instructive to consider which B-factor scheme yielded the

best prediction for each target. In 37 of 68 cases, the best model

was calculatedwith values interpreted asB factors, as in scheme

(a) above; in 24 cases, the best model was calculated with the

values interpreted as rmsd, as in scheme (b); while in the remain-

ing seven cases the best model used a constant B factor.

Considering that of the 147 participants potentially only 11 pre-

dictors submitted error estimates, this also suggests that making

use of these estimates dramatically improves the quality of the

resulting models for MR.
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Figure 2. Average Z Scores for Predictors

Calculatedwith All Three B-Factor Schemes

In the original scheme, the numbers appearing in

the B-factor field were used as is; in the root mean

square (Rms) scheme, these were converted into a

B factor using Equation 1 and, in the constant

scheme, these were set to a constant number.
Molecular Replacement Performance

First, to evaluate the structural accuracy of predictions, the I

scores calculated with constant B factors were used. The

best-performing group is TS028 (YASARA), with an overall I

score of �0.183, followed by TS330 (BAKER_ROSETTA-

SERVER) with an I score of �0.186. Although these numbers

indicate that on average the template has been degraded, it is

important to note that the baseline model was selected based

on its LLG score, which in general could not be calculated

without access to diffraction data.

Second, to evaluate the composite effect of structural accu-

racy and atomic error predictions, the same procedure was

performed, but now taking the best LLG score from B-factor

scheme (b). Groups not submitting any error predictions re-

ceived the same score as before. However, substantial improve-
Structure 23, 397–406
ments were observed for the ten groups

mentioned above. The best-performing

group is now TS130 (Pcomb), with an

overall I score of �0.098, and the sec-

ond-best group is TS280 (ProQ2clust2)

with �0.122. The average improvement

from incorporating atomic error esti-

mates, for the groups submitting them,

is 0.11 I score units. Conveniently, the

overall scores for the best structure-only

predictors, TS028 (YASARA) and TS330

(BAKER_ROSETTASERVER), do not

change significantly on changing the B-

factor scheme. However, four groups of

the ten that provide error estimates now

have a better overall score than the best

structure-only predictor.

Third, it was evaluated howmany times

each group managed to improve upon a

particular baseline template. For this

calculation, all B-factor schemes were

taken into account and, for each target,

the highest overall scoring model was

selected. The best-performing group

with 12 improvements was TS330

(BAKER_ROSETTASERVER), followed

by TS280 (ProQ2clust2) and TS333

(MUFOLD-Server; Zhang et al., 2010),

with ten improvements each (Figure 3).

Weighting Molecular Replacement
Models by Error Estimates
A set of 20 non-CASP borderline MR test

cases were selected, in which the correct

solution appears in the list of possible so-
lutions, but not as the best hit. For these cases, alignments were

generated using the structural alignment program LSQMAN

(Kleywegt et al., 2001) with a fairly generous cutoff (8 Å) for

generating the alignment from the structural superposition, so

that the resulting alignment could be considered as the best

possible using an ideal sequence-alignment tool without any

structural information. However, for comparison, sequence

alignments were also calculated with MUSCLE (Edgar, 2004).

Using these alignments, homology models were created using

SWISS-MODEL (Biasini et al., 2014), based on the template

structures originally used as MR models. This step was required

for accurate error prediction, since the actual sequence has to be

mapped onto the structure and side chains have to be present.

SWISS-MODEL was selected for this calculation because of

ease of use. The local errors of these models were predicted
, February 3, 2015 ª2015 The Authors 401



Figure 3. Number of Targets Improved upon

the Baseline Structure, Taking into Account

All Three B-Factor Schemes
by ProQ2 (Ray et al., 2012), converted into B factors, then map-

ped onto the corresponding MR model, which was generated

from the same template and the same alignment using Sculptor

(Bunkóczi and Read, 2011). The LLG score was calculated for

the resulting model using constant B factors and ProQ2-error-

based B factors. Improvement scores for these B-factor

weighted models are shown in Table 2.

Interestingly, the average improvement with both the struc-

tural and sequence-based alignments was similar (32% and

28%, respectively). However, improvements with structural

alignments seem to be more consistent, with 17 of 20 MR

models having improved (15 of 20 with the sequence-based

alignment), and the worst ‘‘improvement’’ being �10% (�27%

with the sequence-based alignment).

Improvements were also calculated against MR models used

with original B factors from the template structure, since this MR
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model is closer to that routinely used by

crystallographers. In this case, structural

alignments were found clearly to be supe-

rior to sequence-based alignments, with

the average improvement being 34%

versus 19%; 17 of 20 models had still

improved with the structure-based align-

ment, but this declined to 14 of 20 for

the sequence-based alignment. On the

other hand, this indicates that even with

relatively crude alignments, an average

20% improvement can be expected in

MR if predicted errors are taken into ac-

count. In addition, although it is not

possible to reach the accuracy of struc-

tural alignments when no structure is

available, modern profile-profile methods

can come fairly close, and a 25%

improvement on average is potentially

realistic.

