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Simulating and Optimising 
Quantum Thermometry Using 
Single Photons
W. K. Tham1, H. Ferretti1, A. V. Sadashivan1 & A. M. Steinberg1,2

A classical thermometer typically works by exchanging energy with the system being measured until it 
comes to equilibrium, at which point the readout is related to the final energy state of the thermometer. 
A recent paper noted that with a quantum thermometer consisting of a single spin/qubit, temperature 
discrimination is better achieved at finite times rather than once equilibration is essentially complete. 
Furthermore, preparing a qubit thermometer in a state with quantum coherence instead of an 
incoherent one improves its sensitivity to temperature differences. Implementing a recent proposal for 
efficiently emulating an arbitrary quantum channel, we use the quantum polarisation state of individual 
photons as models of “single-qubit thermometers” which evolve for a certain time in contact with a 
thermal bath. We investigate the optimal thermometer states for temperature discrimination, and the 
optimal interaction times, confirming that there is a broad regime where quantum coherence provides 
a significant improvement. We also discuss the more practical question of thermometers composed 
of a finite number of spins/qubits (greater than one), and characterize the performance of an adaptive 
protocol for making optimal use of all the qubits.

A multitude of measurement and metrology tasks have been shown to benefit, sometimes dramatically, from the 
substitution of certain classical resources with their quantum counterpart1,2. Examples of advances in quantum 
metrology range from a many-fold increase in sensitivity to phase in interferometry or polarization in polarim-
etry through the use of non-classical light3–10 to highly sensitive magnetometry11–13. Much in keeping with the 
spirit of the field, a recent analysis14 has considered that most primitive of metrological tasks - thermometry, or 
simply telling cold from hot - and found that a coherent measurement scheme can enhance thermometry beyond 
the traditional approach. In particular, because different-temperature baths lead not only to different equilibrium 
states but also to different equilibration rates, this means that temperature discrimination can be better achieved 
by comparing rates at finite times rather than asymptotic states when thermalisation is complete. Furthermore, 
the theory work also noted that the difference between relaxation rates for populations and coherences means 
that for intermediate time regimes (before full equilibration but after some characteristic time that depends on the 
temperatures of the baths), optimal discrimination is achieved not by probing energy only but by using quantum 
coherence as well.

Our measurement device is a qubit or a quantum system consisting of two levels typically called the ground 
(denoted | 〉0 ) and excited (| 〉1 ) states. Furthermore, since a single spin cannot provide more than one bit of informa-
tion15, we follow14 in considering the simpler task of distinguishing between just two (instead of a continuum of) 
thermal baths at two different temperatures. And whereas a traditional thermometry approach prescribes letting 
the thermometer fully thermalise to the given bath by waiting for a long time, whereupon some physical quantity 
that bears a known correlation with the temperature is measured, we allow our qubit to interact for only a finite 
duration before it is subjected to some measurement. The qubit interacts with the heatbath by absorbing or emitting 
photons from/into it. In standard treatments of spontaneous emission16,17 this photon exchange process is often 
described with parameters τ1, the decay time for the excited state population, and τ2, the decay time for coherences 
between 0  and 1 . It is known that 2τ1 ≥  τ2. When there are no additional dephasing mechanisms, the equality 
holds so that the coherence damps away exactly half as quickly as the excited state population.
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In the case of thermalisation via energy exchange with a bosonic bath, as treated in ref. 14, the collision  
rate grows with occupation number, and hence with temperature. τ1 and τ2 are therefore shorter for 
higher-temperature baths. This difference means that it is generally advantageous to wait for a finite interaction 
time (on the order of the thermalisation times) in order to better distinguish the two processes, rather than allow-
ing the qubit to fully thermalise with the bath. In particular, for high temperatures, the asymptotic populations 
are very similar, while the thermalisation rates may be quite different. Since coherences decay twice as slowly as 
populations, the time of optimal distinguishability occurs roughly twice as late for initially coherent states (which 
decay principally at τ2) as for initially incoherent states (which decay at τ1). As a consequence, one can show that 
beyond a certain critical time, an initial state with some coherence always makes for a more sensitive thermom-
eter. Similar results are expected to hold in any case where thermalisation occurs faster with higher-temperature 
baths (for instance, via collisions with Maxwell-Boltzmann distributed gas molecules), but not if the thermalisa-
tion rate were fixed and temperature-independent, as in commonly used phenomenological models of thermal 
conductance. (For the interested reader, we give a mathematical argument in the Supplementary, as to why these 
observations are true). This work therefore aims to experimentally demonstrate this metrological advantage, along 
with an extension to the more practically relevant case where one is not restricted to the use of a single qubit.

