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Abstract

De novo sequencing is an important computational approach to determining the amino acid sequence of a peptide with
tandem mass spectrometry (MS/MS). Most of the existing approaches use a graph model to describe a spectrum and the
sequencing is performed by computing the longest antisymmetric path in the graph. The task is often computationally
intensive since a given MS/MS spectrum often contains noisy data, missing mass peaks, or post translational modifications/
mutations. This paper develops a new parameterized algorithm that can efficiently compute the longest antisymmetric
partial path in an extended spectrum graph that is of bounded path width. Our testing results show that this algorithm can
efficiently process experimental spectra and provide sequencing results of high accuracy.
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Introduction

In proteomics, tandem mass spectrometry (MS/MS) is an

important experimental approach to the identification of proteins

[2,3,19]. This approach uses enzymes to break molecules of a

protein into short peptide sequences. The MS/MS spectrum for

each such peptide can be obtained with experiments and the

amino acids in these peptides can be determined by analyzing its

MS/MS spectrum. The sequencing results of all these peptides can

then be combined to obtain the amino acids sequence of the

protein. To determine the amino acids sequence of a peptide, we

fragment a number of peptides with the same amino acids

sequence into charged prefix and suffix subsequences (ions) and

measure their mass/charge ratios with a mass spectrometer. Each

mass/charge ratio corresponds to a particular ion and forms a

peak in the MS/MS spectrum of the peptide. The amino acids

sequence of the peptide can be determined by analyzing the

relationships among peaks in the spectrum.

In theory, an MS/MS spectrum contains two types of ions,

which are b-ions associated with N-terminals of the peptide and y-

ions associated with its C-terminals. In addition, we expect

fragmentations to occur at all positions along the peptide

backbone and the difference of the mass values of two consecutive

peaks in the spectrum is the mass of a single amino acids residue.

The amino acids sequence of a peptide can thus be determined by

analyzing the consecutive peaks in the spectrum. However, the ion

types of mass peaks in the spectrum are unknown and cannot be

easily determined from the spectrum alone. In addition, some

mass peaks are usually missing in a spectrum while some noisy

peaks may appear due to multiple fragmentations of the same

peptide. Due to these difficulties, the de novo sequencing of a

peptide, which determines the amino acids sequence of a peptide

solely from its MS/MS spectrum, remains challenging and

additional research work is needed to make it practical [5,7].

So far, a large number of approaches have been developed for

the de novo sequencing problem. The first algorithm for de novo

sequencing is developed in [22]. The algorithm exhaustively

enumerates all amino acid sequences of particular lengths and the

experimental spectrum is compared with the theoretical spectra of

these enumerated ones, the peptide associated with the best match

is the sequencing result. The algorithm is not efficient since an

exponential number of peptides and their theoretical spectra need

to be generated. Later, prefix pruning approaches were developed

to avoid exhaustive search. Specifically, prefix pruning approaches

only search in these peptides whose prefixes match the experi-

mental spectrum well and thus can significantly reduce the size of

the search space [25,29,30]. However, applying heuristic pruning

to reduce the search space may adversely affect the sequencing

accuracy. Another type of approaches search a spectrum database

to find the peptide whose spectrum is the closest to the

experimental one. For example, SEQUEST [8] is an extensively

used program for sequencing peptides. It searches a peptide

spectrum database and evaluates the similarity between the

spectrum of an unknown peptide and each spectrum in the

database with a particular correlation function. Sequencing tools

based on database search can provide sequencing results of high

accuracy. However, they can only be applied to sequence those

peptides whose spectra have been stored in a spectrum database.

To effectively analyze a spectrum, the concept of spectrum

graph is proposed to model the relationships among the mass

peaks and the de novo sequencing problem has been shown to be

equivalent to finding the longest (or maximum scored) antisym-

metric path in a spectrum graph [2,7,9,11,13,27]. Although the

longest path in a directed acyclic graph can be efficiently

computed with a topological sorting algorithm, the algorithm

cannot be directly applied to a spectrum graph to compute the

path due to the antisymmetric constraint. The constraint requires

that vertices that represent complementary ions cannot appear
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together in the path. In [5], a linear time dynamic programming

algorithm is developed to ensure that the computed path satisfies

the antisymmetric constraint. However, the algorithm needs

quadratic computation time to determine one modified amino

acid and more computation time to handle the additional noisy

peaks that may appear in the spectrum.