Conclusions
The LLG Score

The LLG score provides a direct measure

for evaluating the quality of a predicted

structure for MR. However, based on

the experience presented, it can rank

only relatively high-quality predictions,

with a GDT_TS above approximately 60.

The correspondence between the

GDT_TS and the difficulty of MR has

been noted previously (Giorgetti et al.,

2005). As the difficulty of MR is propor-

tional to the discriminative power of the

LLG score for correct solutions versus

noise, it is clear that MR is unlikely to

work with models having a GDT_TS
below 40–50, since the LLG score is broadly flat in that region,

at least for molecules of the size typically explored in CASP.

The current procedures allow this metric to be applied only for

structures determined by X-ray crystallography. To the extent

that we are interested in evaluating the utility of template-based

models for practical use inMR, this is not a limitation. However, it

restricts the applicability of this score to all targets in the CASP

context. In principle, it would be possible to calculate X-ray

data for structures determined by other methods, and simulate

an X-ray structure that could participate in LLG scoring. The syn-

thetic data would probably yield higher LLG scores, as there are

effects in real data that are difficult either to account for in the

structural model or to simulate in synthetic data, such as the ef-

fects of anharmonic motion or lattice imperfections. Nonethe-

less, Z scores would allow the quality of different models to be

compared with scores for real data on a similar scale.



Table 2. Improvement Scores for Borderline Molecular

Replacement Models, Comparing the Effect of Error Estimates

Using Structure-Based and Sequence-Based Alignments

Target Template Improvement (%)

Code

No. of

Residues

Resolution

(Å) Code

Identity

(%) LSQMAN MUSCLE

2har 263 1.90 1fby_a 15 80.73 114.79

1w69 390 2.20 2alx_a 19 �8.20 �7.89

1vyg 135 2.40 3elx_a 21 12.49 6.16

1vyg 135 2.40 2f73_a 28 30.89 18.55

1vyg 135 2.40 1crb_a 28 23.00 33.32

1u2y 496 1.95 1bli_a 14 �10.36 58.67

1lke 184 1.90 2hzq_a 21 39.74 73.15

1lke 184 1.90 1z24_a 32 22.63 �1.85

1yhf 115 2.00 2b8m_a 12 28.41 29.55

1ot2 686 2.10 3edd_a 18 �0.24 29.15

1p3c 215 1.50 1mza_a 17 17.81 �21.49

1icn 131 1.74 2ft9_a 30 36.03 23.79

1z07 166 1.81 1r4a_a 20 41.01 72.38

1z07 166 1.81 1zd9_a 23 63.00 74.62

1dzx 215 2.18 2irp_a 23 15.82 24.83

1eem 241 2.00 1fw1_a 22 52.94 31.34

2ikg 316 1.43 1pz1_a 19 66.45 26.14

1t40 316 1.80 1pz1_a 19 80.87 20.99

7taa 478 1.99 3dhu_a 17 25.36 �11.44

1e0s 174 2.28 2eqb_a 16 25.04 �27.30

The resolution column corresponds to the resolution of the data used

for the calculation and not the full resolution of the data. Improvement

is defined as the difference between the error-weighted LLG, computed

using B factors calculated from coordinate errors predicted using

ProQ2, and the LLG, computed using constant B factors, normalized

by the absolute value of the LLG calculated with the constant B-factor

scheme.
With synthetic data, one limitation of the LLG score as a

criterion for CASP could be removed. The LLG score depends

not only on the accuracy of the atomic coordinates, which

are modeled by predictors, but also on the accuracy of the

B-factor distribution along the chain, which is not modeled.

Synthetic data could be computed with constant B factors,

removing their influence from the LLG scores. In this way,

the submitted error estimates should purely account for

structural deviations between target and prediction, while

in the current setup these may partially compensate for the

missing B factors. However, in our experience, the effect

of B-factor differences between model and target in the

LLG score is only measurable for highly accurate models.

For distant models, B factors seem to play a larger role in

weighting parts of the model according to their respective

errors.

Model Error Estimates

It has been found that when error estimates are available and

accurate, they allow the calculation of appropriate model

weights that result in a higher LLG score. As this score is a

good descriptor for the difficulty of the MR search that would

be conducted if an unknown structure were to be solved with
the model, a higher LLG score will translate into a higher suc-

cess rate in MR.

It is interesting that no structural improvement is necessary

for the model to achieve a higher score. In fact, predictors

would not be expected to achieve a perfect agreement with

the experimental coordinates, since the structure can be influ-

enced by crystal packing. However, by identifying segments

that are highly flexible and are the most likely to adopt a

different conformation in the crystal, these could be weighted

down accordingly, which would improve a model’s applicability

for MR.