In the Bloch sphere representation, every single qubit state corresponds uniquely to a 3-vector on or within the 
unit sphere. Conventionally, the excited state is represented as + Z and the ground state as − Z. Maximally coher-
ent states lie on the xy-plane, usually with +( 0 1 )/ 2  at + X. The thermalisation of the qubit in this picture 
can be thought of as a trajectory from its initial Bloch vector (usually a unit vector on the surface of the unit 
sphere if the initially prepared state is pure) to its final point on the z-axis. To aid the reader in visualising this, 
Fig. 1 shows trajectories of a qubit initialised in + Z, − Z, and + X, interacting with a bath of temperature 

ω. k5 98 / B  or ω k10 / B . For the ± Z initial states, the evolution of the qubit is strictly along the z-axis, so only the 
z component (denoted sz) is shown. When the qubit is initialised to + X, however, both the coherence  
(the x-component, labeled sx) and the excited state population (the z-component) relax with time so both are 
shown in Fig. 1(c) over a range of discrete times.

The yardstick by which we will characterise the performance of our qubit thermometer is the probability with 
which we mis-identify our bath, either by mistaking a hot bath for a cold one or vice versa. Since a thermalised qubit 
is almost always in a mixed state (a statistical mixture of pure states), this error probability or pe never vanishes. For 
example, a fully thermalized qubit at temperature T =  ∞  is in a state that is an equal statistical mixture between 0  
and 1  whereas at T =  0 it is in the ground or 0  state. Suppose we now identify our heatbath as the hot one if and 
only if a measurement on the qubit finds it in the excited state. Although we will never misidentify the T =  0 bath, the 
T =  ∞  bath yields the excited state with 50% probability so we stand to misidentify it half the time! Assuming that a 
given bath is chosen from T =  ∞  and T =  0 with equal likelihood, our overall error probability, pe, is 1/4. Tasks such 

Figure 1. Bloch vector components vs interaction time. Theoretically computed components of the Bloch 
vector after thermalizing for t seconds, (a) given a + Z input state, (b) − Z input state, and (c) + X input state. 
For this latter case, both sz and sx are shown. The bath temperatures are 5.98ħω/kB and 10ħω/kB. At t =  0 the state 
begins at the rightmost point of the bottom plot. Each subsequent timestep is shown as a pair of points, one each 
for high and low temperatures respectively. Arrows indicate where the greatest separation occurs.
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as the one just described are aptly called state discrimination. Conveniently, pe in state discrimination is well-known 
to be related to r1 and r2, Bloch vectors corresponding to the states being discriminated, as follows18,19:

− ≤


 + −





 p r r1 1
2

1 1
2 (1)e 1 2

where the norm is to be understood as the usual Euclidean/Cartesian distance between vectors r1 and r2. Returning 
to our example with Thot =  ∞  and Tcold =  0, the completely mixed state corresponds to r1 =  〈 0, 0, 0〉  and the ground 
state to r2 =  〈 0, 0, − 1〉 , so |r1 −  r2| =  1 implying once more that pe ≥  1/4. It is important to stress that while a larger 
Euclidean distance between Bloch vectors implies that a lower error probability is achievable in principle, actually 
saturating the inequality to achieve the lowest possible error requires that we select the correct basis during meas-
urement. In our example above, measuring if the qubit is in the state +( 0 1 )/ 2  would have yielded a “yes” 
answer with probability 50% for both T =  0 and T =  ∞ , giving us no information at all about the bath!