In our previous work [17,18], we introduce a new graph model

to describe related mass peaks in a spectrum. The peaks that

represent complementary ions are joined with non-directed edges.

We study the structure features of such graphs and show that their

tree widths are usually small. We also show that, based on a graph

tree decomposition of the graph, the longest antisymmetric path

can be computed in time O(6tn), where t is the tree width of the

graph and n is the number of peaks in the spectrum. When t is a

small integer, the exponential term in the computational

complexity is also a small integer and the computational efficiency

of the algorithm is thus guaranteed. Testing results have shown

that this algorithm can efficiently process both simulated and real

spectra and generate sequencing results with high accuracy.

However, an antisymmetric path that connects the source and

the sink in an extended spectrum graph may not exist when the

peptide contains post translational modifications (PTMs) or some

crucial mass peaks are missing in the spectrum. The algorithm

developed in our previous work thus cannot be applied to analyze

the spectra in these cases. Although a number of approaches have

been developed to process the spectra that may contain missing

mass peaks or PTMs [12,18,20], most of these approaches need to

search a spectrum database and output the peptide whose

spectrum has the highest similarity to the spectrum to be

sequenced. A spectral alignment is then performed to obtain the

sequencing result of the peptide. Spectral alignment is often time

consuming and thus may adversely affect the computational

efficiency of sequencing. In addition, these approaches cannot be

used to sequence peptides whose spectra are not in the database.

In this paper, we develop new techniques that can significantly

reduce the computation time needed to process extended spectrum

graphs and generate sequencing results of high accuracy. This

algorithm can efficiently process a spectrum even when it contains

Figure 1. (a) The mass peaks in a tandem mass spectrum; (b) The corresponding extended spectrum graph.
doi:10.1371/journal.pone.0087476.g001

Figure 2. (a) An example of a graph; (b) A path decomposition
for the graph in (a).
doi:10.1371/journal.pone.0087476.g002

Figure 3. A path decomposition and its corresponding dynamic
programming tables.
doi:10.1371/journal.pone.0087476.g003

Table 1. The distribution of path widths (PW) of extended
spectrum graphs.

N/S PW,5 PW = 5 PW.5

0.00 51.32% 42.23% 6.45%

0.20 39.34% 40.72% 19.94%

0.50 32.53% 30.26% 37.21%

0.80 27.45% 30.57% 42.18%

1.00 20.63% 30.31% 49.06%

doi:10.1371/journal.pone.0087476.t001
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missing mass peaks or PTMs. It generates the sequencing result by

computing the longest antisymmetric partial path in the extended

spectrum graph and analyzing this partial path.

The algorithm is based on the concept of path decomposition.

We show that, given a path decomposition of an extended

spectrum graph, the longest antisymmetric partial path in the

graph can be computed in time O(p22pn), where p is the path

width of the path decomposition and n is the number of peaks in

the spectrum. Our testing results show that the path width of an

extended spectrum graph is only slightly larger than its tree width.

This new algorithm thus can be significantly faster than the

algorithm we have developed in our previous work. We have

implemented this algorithm and compared its performance with

that of a few other algorithms for de novo sequencing, including the

algorithm developed in our previous work [17], PepNovo [10],

and NovoHMM [11]. Our testing result shows that this new

algorithm is significantly faster and can provide accurate

sequencing results for experimental spectra.

Models and Algorithms

2.1 Problem Description
Ideally, ions contained in a spectrum form pairs, each pair

contains an ion and its complementary one [28]. Given the MS/

MS spectrum S of a peptide P, we use a set of mass peaks

fp1,p2,:::,p2kg, where piwpj for i.j, to denote S. pi and p2kz1{i

are complementary mass peaks and their mass values sum up to

the total mass of peptide, which is denoted with M. One of the

mass peaks in the same pair is a b-ion and the other one is a y-ion.

In a spectrum graph G~(Vp,Ep), each vertex in Vp represents a

mass peak in the spectrum and two vertices are joined with a

directed edge if the difference of the mass values of their

corresponding peaks is the mass of a single amino acid.

Specifically, a directed edge from vertex vi to vj is created in G

if the mass values pi,pj that correspond to vi and vj satisfy the

condition that pj{pi is the mass of a single amino acid. Two

additional vertices are included in the spectrum graph to represent

mass values 0 and M. These two vertices are source vertex v0 and

sink vertex v2kz1. It is not difficult to see that the amino acids

sequence of the peptide corresponds to a directed path that starts

with the source vertex v0 and ends with the sink vertex v2kz1. The

path must also be antisymmetric since all vertices in the path must be

ions of the same type.

