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ABSTRACT

Most mitotic homologous recombination (HR)
events proceed via a synthesis-dependent strand
annealing mechanism to avoid crossing over,
which may give rise to chromosomal rearrange-
ments and loss of heterozygosity. The molecular
mechanisms controlling HR sub-pathway choice
are poorly understood. Here, we show that human
RECQ5, a DNA helicase that can disrupt RAD51 nu-
cleoprotein filaments, promotes formation of non-
crossover products during DNA double-strand
break-induced HR and counteracts the inhibitory
effect of RAD51 on RAD52-mediated DNA annealing
in vitro and in vivo. Moreover, we demonstrate that
RECQ5 deficiency is associated with an increased
occupancy of RAD51 at a double-strand break site,
and it also causes an elevation of sister chromatid
exchanges on inactivation of the Holliday junction
dissolution pathway or on induction of a high load
of DNA damage in the cell. Collectively, our findings
suggest that RECQ5 acts during the post-synaptic
phase of synthesis-dependent strand annealing to
prevent formation of aberrant RAD51 filaments on
the extended invading strand, thus limiting its chan-
neling into potentially hazardous crossover pathway
of HR.

INTRODUCTION

DNA double-strand break (DSB) is the most dangerous
type of DNA damage because its inaccurate repair can
lead to chromosomal rearrangements, a hallmark of
tumorigenesis and tumor progression. In eukaryotic
cells, two mechanistically distinct pathways are known

to efficiently repair DNA DSBs: non-homologous end
joining and homologous recombination (HR). HR is
mainly restricted to S phase, peaking in mid-S, and
requires an intact homologous sequence to be used as a
repair template (1–3). It is initiated by nuclease-mediated
resection of the DNA ends to generate 30-single-stranded
(ss) DNA tails that are coated by the ssDNA-binding
protein RPA (4). In the next step, the RAD51 recombin-
ase replaces RPA on these ssDNA tails with the help of
mediators such as BRCA2 to form a nucleoprotein
filament that catalyzes the invasion of the donor chroma-
tid, giving rise to a three-stranded structure called the dis-
placement (D)-loop (1). After DNA synthesis primed by
the invading strand, repair can proceed via two main sub-
pathways referred to as the canonical DSB repair (DSBR)
and synthesis-dependent strand annealing (SDSA) (1,2).
In DSBR pathway, the second DNA end is captured by
the D-loop to form an intermediate with two Holliday
junctions, referred to as double Holliday junction (dHJ).
This joint DNA molecule can be either resolved by
specialized endonucleases into crossover (CO) or non-
crossover (NCO) products or dissolved by the BLM-
TOPOIIIa-RMI1/2 (BTR) complex, which gives rise ex-
clusively to NCO products (5–7). In the SDSA pathway,
the extended D-loop is disrupted by a DNA helicase, and
the newly synthesized DNA is annealed to the ssDNA tail
of the other part of the broken chromosome, which is
followed by gap-filling DNA synthesis and ligation. As a
result, SDSA yields exclusively NCO products (8).

The HR sub-pathways are under strict regulation to
select the most appropriate outcome in a given state of
the cell (2,9). Although formation of COs is favored
during meiosis to ensure genetic diversity and accurate
chromosome segregation, it is suppressed in mitotic cells
to prevent loss of heterozygosity and chromosomal trans-
locations (10,11). Recent studies in yeast and mammalian
cells suggest that HJ resolvases are active only during
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mitosis, biasing the outcome of recombination toward
NCO products while also ensuring the elimination of
any persistent joint DNA molecules (11). Most NCOs
arising during HR-mediated DSBR are produced by
SDSA rather than by the canonical DSBR pathway (12).
Moreover, the resolution of HJs is highly constrained
to generate CO products (12). Thus, it appears that
the SDSA mechanism is preferred over DSBR in mitotic
cells.