Experimental Design
Emulating thermalisation with photons. Since we have opted to emulate the effects of thermalisation 
on a photonic polarisation qubit, we must first understand how thermalisation affects qubits in general. In the 
absence of extraneous damping processes (e.g. mechanical collisions), a qubit that interacts with a thermal res-
ervoir by photon exchange alone can be treated as a system that emits or absorbs a photon into/from the reser-
voir with some probability. Such a process is well-modeled by a generalised amplitude damping (GAD) channel, 
which is defined in the standard operator-sum representation as follows19:
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Equivalently we can write the above process in terms of its action on the Bloch vector:
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In words, the Kraus operators describe two physical sub-processes: K11 and K12 jointly describe a sub-process in 
which the qubit in 0  absorbs a photon from the reservoir with probability γ thereby transitioning to 1 . K21  
and K22 describe the opposite sub-process in which a photon is emitted into the reservoir again with probability 
γ. A thermalising qubit is merely one which undergoes the first sub-process (absorption) with probability p and 
the second (emission) with probability 1− p. The probability p in turn is determined by the bath temperature. To 
see this, suppose our qubit states 0  and 1  have energies E0 and E1 respectively. After fully thermalising, we 
expect our qubit, which is now in a mixture of p 1  and (1− p)|0〉 , to obey thermal statistics. We expect:
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so p →  0 as T →  0 whereas p →  1/2 as T →  ∞ . It is also well-known that for a bosonic thermal reservoir, the Planck 
distribution implies an average occupation number ω= − −N k T[exp( / ) 1]B

1 . Thus, in terms of N , we can write 
p more compactly as = +p N N/(1 2 ).

The damping parameter γ is related to the interaction time with the bath, t, and temperature, T, as follows: 
γ =  1− exp(− t/ξτsp), where τsp is a timescale characteristic of the coupling between qubit and bath. Here,

ξ ω= =
+

k T
N

tan h( /2 ) 1
1 2 (6)B

is a unitless quantity that encodes the bath temperature. Note from equation 6 that ξ, and therefore the relaxa-
tion rate of the qubit’s excited state population and coherence, is temperature dependent. This, coupled with the 
fact that the difference of two exponential functions with different exponents is not monotonic, means that the 
Euclidean distance between resultant states for the hot vs cold baths is larger (and our thermometer more sensi-
tive) when the interaction time t is finite (partially thermalised) as opposed to infinite (fully thermalised).

Since in our case we are merely emulating thermalisation, ω which defines the mode through which the qubit 
is coupled to the bath, is ill-defined. We shall therefore specify temperature in terms of N  and ħω/kB. Likewise, we 
do not have an intrinsic timescale by which to specify τsp. All times t will be specified in units of τsp. As we’ll see, 
encoding the qubit in two orthogonal polarisations of a photon (call them H  and V ) makes it possible to imple-
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ment this compactly in a tabletop experiment. In keeping with the cases considered in Jevtic et al.14, unless other-
wise mentioned, we will henceforth consider two baths with temperatures ω. k5 98 / B  and ω k10 / B .

Implementation. Our experimental setup begins with our light source, a continuously pumped type-II 
spontaneous parametric down-conversion (SPDC) crystal. One photon of the SPDC pair is sent directly to a 
single-photon counting module (SPCM) to act as herald whereas the other is sent through a polariser, followed 
by a quarter-wave plate (QWP) and then a half-wave plate (HWP). Together, these form the state preparation 
block of inset (a) Fig. 2, which allows us to encode our qubit onto the polarisation of the 810 nm SPDC photons.

To simulate thermalization, we make use of an optical circuit having the capacity to simulate any valid 
single-qubit quantum channel (precisely, completely positive trace-preserving or CPTP maps). The design of this 
circuit was inspired by Sanders et al.’s theoretical results20, which were in turn based on mathematical work by 
Ruskai et al.21. A similar optical circuit has already been shown to accurately simulate a wide variety of single-qubit 
quantum channels22. Our design consists of a variable beamsplitter (VBS), followed by two subsequent interfer-
ometers (labeled channels 1 and 2 respectively in Fig. 2). The optical design of each channel is shown in inset (b) 
of Fig. 2. Light that is incident on each channel is split at a polarising beamsplitter (PBS) so that each of two 
orthogonal polarisations travels along spatially separated counter-propagating paths. Each path contains a HWP, 
allowing the polarisations to be rotated independently before being recombined at the PBS. It is easy to see how 
this intra-interferometer rotation allows us to emulate a damping channel. Suppose we leave the H  polarisation 
within the interferometer unrotated but leave the HWP within the |V〉  path at 45° so that →V H . Such a set-
ting guarantees that the output of the channel is always H  regardless of input polarisation - hence a full damping 
channel with γ =  1. Less extreme settings realise the full range of damping channels. More formally, it is easy to 
show that each channel is well described by ρ ρ ρ= +† †K K K Koutput in in1 1 2 2  with:
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Here θH and θV are angles of the fast axis of the half-wave plates in channels 1 and 2, acting on the horizontal and 
vertical paths respectively. Setting θH =  0 and sin 2θV =  γ  implements K11 and K12 in equation 3, whereas setting 
θV =  0 and θ γ=sin 2 H  implements K21 and K22.