Given the spectrum graph of a peptide, its sequence of amino

acids can thus be determined by computing the longest

antisymmetric directed path from the source vertex v0 to the sink

vertex v2kz1. In order to model the complementary relationships

among mass peaks in the spectrum, we use a non-directed edge to

join each pair of vertices that represent complementary mass peaks

in the spectrum. Such a graph is an extended spectrum graph.

Figure 1(a) and (b) provide an example of a spectrum and its

extended spectrum graph.

Directed edges in an extended spectrum graph can be

associated with weight values. The weight values can be computed

with other experimental parameters. For example, in [7], a

stochastic approach is developed to compute the weight values of

all directed edges in the graph. The approach associates each mass

peak in the spectrum with a certain probability; the weight value of

a directed edge can be computed with the probability values of the

vertices on its ends. The sequencing result can then be obtained by

computing the antisymmetric path with the largest weight value,

which corresponds to the path that is most likely to occur.

2.2 Path Decomposition and Path Width
Definition 1. [21] Let G~(V ,E) be a graph, where V is the set of

vertices in G, E denotes the set of edges in G (E may contain both directed and

non-directed edges). Pair (P,X) is a path decomposition of graph G if it

satisfies the following conditions:

1. P~(I ,F ) defines a tree, the sets of vertices and edges in P are I and F

respectively,

2. X~fXi Di[I ,Xi(Vg, and Vu[V , Ai[I such that u[Xi,

3. V(u,v)[E, Ai[I such that u[Xi and v[Xi,

4. Vi,j,k[I , if k is on the path that connects i and j in P, then

Xi\Xj(Xk.

Table 2. The prediction accuracy of the program on
simulated data.

N/S PDS TDS NovoHMM PepNovo

0.00 98.60% 98.60% 98.32% 98.46%

0.20 98.27% 98.27% 98.25% 98.31%

0.50 98.29% 98.29% 98.13% 98.23%

0.80 97.98% 97.98% 98.08% 98.12%

1.00 96.95% 96.95% 95.32% 97.03%

doi:10.1371/journal.pone.0087476.t002

Table 3. The computation time (secs) of the program on
simulated data.

N/S PDS TDS NovoHMM PepNovo

0.00 0.06 0.78 3.23 0.08

0.20 0.28 3.67 3.79 0.31

0.50 0.53 6.27 7.32 0.67

0.80 0.42 6.64 9.57 0.73

1.00 0.66 7.83 11.46 0.85

doi:10.1371/journal.pone.0087476.t003

Table 4. The distribution of path widths of the extended
spectrum graphs of 10000 real spectra.

PW,3 PW = 3 PW = 4 PW = 5 PW.5

5.33% 21.42% 36.79% 22.13% 14.33%

doi:10.1371/journal.pone.0087476.t004

Table 5. The average sequencing accuracy achieved by PDS,
PepNovo and NovoHMM on each group.

PDS PepNovo NovoHMM TDS

Group 1 96.7% 90.7% 87.4% 85.3%

Group 2 95.2% 88.3% 82.6% 78.4%

Group 3 90.4% 86.4% 81.7% 74.2%

Group 4 86.2% 90.9% 87.8% 83.1%

Group 5 83.1% 91.7% 86.3% 84.6%

doi:10.1371/journal.pone.0087476.t005
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The path width of the path decomposition (P,X) is defined as

max
i
fDXi D{1g. The path width of the graph G is the minimum path

width over all possible path decompositions of G.

Figure 2 (a) and (b) show that, path decomposition is a

topological decomposition of a graph such that the global topology

of the graph is separated from its local topology. Specifically,

vertices that are included in the same path node represent the local

topology of the graph and different path nodes are connected into

a path that represents the global topology of the graph. Path

decomposition is in fact a special case of tree decomposition, which

has been extensively used to develop efficient algorithms for NP-

hard problems in bioinformatics and theoretical computer science

[1,4,15,16,17,18,23,24,25,26]. Similar to tree decomposition, path

decomposition also provides an excellent framework for dynamic

programming since partial optimal solutions on a subgraph

induced by a subpath in the path decomposition can be efficiently

extended and combined with exhaustive enumeration restricted to

vertices in a single path node.