In budding yeast, the Mph1 DNA helicase suppresses
COs by acting in a pathway distinct from dHJ dissolution
(13). Mph1 influences outcome rather than the efficiency
of recombinational repair events, suggesting that it acts
by shunting a DNA repair intermediate into the SDSA
pathway (13). In support of this notion, biochemical
evidence indicates that Mph1 is capable of disrupting
Rad51-made D-loops (13). Another suppressor of COs
in yeast proposed to act via promotion of SDSA is Srs2,
an UvrD-type DNA helicase that has the capacity to
displace Rad51 from ssDNA (14,15). The mechanism of
CO suppression by Srs2 appears to differ from that of
Mph1. Cells lacking Srs2 display a failure to complete
ectopic gene conversion with NCO outcome, which
reduces the overall repair efficiency, and therefore in-
creases the proportion of CO products among completed
recombination events (14). Although Srs2 can unwind
DNA duplexes covered by Rad51, it fails to unwind
Rad51-made D-loops (13,16). Instead, the anti-recombin-
ase activity of Srs2 in vivo is dependent on its ability to
bind RAD51, suggesting that Srs2 might promote SDSA
by regulating Rad51 filament stability (17).

The closest sequence homolog of Srs2 in mammals and
other vertebrates is FBH1, which is also found in fission
yeast but not in budding yeast. Several lines of in vivo
evidence suggest that this UvrD-type helicase regulates
HR at the stage of RAD51 filament assembly, but its
role in SDSA is yet to be assessed (18). Another potential
ortholog of Srs2 in mammals is RECQ5, which belongs to
RecQ family of DNA helicases (19). Biochemical studies
have shown that RECQ5 binds directly to RAD51 and
possesses the ability to disrupt the ATP-bound form of
RAD51-ssDNA filament in a manner dependent on its
ssDNA-translocase activity and interaction with RAD51
(20,21). In accordance with this finding, phenotypic
analysis of chicken and mouse knockout cells have
revealed that RECQ5 regulates HR to suppress the for-
mation of COs (20,22,23). Moreover, a recent study using
chicken DT40 cells has demonstrated that RECQ5
suppresses COs in a manner dependent on its interaction
with RAD51 (24). Here we provide several lines of
evidence suggesting that RECQ5 promotes SDSA by dis-
rupting aberrant RAD51-ssDNA filaments formed during
the post-synaptic stage of HR.

MATERIALS AND METHODS

Antibodies and siRNAs

All antibodies and siRNAs used in this study are described
in Supplementary Materials and Methods.

HR and SSA reporter assays

Maintenance of reporter cell lines (HEK293/DR-GFP,
U2OS/DR-GFP, HEK293/SA-GFP or U2OS/SA-GFP),
culture conditions and FACS analysis were done as
described previously (25,26). Cells were seeded in a poly-
lysine-coated 6-well plate at a density of 0.6� 106 cells per
well and transfected 24 h later with appropriate siRNA
(40 nM). After 24 h, 0.2� 106 cells for each siRNA
tested were seeded in a 12-well plate, and a day later trans-
fected with 0.6 mg of the I-SceI-expressing plasmid
pCBASce (27) or empty vector (pcDNA3.1) using
JETprime (Polyplus) for HEK293 cells or Lipofectamine
2000 (Invitrogen) for U2OS cells according to the manu-
facturer’s instructions. After 6 h, cells were again trans-
fected with appropriate siRNA (15 nM), and 48–72 h
later, GFP-positive cells were quantified by flow
cytometry on a Cyan ADP (Dako) using Summit
software (Beckman Coulter). For overexpression of
RECQ5 in U2OS/SA-GFP cells, a pcDNA3.1/HisC-
based vector expressing the wild-type or mutant forms
of RECQ5 (0.6 mg) was co-transfected with pCBASce
(0.6 mg) using Lipofectamine 2000 (21). Cells were sub-
jected to FACS analysis 72 h after transfection.