Although the inner workings of the VBS are not shown, it is identical in design to the channels except for the 
fact that there is a single HWP (instead of two independent ones) acting on both counter-propagating paths. This 
restricts the action of the VBS to a fixed unitary that can be subsequently undone for all input states with a simple 
HWP placed outside the VBS. Notice that if we now set the HWP in the VBS to cos2 2θVBS =  p, both channels 
work in tandem to fully implement the map in equation 2. Thus, we have a fully tunable means of emulating ther-
malisation with a polarisation qubit.

Finally, the measurement block consists of a QWP →   HWP →   PBS sequence. The four output states  
(two from each channel, one from each Kraus operator) are mixed and sent through this measurement sequence 
and then onto an APD and coincidence counter. In practice, losses and imperfections in optical components 
means that mixing the four output states before the measurement sequence is impractical since it precludes the 
possibility of compensating with post-processing. Instead, we opted to send each one to two APDs after the meas-
urement sequence (they are further split at the PBS into | 〉H  and | 〉V ) and then only tracing over them in 
post-processing.

Experimental Data. To ensure that our channels are emulating the desired thermalisation process, we char-
acterise it via full process tomography23–26. Throughout stretches of data-taking, we re-characterise periodically 
(approximately every 30 minutes, the minimum time in which visibility of interferometers are likely to have 
dropped appreciably) and realign optics as necessary. We proceed to prepare states − Z (or H ), + Z (or V ), and  
+ X (or = +D H V( )/ 2). We emulate the heat baths specified in ref. 14, with ξ = + =N1/(1 2 ) 1/12cold  
and ξhot =  1/20. These correspond to temperatures of ω≈ k6 / B and 10ħω/kB respectively. We further set the chan-
nels to emulate interaction times ranging from t =  0τsp to t =  0.4τsp, where asymptotics have yet to dominate and 
dynamics are non-trivial. The time steps are sampled unevenly because: a) at large t’s, we were limited by the preci-
sion of our motorised rotation stage (~0.2) whereas b) at small t’s, we restricted ourselves to Δ t ≥  0.2τsp in order to 
maintain a reasonable sampling stepsize. For each channel setting, we chose to measure along a basis prescribed by 
static state discrimination strategies to be optimal (i.e. select a projector M s.t. equation 8 is minimized, discussed 
in next section). We counted photons for 10 seconds per measurement, which yielded measurement “shots” that 
consist of ~40,000 photons apiece. Although the thermometry scheme discussed above is intended for single qubits, 
we have opted to use a bright source and long count durations in order to infer Tr(ρM), the probability of a success-
ful outcome of the projector, M, in our chosen measurement basis. Since we expect the number of coincidences to 
be binomially distributed, this inferred detection probability tends to the true single-photon probability with 
diminishing uncertainty as the total photon number becomes large. Figure 3 show this inferred probability. Note 
that each point in the plots represents an average over many sets of data taken under identical experimental condi-
tions (9 sets for the + Z case, 10 sets for + X, and 4 for − Z, where a hardware issue forced us to discard 5 sets of data; 
discarded sets are reported in the Supplementary, for completeness).