Our previous work has shown that the tree widths of most

extended spectrum graphs are around 5. For example, experi-

ments have shown that the tree widths of more than 97%

spectrum graphs of ideal spectra generated in silico are less than 6

[17]. Based on tree decomposition, a dynamic programming

algorithm has been developed to compute the longest antisym-

metric path in time O(6tn), where t is the tree width of the

extended spectrum graph and n is the number of mass peaks in the

spectrum. The algorithm can thus efficiently process the majority

of extended spectrum graphs since the tree widths of the majority

of them are at most 6.

In the following sections, based on a path decomposition of a

given extended spectrum graph, we develop a dynamic program-

ming algorithm that can compute the longest anitsymmetric

partial path between the source and the sink in time O(p22pn),
where p is the path width of the path decomposition. The

algorithm is able to cope with missing mass peaks and PTMs and is

significantly faster than the one we have developed in our previous

work if the path width of an extended spectrum graph is only

slightly larger than its tree width.

2.3 The Path-finding Algorithm
Definition 2. Given an extended spectrum graph G = (V,E), a directed

path P in G is an antisymmetric path if no two vertices in P are joined with

a non-directed edge.

Given an antisymmetric path that connects the source and the

sink of an extended spectrum graph, the sequencing result can be

immediately obtained since each edge in the path represents a

single amino acid. The sequencing result with the maximum

likelihood corresponds to the longest antisymmetric path in a

spectrum. However, some crucial mass peaks may not appear in a

spectrum due to experimental errors, an antisymmetric path that

connects the source and the sink thus may not exist in an extended

spectrum graph. In addition, the sequencing result cannot be

obtained by computing such an antisymmetric path if the peptide

to be sequenced contains PTMs. To cope with these cases, we

need the notion of antisymmetric partial path as follows.

Definition 3. Given an extended spectrum graph G = (V,E), a set

S~fP1,P2,:::,Pkg of directed paths in G is an antisymmetric partial path if

the following conditions hold.

1. Each directed path in S is antisymmetric;

2. All directed paths are mutually disjoint;

3. VPi,Pj[S, (1ƒivjƒk), there does not exist vertices u, v, s, t such

that u,v[Pi,s,t[Pj and uvsvv or svuvt.

The length of S is the sum of the lengths of all its directed paths.

We next present the details of a dynamic programming

algorithm that can compute the longest antisymmetric partial

path between the source and the sink in an extended spectrum

graph. It is not difficult to see that such a path implies the

sequencing result even in cases where some crucial mass peaks are

missing in a spectrum or the peptide to be sequenced contains

PTMs. We show that such a partial path can be computed based

on a path decomposition of an extended spectrum graph

G~(V ,E) in time O(p22pn), where p is the path width of the

path decomposition.

Without loss of generality, we assume each path node in the

path decomposition contains both the source and the sink, since

we can add both vertices to a path node if it is not the case.

Although including the two vertices in each node may increase the

path width by 2, we show later that the computational efficiency of

the algorithm is not adversely affected by this. For each node in

the path decomposition, we create and maintain a dynamic

programming table. Starting with the node on the left end of the

path decomposition, the algorithm determines the entries in the

table of each node from left to right. Each entry in the table of a

path node stores the largest length of the corresponding partial

antisymmetric paths that are contained in the subgraph induced

by vertices in the node itself and the nodes that are to the left of

this node in the path decomposition. The length of the longest

antisymmetric path that connects the source and the sink can thus

be obtained by querying the table in the node on the right end of

the path after the algorithm has filled all tables in the path

decomposition. A recursive tracing back procedure can then be

followed to determine the vertices in the antisymmetric partial

path.

For a path node with p vertices, the dynamic programming table

contains p +2 columns. Each vertex is associated with one column

of the table and it stores the selection status of the vertex. A selection

status value of 1 indicates that the vertex is included in the

antisymmetric partial path and 0 indicates otherwise. One of the 2

remaining columns stores the largest length of the antisymmetric

partial paths that are consistent with the selection status of vertices

in the entry. We use L to denote this field. The other one stores the

furthest vertex that can be reached from the source vertex with the

corresponding antisymmetric partial path. We use F to denote this

field and denote an entry e in the table with vS,L,Fw, where S
is the set of selection status of vertices in the node, L and F are the

values of field L and field F respectively. Given an entry e, we use

to e(S),e(L), and e(F ) to denote the values of its S,L and F
respectively. A table may contain up to (pz1)2p entries since each

vertex may have two different values for its selection status and V
can have at most pz1 values. p of thesepz1 values are for the

vertices in the path node and the remaining one describes the case

where the furthest vertex that can be reached from the source in

the partial path is not included in the path node. Figure 3(a) and

Table 6. The average computation time (secs) needed to
process the spectra in each group.