Strand-annealing assays

Proteins used for strand-annealing assays were purified as
described in Supplementary Materials and Methods. All
reactions were carried out at 30�C in buffer R [20mM
Tris-acetate (pH 7.9), 50mM potassium acetate, 10mM
magnesium acetate and 1mM DTT] supplemented with
ATP-regenerating system (10 U/ml creatine phosphokinase
and 12mM phosphocreatine). The 5 nM 50-32P-labeled f9
oligonucleotide (59-mer) was pre-incubated for 3min with
or without 200nM RAD51K133R in a final volume of 20ml
(reaction A). In a separate tube, 5 nMf7 oligonucleotide
(30-mer), complementary to 50 end of f9, was mixed with
120nM RAD52 and 40nM RPA in a final volume of 20ml
(reaction B). Where required, the latter reaction mixture
also contained 5 nM 59-bp DNA duplex prepared by
annealing of unlabeled f9 and f9-C oligonucleotides. The
reactions A and B were mixed together, and where required
RECQ5, RECQ5K58R, RECQ5�652�674, WRN or FBH1
were added to a final concentration of either 80 or
40nM. In all, 5ml aliquots were removed at the indicated
time points and mixed with 2.5ml of stop solution [125nM
f9 (unlabeled), 33% (v/v) glycerol, 1% (w/v) SDS, 0.15 M
EDTA, 0.5mg/ml proteinase K and 0.1% (w/v)
Bromophenol Blue] followed by a 5min incubation at
30�C. Samples were subjected to electrophoresis in a 10%
non-denaturing PAGE run at 100 V for 2 h in 1� TBE
buffer. Radiolabeled DNA species were visualized by
phosphorimaging and quantified using ImageQuant TL
software.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) experiments were
done with the ChIP-IT� Express kit (Active Motif) as
described previously (28). Briefly, U2OS/DR-GFP cells
were seeded in a 10-cm plate and transfections of siRNA
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and I-SceI plasmid were performed as described for
DR-GFP reporter assays. Two days after I-SceI plasmid
transfection, cells were cross-linked with formaldehyde
[1% (v/v)] at room temperature for 10min, followed by
addition of glycine (125mM) to quench the cross-linking
reaction. Chromatin fragments used in immunopre-
cipitation reactions were prepared by shearing of cross-
linked chromatin using a bioruptor sonication device
(Diagenode). One tenth of the sonicated chromatin
was stored at �70�C to be used as an input sample. For
each ChIP reaction, sonicated chromatin (8 mg) was
immunoprecipitated overnight at 4�C with either anti-
RAD51 antibody or control IgG (4 mg each) and protein
G-coated magnetic beads (Active Motif). After washing,
immunocomplexes were eluted from the beads and de-
cross-linked according to the manufacturer’s instructions
(Active Motif). ChIPed and input samples were purified
with the QIAquick PCR Purification Kit (Qiagen), and
DNA was eluted with 50 ml of water. At least two inde-
pendent experiments were performed for each ChIP
reaction. In each case, eluted DNA sample (2–3 ml) was
subjected to quantitative real-time PCR (qPCR) analysis
in hexaplicate on a Roche LightCycler 480 Real-time PCR
system with the use of Roche LightCycler 480 DNA
SYBR Green I master. Data were analyzed using the
Pfaffl’s method (29). Fold enrichment of RAD51
binding on each target region was calculated as a ratio
of the amount of DNA estimated for the RAD51-
specific antibody versus the amount of DNA estimated
for the control IgG. Primers used in ChIP-qPCR assays
are described in Supplementary Materials and Methods.

Sister chromatid exchange assay

Sister chromatid exchange (SCE) assay was done as
described previously (30). Details are provided in
Supplementary Materials and Methods.