In order to compare with theory, we must deduce an effective discrimination error probability pe from the 
above detection probabilities. Now given two states ρ1 and ρ2 (in our case these are the state of the qubit after 
interacting for some time, t, with the hot/cold bath respectively), pe can be computed as:



www.nature.com/scientificreports/

5Scientific RepoRts | 6:38822 | DOI: 10.1038/srep38822

ρ ρ ρ ρ= . + . − . − + .p M M M Mmin{0 5 Tr( ) 0 5(1 Tr( )), 0 5(1 Tr( )) 0 5 Tr( )} (7)e 1 2 1 2

where θ θ=M , θ θ θ= +H Vcos sin , and Tr(ρM) are detection probabilities shown in Fig. 3. The results 
are shown in Fig. 4. Overlayed are theory curves deduced (via equation 1) from the Euclidean distances between 
final states of the ideal GAD. Reiterating theoretical results mentioned above, we see that after approximately two 
thermalisation times (t ~ 0.1τsp) the coherent state + X outperforms the incoherent ones ± Z. Note that although 
− Z appears to be globally optimal (i.e. has a lower pe at t ~ 0.07τsp than other states at any time), this is peculiar to 
our choice of temperatures and is not always the case. A specific example in which coherence is necessary for 
achieving the global optimum is given in the Supplementary Information.

Figure 2. Experimental Scheme. (a) Block schematic of the experimental setup for channel emulation.  
(b) Drawing of an optical implementation of the “channels” block. Two similarly constructed copies of the 
channel fed a via splitter that stochastically switches between them implements a simulation of a thermal bath. 
The “switching” is done via a variable beamsplitter (VBS), whose coefficient of reflection/transmission  
can be modulated.

Figure 3. Plots of inferred detection probabilities. For each input state and channel setting, we computed and 
performed the optimal measurement for discrimination between the final states from each heat bath. (a) Detection 
probability of the − Z observable (i.e. H H ) when input state is + Z (or V ). (b) Detection probability of + Z 
observable (i.e. V V ) when input state is − Z (or H ). (c) Detection probability for some optimal measurement 
given input + X (or D ). Although for ± Z input states the optimal observable is fixed, in the + X case it varies with 
interaction time. In this plot, the optimal observable is parametrised as: θ θ  where |θ〉  =  cos θ|H〉  +  sin θ|V〉 . For 
reference, the relaxation times for the hot bath are τ2 =  2τ1  =  0.05τsp. For the cold bath, they are τ2 =  2τ1 =    0.083τsp.
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While the behaviour of pe shows good agreement with theory for ± Z input states, the + X case shows discre-
pencies in the region t ≤  0.2τsp. This can be ascribed to the fact that our interferometers have finite visibility. This 
has the effect of mapping some amount of coherence between |H〉  and V  to an incoherent mixture and is com-
pletely analogous to extraneous dephasing processes (e.g. atomic/molecular collisions etc.) that we did not con-
sider in our thermalisation model. Note that ± Z input states do not experience interference effects as they traverse 
the channels - these states end up traveling through the interferometer via just one of the two possible 
counter-propagating paths and have nothing to interfere with when they re-emerge at the PBS. The ± Z states are 
therefore not susceptible to imperfect interferometer visibility. The same cannot be said of the + X state. The inter-
ferometers that comprise our channels have typical visibilities ≥ 95%, though due to the lack of active stabiliza-
tion, realignment can become necessary from time to time.

While the notion of the Euclidean distance and the error probability are the correct figures of merit to use for 
state discrimination tasks, the former applies strictly to single-qubit states whereas the latter becomes increasingly 
difficult to compute for large numbers of qubits. An alternate measure is the distinguishability, often used as a 
measure of the ease with which two distributions can be distinguished. It is defined as the squared difference of 
the means of the two distributions, divided by their variance:

= =
−E P E P

P P
distinguishability (difference in mean)

variance
[ ( ) ( )]