PDS PepNovo NovoHMM TDS

Group 1 0.04 0.06 3.27 0.07

Group 2 0.18 0.19 4.38 0.39

Group 3 1.35 2.23 5.66 4.76

Group 4 3.78 5.65 14.63 32.13

Group 5 12.29 6.75 16.79 127.35

doi:10.1371/journal.pone.0087476.t006
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(b) provide an example of the dynamic programming tables for a

path decomposition of a graph.

The vertices contained in each path node are sorted in

ascending order of their corresponding mass values. A vertex u
is larger than v if the mass value of u is larger than that of v. We

use uwv or vvu to denote this. The order of these vertices also

determines the order they appear in the antisymmetric partial path

that needs to be computed by the algorithm. The algorithm starts

with the table in the left most node of the path decomposition. The

possible combinations of the selection status values of all vertices in

a leaf node and the values of F can be enumerated. For each such

combination, the algorithm checks whether the following proper-

ties hold.

1. For each pair of vertices that represent complementary peaks,

at most one of them is included in the path;

2. the vertex represented by the value of F is also included in the

path;

3. the selected vertices form a directed path that connects the

source to the vertex represented by the value of F ;

4. none of the out-neighbors of the vertex represented by the

value of F are included in the path;

5. the vertices selected in the combination induce a set of

disjoint directed paths in G.

If it is the case, the combination is written into the table as an

entry. The value of L in the entry can be computed by adding up

the lengths of all disjoint directed paths induced by vertices that

are selected in the combination.

After the table in the node that is on the left end of the path has

been filled, the algorithm starts processing other nodes in the path

decomposition. The algorithm processes these nodes from left to

right and terminates when the table in the node that is on the right

end of the path has been filled. Given an internal node Xi, we use

Xj to denote the node that is to the immediate left of Xi in the path

decomposition. To fill the table inXi, the algorithm exhaustively

enumerates all possible combinations of the selection status values

of the vertices and the values of F in Xi.

For each such combination c, the algorithm checks whether the

properties 1, 2, 4, and 5 that have been listed above hold. If all of

them hold, the algorithm sets an initial value of 0 for the field L in

c and proceeds to query the entries in the table of Xj to compute

the values of other fields. For each entry e in the table of Xj , the

algorithm checks whether the following properties hold.

1. e(S) is consistent with c on vertices in Xi\Xj ;

2. for any selected vertex u[Xi\Xj , the number of vertices that

are selected in c and e and joined to u with a directed edge that

points to uis at most 1, the same holds for the number of vertices

that are selected in c and e and joined to u with a directed edge

that points from u to another vertex;

3. if c(F )[Xi, e(F )[Xi\Xjand e(F ) is connected to c(F ) with a

directed path that goes from e(F ) to c(F ), each vertex in the path

is selected in e or c;

4. if c(F ) 6[Xi, e(F ) 6[Xi\Xj ;

5. there does not exist a vertex v[Xi such that v 6[Xj , v is selected

in c and e(F) is larger than v.

If all of the above properties hold, the algorithm proceeds to

change the value of c(L) if necessary. We use L(Xi) to denote the

sum of the lengths of the disjoint directed paths selected by c in Xi

and L(Xi\Xj) to denote the sum of the lengths of the disjoint

directed paths selected by both c and e in Xi\Xj , the value of

c(L) is compared with e(L)zL(Xi){L(Xi\Xj), if the latter is

found to be larger, the value of c(L) is changed to the value of the

latter. The above procedure is repeated until all entries in the table

of have been processed. If the value of c(L) is not zero, an entry ec

with the computed largest value of c(L) is written into the table of

Xi for c. An entry e in the table of Xj is consistent with ec if e satisfies

the properties that have been listed above.

After the tables of all nodes in the path decomposition have

been filled, the algorithm checks the table in the node that is on the

right end of the path and enumerates all entries in the table. From

all these entries, the one that has the largest value of c(L)
corresponds to the longest antisymmetric partial path in G. The

algorithm then follows a trace-back procedure to determine the

vertices in this partial path. We next show the correctness of the

algorithm.
Proposition 1. Given two vertices u,v that are both included in an

antisymmetric partial path and there is a directed edge from u to v, then the edge

from u to v must be included in the path.