The utility of error estimates in MR has been investigated by

Pawlowski and Bujnicki (2012), who reported improvements

with errors derived from consensus methods. This finding is in

contrast to our results, whereby single-model methods such as

ProQ2 (Ray et al., 2012) perform comparably with consensus

methods. The difference in their results may have arisen partly

from the omission of the factor of 3 in Equation 1, which has

been shown to yield lower LLG values, or from differences in

the software used for MR calculations.

It seems to be a recurring finding in CASP assessment that

predictors fail to assign realistic confidence estimates to their

predictions, except for a very few groups (Mariani et al., 2011).

Although it is difficult to predict coordinate errors reliably, the

current situation could also be a consequence of assessing

different metrics of the prediction in isolation. The LLG score of-

fers a metric that is able to measure the cumulative quality of

both the structure and the error estimates. More importantly, it

offers a concrete measure of how accurate error estimates

make a model more useful.

Prediction of Coordinate Errors

In principle, there are two strategies to obtain coordinate error

estimates in a model; one using consensus (Wallner and Elofs-

son, 2005) and one using information only from the model itself,

i.e., so-called single-model methods (Wallner and Elofsson,

2006). The consensus methods use as input an ensemble of

models, usually constructed using different techniques. The er-

ror estimate for a given model is obtained by calculating the

average coordinate error after superimposing the model on all

models in the ensemble. It is also possible to obtain coordinate

error predictions for other models by including them in the

ensemble; methods applying this approach are sometimes

referred to as quasi-single. However, since these models still

rely on an ensemble, they are effectively a consensus method.

Pure single-model methods, on the other hand, use only informa-

tion from the model itself to calculate the error, and in this

respect they are more similar to a regular energy function. The

best single-model methods, such as ProQ2 used in this study,

integrate different features, such as agreement between pre-

dicted and actual secondary structure and predicted and actual

residue surface area, with regular knowledge-based potentials

based on amino acid and atom type contact preference calcu-

lated from known structures or models (Ray et al., 2012). In gen-

eral, the consensus methods have a higher accuracy, but, as

shown in this study, the single-model method ProQ2 produces

results similar to those of the best consensus methods (e.g.,

Pcomb and IntFold). In addition, at least for Pcomb, the model

quality assessment was performed on exactly the same set of

models.
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Improving Molecular Replacement Procedures

During large-scale evaluation of predictions submitted to

CASP10, it has become apparent that a previously neglected

source of information, namely coordinate error estimates, can

be used to improve MR protocols. In addition, currently existing

algorithms used in modeling for the prediction of coordinate er-

rors have been found to be sufficiently accurate to be highly use-

ful. By introducing such error estimates into MR pipelines, such

as MrBUMP (Keegan and Winn, 2007) and BALBES (Long et al.,

2008) in the CCP4 package (Winn et al., 2011) and MRage (Bun-

kóczi et al., 2013) in the PHENIX package (Adams et al., 2010),

the success rate of MR should be further improved.

In addition to improving the utility of theoretical models in MR

by incorporating error estimates, first reported by Pawlowski and

Bujnicki (2012), it has been found that these error estimates also

improve the performance of the corresponding template struc-

ture in MR. A relatively simple modeling protocol seems to be

sufficient to provide a model that can be processed with

ProQ2 (Ray et al., 2012) and to yield useful error estimates. In

fact, it is perhaps important to use a modeling protocol that

avoids changing the structure significantly from the starting tem-

plate, so that the error estimates remain valid for the template

as well. Although the outlined procedure cannot be used when

multiple template structures are used to create the model, the

availability of multiple template structures enables the use of

consensus methods for error prediction, which would typically

yield more accurate error estimates for each starting template

than would be obtained from single-model error prediction

methods.

EXPERIMENTAL PROCEDURES

Metrics Used for Evaluation

GDT_TS

GDT_TS is a global measure of the fractions of Ca atoms that are positioned

correctly (Zemla, 2003), and is a score widely used in CASP assessment.

LLG

LLG measures how much better than a random model an atomic model ex-

plains the measured X-ray amplitudes (Read, 2001). It takes into account

the completeness of the model as well as the errors in atomic coordinates.

It requires an initial error estimate between the model and the structure, but

it is possible to refine this and attain a score independent of this starting

value.

Vrms

Vrms is the error estimate for a model that gives the optimal (highest)

LLG score (Oeffner et al., 2013). It can be thought of as a quantity analo-

gous to an rmsd that is calculated with a distance cutoff, because devia-

tions larger than about half the resolution do not get penalized further

(Read, 1990).