max{Var( ), Var( )}
hot cold

hot cold

2 2

where Phot and Pcold are the binomially distributed outcomes of some projector observable given the output state 
from each of the heat baths (i.e. the probabilities shown in Fig. 3). A plot of this measure is shown in Fig. 5. We 
attribute the noise in the experimental points in this figure to the fact that relatively few sets of data (9 sets for  
+ Z and + X inputs and 4 sets for − Z) were used to infer the variances. Although qualitatively quite similar to the 
pe plot in Fig. 4 (i.e. the + X state remains optimal after some time, while − Z is optimal if time is not a constraint), 
the two measures disagree for example on the cutoff times at which the optimal input state changes. A clear 
advantage for + X is seen at t >  0.08τsp (from theory curves in Fig. 5), whereas in the Euclidean distance or 
single-qubit pe case it is seen after t >  0.1τsp. This discrepancy leads one to suspect that the optimal input state for 
our thermometer in a multi-qubit scenario is different from the single-qubit case. In order to obtain a more rig-
orous measure of many-qubit distinguishability, we numerically computed the error probability pe for 100 qubits. 
This is shown in Fig. 6 along with the fidelity,  ρ ρ ρ= Tr hot cold hot  where ρhot and ρcold are final states from 
the hot and cold baths respectively. The quantity −(1 )/2  has been shown18 to bound pe from above in the limit 
of an asymptotically large number of qubits. Again, the differences between a single qubit and many qubits is clear 
- the crossover between − Z and + X in Fig. 6(b) occurs at t =  0.0828τsp. In the next section, we treat the many 
qubit case more carefully.

Multi-qubit extension and adaptive state discrimination. A Bayesian approach. While a single-qubit 
thermometer is conceptually interesting, it is obviously of more practical relevance to consider a thermometer com-
posed of many spins, but potentially a limited, fixed number. Already, the static strategy - doing the same thing on 
all N copies of a qubit - yields better binomial statistics the larger N is. Let’s return to the example in the Introduction, 
of distinguishing T =  0 from T =  ∞ . The best static strategy for N qubits in that case is to measure along some opti-
mal axis for all qubits and conclude that the bath is at T =  0 if and only if all measurement outcomes are 0. In that 
case, = +p pe outcome

N
0

1.
One can often do better27,28 by allowing for an adaptive strategy (say by changing the measurement basis for 

each qubit), a possibility that was investigated by Wiseman et al.29. To facilitate further discussion, we now restate 

Figure 4. Inferred Error Probabilities in discriminating between final states from two heat baths. Solid 
lines are theory curves. Points are experimentally inferred error probabilities. Vertical error bars indicate 
standard deviation or spread range over multiple repetitions for a given channel setting and input state. 
Horizontal error bars indicate uncertainty in channel setting due to finite precision of motorised rotational 
mounts. Relaxation times for the hot bath are τ2 =  2τ1  =  0.05τsp. For the cold bath, they are τ2 =  2τ1 =  0.083τsp. 
The vertical dashed line is a guide to the eye to indicate where theory predicts a change in the optimal initial 
state changes, in this case from − Z to + X.
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the discrimination problem in slightly more formal terms. Whereas in the preceeding discussion we assumed that 
the bath was equally likely to be in Thot or Tcold, we now allow each to occur with different prior probabilities (call 
them π1 and π2 where π1 +  π2 =  1). We also assume that for a given interaction time t, the output states from baths 
Thot and Tcold are known to be ρ1 and ρ2 respectively. The problem is to find an optimal strategy that yields pe, min =   
minstrat {pe, strat}, the lowest error over all possible strategies. A strategy, in turn, is a combination of a measurement 
(observable M) and a threshold (k ∈  Z) beyond which one concludes that the output state is ρ1 (or ρ2). In this 
language, the error probability for each case (assuming we employ a strategy non-adaptively, i.e. the same M for 
all N qubits):
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The optimal error probability is therefore computed as pe,min =  mink,M{pe, 1, pe, 2}. If ρ1 and ρ2 are two single-qubit 
states, the minimization over M reduces to a minimization over one real parameter (i.e. the measurement angle θ; 
we can assume ρ1 and ρ2 both lie on the real plane of the Bloch sphere - else we rotate them onto it).