Proof. Since the mass of a single amino acid cannot be the sum of

the masses of a few other amino acids. The proposition

immediately follows.

Based on Proposition 1, if two vertices are selected by an entry

in a dynamic programming table and there is a directed edge

between them, the edge must be included in the antisymmetric

partial path. The length of an antisymmetric partial path can thus

be computed from the vertices that are included in it.

Proposition 2. Given a path node Xi, we use t(Xi) to denote the

dynamic programming table in Xi and P(Xi) to denote the subgraph induced

by vertices in Xi and nodes that are to the left of Xi in the path decomposition.

For an entry e in t(Xi), the length of the longest antisymmetric partial path

that is consistent with e is e(L).
Proof. We show the proposition by induction. If Xi is the node

that is on the left end of the path decomposition, P(Xi) is the

graph induced by vertices in Xi only. From the description of the

algorithm, we know the value of e(L) is the sum of the lengths of

the disjoint paths induced by vertices selected in e. From

proposition 1, the only partial path that is consistent with e is

the set of disjoint paths induced by vertices selected in e, the value

of e(L) is thus the length of this partial path. The proposition thus

holds for the node that is on the left end of the path

decomposition.

Next, we assume that the proposition holds for P(Xi). We use

Xj to denote the node that is immediately to the right of Xi in the

path decomposition. We show that the proposition also holds for

P(Xj). Given an entry e[t(Xj), we assume that antisymmetric

partial path p is consistent with e and is the longest of all such

paths. We need to show that the length of p is equal to e(L).
We use Se to denote the set of entries that are consistent with e

in t(Xi) and pw~p\P(Xi)to denote the partial path formed by

part of p that is in P(Xi). From the definition, we can see that pw is

consistent with one of the entries in Se, we use ew to denote this

entry. We claim that pw is the longest antisymmetric partial path

that is consistent with ew in P(Xi). Since if it is not the case, there

exists a different antisymmetric partial path pa that is consistent

with ew in P(Xi) and is longer than pw. We can then construct an

antisymmetric partial path pa|(p\G(Xi)). This partial path is

consistent with and is longer than p since pa is longer than pw.

This, however, is contradictory to the fact that p is the longest

antisymmetric partial path consistent with e in P(Xi). pw is thus

the longest antisymmetric partial path that is consistent with ew in

P(Xi).
From the assumption of the induction, we know that the length

of pw is equal to the value of ew(L). From the method the

algorithm uses to compute e(L), we immediately obtain the

following inequality:

e(L)§l(pw)zL(Xi){L(Xi\Xj)~l(p) ð1Þ

A New Algorithm for Rapid Peptide Sequencing
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where l(pw),l(p) are the lengths of pw,p respectively, L(Xi) is the

sum of the lengths of the disjoint directed paths selected by e in Xi

and L(Xi\Xj) is the sum of the lengths of the disjoint directed

paths selected by both ew and e in Xi\Xj .

On the other hand, we assume that the value of e(L) is

computed based on entry ef [Se. From the induction assumption,

there exists an antisymmetric partial path pf in P(Xj) that is

consistent with ef and its length is ef (L). pf |(p\G(Xi)) is an

antisymmetric partial path that is consistent with e in P(Xi). From

the assumption on p, we obtain:

l(p)§l(pf |(p\G(Xi))~e(L) ð2Þ

From (1) and (2), we have l(p)~e(L). The proposition thus

follows from the principle of induction.

Theorem 3. Given an extended spectrum graph G~(V ,E) and a

path decomposition of G, the longest antisymmetric partial path between the

source and the sink can be computed in time O(p22pn), where p is the path

width of the path decomposition and n is the number of vertices in G.

Proof. The correctness of the algorithm immediately follows from

Proposition 2. The partial path found by the algorithm is

guaranteed to be antisymmetric since, based on the definition of

path decomposition, any pair of complementary vertices is covered

by at least one path node, any violation of the antisymmetric

property can be detected when the algorithm computes the entries

in the dynamic programming table of that node. The dynamic

programming table in each path node contains at most (pz1)2p

entries. For each possible combination of the selection status values

of vertices in a node and the value of field F , we need O(p) time to

check its validity. For an internal path node Xi , the algorithm

needs to query the table in the node that is immediately to the left

of Xi, the aggregated number of such queries that it needs to make

to fill the table in Xi is (pz1)2p, and each single query needs O(p)
computation time. Therefore, the amount of computation time

needed to fill the table in one path node is at most O(p22p). The

total amount of computation time needed by the algorithm is thus

at most O(p22pn).