Calculation Steps

Translating Errors to Atomic Displacement Parameters

The error estimates are converted to an atomic displacement parameter by

squaring and multiplying by 8p2/3. This gives a falloff corresponding to the

Fourier transform of the assumed gaussian error distribution. However, before

the MR calculation the structure factors computed from the model are normal-

ized and therefore the calculation is only affected by the difference between

the B factors for regions of high confidence and low confidence, and not by

any changes in the overall average B factor.

Calculating Log-Likelihood Score

First, the asymmetric unit of the target structure is analyzed. If there are mul-

tiple copies of the target protein, a reference chain is selected (typically the

most well-ordered) and superposed onto each copy. If large deviations are
404 Structure 23, 397–406, February 3, 2015 ª2015 The Authors
found among the copies, a selection excluding the variable parts is created

manually and the process is repeated (for predictions from the CASP10 exper-

iment, these selections were established by the participants); otherwise all

transformations relating the reference chain to the other chains are stored. If

there are additional components in the asymmetric unit that are not being pre-

dicted, these can be stored for inclusion in the MR calculation. It was found

that inclusion of known but unpredicted segments of the structure (e.g., other

domains of amultidomain target) increases the sensitivity of the resulting score

significantly (Figure 1). This analysis only needs to be done once for each

target.

Second, each prediction is superposed onto the reference chain. When the

procedure was applied to predictions from the CASP10 experiment, the struc-

tures were presuperposed using the program LGA (Zemla, 2003), and no addi-

tional superposition was performed. In principle, any superposition procedure

that places the prediction within convergence radius of the refinement proce-

dure is sufficient.

Third, the predictions are trimmed down to exclude the variable parts of the

target structure, established in the first step.

Fourth, the asymmetric unit is reconstituted from the superposed predic-

tion and the transformations stored in the first step, including the additional

components that are not part of the prediction. In this way an approximately

constant fraction of the scattering in the asymmetric unit is modeled, irre-

spective of the number of copies in the asymmetric unit. Rigid-body refine-

ment, including overall B-factor refinement and vrms refinement, is then

performed on all chains in the reconstituted model and the LLG score is

calculated.

It is assumed that there is a maximum on the LLG surface corresponding to

the correct MR solution and that the initial superposition is within radius of

convergence for the refinement procedure.

As atomic displacement parameters are an integral part of the calculation,

but are currently not being predicted, the LLG score was calculated with three

different B-factor values: (1) the original values that were in the B-factor col-

umn, (2) converting the values in the B-factor column assuming these are error

estimates according to the procedure explained in the previous section, and

(3) setting them to a constant value.

Comparison with Available Templates

For CASP10 TBM targets, suitable templates were selected from a homology

search using HHPred (Söding et al., 2005), which predated the release of the

structure by the PDB (Berman et al., 2003). Templates were modified by the

program Sculptor (Bunkóczi and Read, 2011) using the sequence alignment

from the homology search and were superposed using backbone atoms

onto the target chain. Atomic displacement parameters were not modified.

These models were then subjected to the procedure applied to calculate the

LLG score for predictions.

For CASP10 refinement targets, the starting model made available to pre-

dictors was used as the baseline for each target.

Cumulative Evaluation

Since LLG scores calculated against different X-ray data sets are not directly

comparable, two different comparison schemes were derived.

First, for each target the average and variance of the LLG scores are estab-

lished, and used in calculating a Z score for each predicted structure (Equa-

tion 2). For each predictor, this is then averaged over all targets (Equation 3).

This score measures the relative difficulty of each target in light of the received

predictions. This score was calculated using all three B-factor schemes as

detailed above.

Zstructure =
LLGstructure � m

target
LLG

s
target
LLG

(Equation 2)

Zpredictor =

P
structures from predictorZstructure

nstructures from predictor

(Equation 3)

The second scheme is based on an improvement score with respect to a

baseline score that would be achievable without modeling. First, the LLG score

of unpredicted parts is established, and then that of the baseline model with

the unpredicted parts. Next, the LLG score is calculated by replacing the base-

line model with each prediction in turn. The improvement score (I score) is

calculated by subtracting the LLG of the baselinemodel (including unpredicted



structure) from that of the predictions (including unpredicted structure) and

dividing by the difference between the LLG of the baseline model and the

unpredicted structure alone. For each target, only the best score is taken

per predictor and these are then averaged (Equation 4). Separate averages

are available for each B-factor scheme and for the best prediction regardless

of the B-factor scheme. This scheme tries to measure the performance for MR

directly and weights down the results achieved for targets where a relatively

good baseline model is available.

Ipredictor =

0
@P

target

�
LLG

target

best from predictor
�LLG

target
baseline

�
�
LLG

target
baseline

�LLG
target
unpredicted

�
1
A

ntargets attempted by predictor

(Equation 4)
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