In the adaptive case where θ may vary with each copy of ρ, the above no longer holds. Instead, consider the 
following approach: suppose on the first measurement M1, we obtain a successful (√ ) outcome. We update our 
state of knowledge as follows:

ρ
π ρ π ρ

π ρ π ρ

ρ
π ρ π ρ

π ρ π ρ

√ =
√

√
=

+

√ =
√

√
=

+

p
p
p

M
M M

p
p
p

M
M Tr M

( )
( )
( )

Tr( )
Tr( ) Tr( )

( )
( )
( )

Tr( )
Tr( ) ( ) (9)

1
1 1 1 1 1

1 1 1 2 2 1

2
2 2 2 2 1

1 1 1 2 2 1

We then take these as the “updated” priors: π ρ= √p( )1
(1)

1  and π ρ= √p( )2
(1)

2  where the superscript indicates 
that they are post-measurement-1. Had the outcome of M1 been negative, we would simply have replaced every 
instance of Tr(ρM) in equation 9 with 1 −  Tr(ρM). We then return to equation 8 to minimize θ substituting 
π π→1 1

(1) and π π→2 2
(1). Now armed with M2, we proceed to repeat the procedure on the next copy of ρ. After all 

qubits are measured, we finally choose the state associated with the larger of π π{ , }n n
1
( )

2
( )  as the output of our dis-

crimination procedure. In ref. 29, it was shown that such a Bayesian prior update strategy is not only better than 
the static one but is in fact optimal if ρ1 and ρ2 are pure states! And although it isn’t the optimal strategy for an 
arbitrary mixed state, it nevertheless performs better than the static approach.

Testing Adaptivity. To test the adaptive approach, we set the channel to identity (it simply preserves all input 
states; in practice this meant setting p =  0 in the VBS and θH =  θV =  0° for the channels). The states to discriminate 
were H  and D . These states were chosen (instead of outputs of the thermalisation channel described in preceed-
ing sections) because the identity channel much easier to control, allowing us to avoid potential confounding 

Figure 5. Plot of distinguishability in the outcome of our optimal observable (see Fig. 2). Higher points 
indicate better distinguishability. Means and variances were computed over multiple sets of comparable 
experimental data. Average photon number in all measurements was ≈ 40,000. The vertical dashed line is a guide 
to the eye to indicate where theory predicts a change in the optimal initial state, in this case from − Z to + X.
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factors when demonstrating the benefits of adaptivity. The identity channel requires only one of channels 1 and 2 
to be active and so does not require LCWP calibration or careful alignment of the VBS, among other things.

As before, we began by validating the channel via process tomography and then proceeded to measure along 
bases specified by equations 8 and 9 above. In an actual adaptive scenario, one ideally updates one’s measurement 
setting as each photon is detected. However, our motorised waveplate mounts are relatively slow making it diffi-
cult for us to adapt our measurement setting conditioned on individual detection events. Instead, we have chosen 
to measure along all bases that are prescribed by our Bayesian update strategy given all possible detection out-
comes. This allowed us to map out the full tree of possible outcomes along with the probability of occurrence for 
each node. Such a map of outcome probabilities allows us to confirm that the Bayesian update rule is valid, even 
if we can’t directly emulate adaptivity. Figure 7 shows a plot of how the error probability, pe, scales with number 
of qubits in the various scenarios.

Figure 7 shows the resulting error probabilities, pe, for various strategies. Theoretical predictions and exper-
imentally derived values for our strategy, detailed above, are plotted in blue and red, and are labelled “Adaptive”. 
For comparison, theory predictions for two static (non-adaptive) cases are shown. The “1-qubit optimum” naively 
uses a measurement basis that is optimal for just 1 qubit, and repeats it as necessary. On the other hand, in the 
“Global Optimum” approach, one is assumed to have been told the total number of qubits available, and a static 
measurement angle that is optimal for the given number of qubits is computed and used.

Evidently, the adaptive multi-qubit scenario offers the benefit of lower error probabilities. The absolute reduc-
tion is particularly pronounced for the first few additional qubits, when pe is still relatively large. The deviation 
between our data and theoretical prediction for pe becomes pronounced as the number of qubits N becomes large. 
The probability tree that we must reconstruct grows quickly with N (generally, 2N branches) and so does the pre-
cision with which we must set our measurement basis in order to maintain an advantage over the non-adaptive 
approach. In our case, we are limited by our motorised waveplate mounts to an angular precision no better than 
± 0.2°.

Also of note, our adaptive strategy makes no assuption about the total number of qubits and continues to work 
in a “rolling” fashion even if, midway through the scheme, we were suddenly told that more qubits have suddenly 
become available. This is in stark contrast to the “global optimum” static strategy, where a favorable scaling is only 
possible given full knowledge of just how many qubits there are.