Although we include both the source vertex and the sink vertex

into each path node in the path decomposition, the computational

efficiency of the program is not adversely affected. In fact, both

vertices must appear in the longest antisymmetric partial path that

need to be computed and the selection status value of both vertices

must be one for all entries in the dynamic programming table of

any node in the path decomposition. The number of combinations

the algorithm needs to enumerate and process thus does not

increase.

In cases where the source and the sink are connected with an

antisymmetric path, the algorithm is able to find the longest

antisymmetric path that connects the source and the sink and the

sequencing result can thus be obtained. In cases where the peptide

to be sequenced contains PTMs or some crucial mass peaks are

missing in the spectrum, such an antisymmetric path may not

exist. However, the algorithm returns the longest antisymmetric

partial path between the source and the sink in these cases and the

sequencing result can be obtained from the partial path

S~fP1,P2,:::,Pkg with the following steps.

1. Identify all vertices v1vv2vv3v:::vv2k{2 in S such that

v2i{1 (1ƒiƒk) is the largest vertex in Pi and v2i is the smallest

vertex in Piz1.

2. For each vertex pair (v2i{1,v2i), compute the difference of the

mass values of the two vertices. We use Di to denote the difference.

3. We check whether Di is the sum of the mass values of a few

amino acids or not, if it is the case, we include these amino acids in

the sequencing result.

4. If it is not the case, we check whether Di is the sum of the

mass values of a few amino acids and modified amino acids or not.

If it is the case, we include them in the sequencing result.

5. If there exists a vertex pair that has not been processed, go

back to step 2. Otherwise return.

Steps 3 and 4 in the above procedure can be implemented with

a dynamic programming approach developed to solve the subset

sum problem [6]. This approach needs time O(Dil), where m is

the number of amino acids or modified amino acids whose mass

values add up to Di. Since lƒ Di

m
, where m is the minimum mass

value of all 20 types of amino acids, both steps 3 and 4 can be

completed in time O(
D2

i

m
).

Experimental Results
We implemented the path-finding algorithm for the de novo

sequencing problem. The program was tested on both simulated

and real MS/MS spectra. For de novo sequencing, we evaluated the

performance of the program on simulated spectra that contain

different amount of noise, and then analyzed real experimental

MS/MS spectra.

3.1 On Simulated Data
To evaluate both the values of the tree widths and the path

widths of extended spectrum graphs. We generated simulated

tandem mass spectra for 100,000 fully tryptic digested peptides of

proteins in the Yeast genome. We removed the peptides that

contain less than 5 amino acids and more than 24 amino acids

from the set of spectra. In order to obtain spectra that are similar

to experimental ones, we create additional noisy mass peaks in

these simulated spectra. These noisy mass peaks are generated in

groups and the differences of mass values from mass peaks in the

same group are those of single amino acids or their combinations.

Table 1 shows the distribution of path widths of the extended

spectrum graphs in the presence of different amount of noise. We

use PW to denote the path width and N/S is the ratio of the

number of noisy peaks to that of the real peaks in the spectrum.

We can see from the table that the values of the path widths of the

majority of the extended spectrum graphs are less than 6 for most

of the extended spectrum graphs. In addition, the value of the path

width increases when more noisy peaks appear in a spectrum.

We then use the program to process each extended spectrum

graph and obtain the sequence of amino acids in the peptide for

the longest antisymmetric path the program has found in the

graph. We evaluate the accuracy of a sequencing result by the

percentage of the amino acids that are correctly determined by the

program. Tables 2 and 3 compare the sequencing accuracy and

computation time of our program (PDS) with that of PepNovo

[10], NovoHMM [10], a computer program that solves the de novo

sequencing problem with a hidden markov model, and our

previous work (TDS) [17] which can compute the longest

antisymmetric path in an extended spectrum graph based on a

tree decomposition of an extended spectrum graph. We can see

from the tables that the program based on PDS is slightly faster

than PepNovo and is significantly faster than both NovoHMM

and TDS, since NovoHMM needs quadratic computation time

and TDS needs O(6tn) time, where t is the tree width of the

extended spectrum graph. Although the sequencing accuracy

drops slightly when the amount of noise increases, all four

programs achieve a sequencing accuracy above 95%. PDS can

achieve the same sequencing accuracy as that of TDS since both
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programs do the sequencing by computing the longest antisym-

metric path in the extended spectrum graph.