Conclusions
In summary, we have simulated the thermal equilibration of a spin by using a construction of a universal emulator 
for quantum channels. This has allowed us to confirm Jevtic et al.’s14 theoretical conclusions that for thermalisation 
with a bosonic bath, optimal temperature discrimination occurs at early times rather than in the asymptotic limit, 
and that for most interaction times, a thermometer initialized in a coherent superposition state outperforms one 
prepared in the ground state. In our case, this advantage translates to a maximum reduction of the error proba-
bility, pe, from 47.99% (theory, or 48.04% experimental) to 46.19% (46.55% experimental) when discriminating 
between temperatures 5.98ħω/kB and 10ħω/kB after letting the qubit interact with the bath for t ≈  0.23τsp. This is a 
90% (76% experimental) increase in the improvement over a purely random guess (pe =  50%). Furthermore, after 
just t ≈  0.068τsp, the error probability is reduced, relative to a fully thermalised qubit, from 49.17% to 45.13% or 
approximately a 5.8 fold advantage in the improvement over random guess. We discuss the origin and limitations of 
this behaviour, and study the extension to the case of a thermometer composed of a finite number of spins, showing 
the advantages of an adaptive measurement strategy. We note that there are important differences between the opti-
mization problem for single and multiple spins, but conclude that quantum coherence retains an advantage even in 
the latter case. This is a new example of a quantum metrological advantage, and may prove important for making 
accurate measurements of thermal properties of quantum systems with limited resources or limited disturbance.

Note: During preparation of this manuscript we became aware that similar work was being pursued by 
Mancino et al.30.

Figure 6. Performance measures for a multi-qubit thermometer. (a) Numerically computed error 
probabilities for 100 qubits. (b) The fidelity between states being discriminated (identical states have fidelity 1 
whereas orthogonal states have fidelity 0). The vertical lines are guides to the eye to indicate where one initial 
state surpasses another in discrimination optimality (the left vertical line marks the time when + X state 
becomes preferable to + Z, whereas the right vertical line indicates when + X becomes preferable to − Z).
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Methods
The pump laser for our SPDC source is a 120 mW continuous wave (CW) 405 nm laser diode produced by 
Mitsubishi (Thorlabs Part ML320G2-11). Driven by this laser is the SPDC crystal itself, a 2 mm thick beta-Barium 
Borate (BBO) crystal phase-matched with an opening angle of 3°. Light from the SPDC crystal is filtered with 
10 nm bandpass filters (sourced from ASAHI). The resulting typical total coincidence rate (taking into account 
all losses in the experiment) is ≈ 4000 pairs per second. Our single-photon detectors are avalanche photodiodes 
(APDs) manufactured by Perkin Elmer (now Excelitas Technologies). We used a combination of a 4-detector 
module (SPCM-AQ4C) and 4 single-detector modules (SPCM-AQR-13). Both have similar performance param-
eters (photon detection efficiency ~50% at 800 nm and dark count rate 500/s). TTL signals from the APDs are 
counted by a homebuilt coincidence counting circuit (details can be found at: http://bit.ly/2eGo1L811-channel 
coincidence counter project page). Half- and quarter-waveplates (HWP and QWP) in the experiment were 
sourced primarily from Foctek Photonics, liquid-crystal waveplates from BolderVision Optik, and miscellaneous 
optics (mirrors, polarising beamsplitters (PBS), etc) from Thorlabs.

During the course of this experiment, we came to realise that the process fidelity of our channels were cru-
cially dependent on the purity of the polarisation extinction of the PBS used in the construction of each channel  
(as shown in Fig. 2). Typical PBS extinctions were approximately 1000:1 and 100:1 for the transmitted and 
reflected ports respectively. We compensated for the poorer polarisation purity of reflections at the PBS by  
placing an additional polariser at the output port labeled “Output 1” in Fig. 2 panel (b), oriented to transmit only 
V-polarised light. It is easy to show that if we set the HWP in the path propagating counter-clockwise within 
the Sagnac interferometer to 0°, this eliminates “leaked” polarisation to 1st order while preserving the desired 
qubit operation. As discussed in previous sections, this is just the HWP setting we need for amplitude damping 
channels.
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