3.2 On Experimental Spectra
To evaluate the sequencing accuracy and computational

efficiency of the program on real experimental spectra, we

obtained 10000 tandem mass spectra from the pep2pro organ-

specific proteome map of Arabidopsis thaliana in the Proteomics

Identification Database (PRIDE) [14]. A preprocessing step is used

to process the mass peaks in a spectrum before the sequencing

algorithms are used to process a spectrum. We remove Isotopic

mass peaks and mass peaks with low intensity value (less than 0.1

of the maximum intensity value) from the spectrum during the

preprocessing step. In addition, we check whether each ion has a

complementary ion in the spectrum. If it is not the case, we create

an ion that is complementary to it and include it in the spectrum.

Table 4 shows the distribution of the path widths of the

extended spectrum graphs constructed from the 10000 experi-

mental spectra. From the table, we are able to see that the path

widths of more than 85% of the extended spectrum graphs are less

than 6. This fact can guarantee the computational efficiency of our

algorithm. Based on the values of the path widths of these

extended spectrum graphs, we further divide the spectra into five

groups. Group 1 contains spectra whose corresponding path

widths are less than 3, group 2, 3, and 4 contain spectra whose

corresponding path widths are equal to 3, 4, and 5 respectively,

group 5 consists of spectra whose corresponding path widths are

larger than 5.

For a spectrum, the sequencing accuracy is evaluated by

computing the percentage of correctly recognized amino acids in

the peptide. Table 4 shows the sequencing accuracy of PDS,

PepNovo [10], NovoHMM [11], and TDS [17]. From Table 5,

we are able to see that PDS can achieve significantly higher

average sequencing accuracy than the other three sequencing tools

in groups 1, 2, and 3. Since the extended spectrum graphs in these

groups are sparser than those in groups 4 and 5, the probability for

them to have missing mass peaks is significantly higher. As we have

presented, PDS is able to detect missing mass peaks and thus can

significantly improve the sequencing accuracy. On the other hand,

PepNovo outperforms PDS, TDS, and NovoHMM in groups 4

and 5. Spectra in groups 4 and 5 contain a large number of mass

peaks and the probability for them to have missing mass peaks is

much lower. In addition, PepNovo uses a sophisticated stochastic

network model to describe the relationships among mass peaks

and is able to provide a more accurate description of the spectrum

when a sufficient number of mass peaks are present in a spectrum.

It is thus able to achieve higher sequencing accuracy than the

other three sequencing tools.

Table 6 shows the average computation time needed by all four

programs to process the extended spectrum graphs in each group.

It can be seen from the Table that both PDS and PepNovo are

significantly faster than both NovoHMM and TDS on groups 1, 2,

3, and 4, since the exponential term in the time complexity of our

algorithm is a small integer and NovoHMM needs quadratic

computation time. However, as we have observed in the Table,

the computation time needed by PDS rises sharply when the path

widths of extended spectrum graphs increase and is almost

comparable to that needed by NovoHMM on spectra in group 5.

In addition, TDS is the slowest of the four tools in group 5 since

the exponential factor in the computation time of TDS is a large

integer for spectra in this group. This fact suggests that when the

path width of an extended spectrum graph is large, PepNovo

should be chosen over the other three programs as the sequencing

tool since it is computationally more efficient and also more

accurate.

Conclusions

In this paper, we use the notion of extended spectrum graphs to

model the relationships among mass peaks in an MS/MS

spectrum. Based on graph path decomposition, we study the

structural features of extended spectrum graphs and such features

are exploited for the development of fast optimal algorithms for de

novo peptide sequencing. We develop a dynamic programming

algorithm that can efficiently compute the longest antisymmetric

partial path in an extended spectrum graph that is of small path

width. The sequencing result can be immediately obtained from

the path returned by the algorithm. Our testing results show that

this new algorithm is more accurate than NovoHMM and

PepNovo on most of the tested experimental spectra and is also

significantly faster than NovoHMM when the path width of the

extended spectrum graph is less than 5.

So far, edges in an extended spectrum graph are all equally

weighted and an edge-scoring scheme has not been introduced to

model the probability [6] for an edge to be present in the longest

antisymmetric path. The development of such a scoring scheme

for edges in extended spectrum graphs constitutes an important

aspect of our future work. In addition, the preprocessing stage of

this approach needs to be refined to further improve the

sequencing accuracy and the computational efficiency of this

approach.
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