RESULTS

RECQ5 promotes formation of non-crossover products
during DSB-induced HR in human cells

To gain deeper insight into the molecular mechanism of
SDSA in mammalian cells, we investigated the role of two
potential human orthologs of Srs2, namely, FBH1 and
RECQ5, in the formation of NCO products during
repair of endonuclease-induced DSBs. To selectively
detect NCO events, we used the established reporter cell
lines HEK293/DR-GFP and U2OS/DR-GFP (25,26,31).
The DR-GFP reporter consists of a direct repeat of two
mutated GFP alleles: a full length GFP interrupted by a
recognition site for the I-SceI endonuclease and an
internal GFP fragment that serves as a donor for HR-
mediated repair of a DSB created by I-SceI in the
proximal GFP allele (Figure 1A). HR-mediated repair of
this DSB via an NCO event gives rise to a functional GFP
allele, whereas repair by crossing over yields a C-termin-
ally truncated GFP allele that does not encode for a fluor-
escent protein. Thus, quantification of GFP-positive cells
by flow cytometry provides a measure of NCO repair
efficiency. Proteins of interest were depleted from the

DR-GFP reporter cell line by transfection of small
interfering RNAs (siRNAs) (Figure 1B and
Supplementary Figure S1). Cells were subsequently trans-
fected with an I-SceI expression vector to induce a DSB in
the reporter cassette, and the percentage of GFP positive
cells arising upon DSBR was measured 2–3 days after
plasmid transfection. As expected, formation of a func-
tional GFP allele was impaired in cells depleted for the
RAD51 recombinase or its loader BRCA2 (Figure 1C and
D). Repair efficiency also significantly decreased on deple-
tion of RAD52 that mediates DNA strand annealing in a
reaction stimulated by RPA and is required for SDSA in
budding yeast (Figure 1C) (32,33). Interestingly, depletion
of BLM, the key component of the BTR complex, led to a
significant increase in repair efficiency relative to control,
indicating that dHJ dissolution has no role in formation
of NCO repair products in the DR-GFP system
(Supplementary Figure S2). This is consistent with the
proposal that limited regions of homology, as is the case
during ectopic recombination, decrease the possibility of
forming a dHJ structure due to impediment of strand
exchange by DNA end resection beyond the homologous
region (34). This would imply that SDSA accounts for the
majority of NCO repair events induced by I-SceI in cells
harboring the DR-GFP cassette. BLM helicase probably
disrupts joint DNA molecules formed during the repair
process.

As for the putative Srs2 orthologs tested, only depletion
of RECQ5 led to a marked reduction of repair efficiency
both in HEK293 and U2OS cells, without any significant
changes in cell cycle distribution (Figure 1C and D and
Supplementary Figure S3). RECQ5 depletion also dra-
matically reduced the elevated NCO repair efficiency in
HEK293/DR-GFP cells lacking BLM (Supplementary
Figure S2). On the contrary, depletion of FBH1 led to a
significant elevation of repair efficiency particularly in
U2OS cells (Figure 1C and D). Thus, our results suggest
that RECQ5 might promote DNA DSBR by the SDSA
pathway of HR, whereas FBH1 might act as an SDSA
suppressor.

RECQ5 counteracts the inhibitory effect of RAD51 on
DSBR by SSA in human cells

It is possible that RECQ5 promotes SDSA by catalyzing
disruption of an aberrant RAD51 filament that might form
on the newly synthesized DNA strand after unwinding of
the extended D-loop. This filament would inhibit the
ssDNA-annealing step of SDSA and could promote refor-
mation of the D-loop, shifting the balance between the HR
sub-pathways in favor of DSBR. To explore this possibility,
we used a GFP-based reporter for DSBR by single-strand
annealing (SSA), which mechanistically resembles the post-
synaptic phase of SDSA (25,31). The reporter cassette,
termed SA-GFP, contains two directly oriented GFP gene
fragments, 50GFP and Sce30GFP, forming a 280-bp repeat
(Figure 2A). SSA-mediated recombination between the
repeated sequences triggered by an I-SceI-generated DSB
in the distal GFP fragment results in the formation of a
functional GFP gene. Using HEK293-based SA-GFP
reporter system (HEK293/SA-GFP), we found that
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depletion of RAD51 or its loader BRCA2 resulted in a
marked increase (2- to 4- fold) in SSA repair efficiency
compared with control, providing evidence that formation
of RAD51 filaments on resected DNA ends inhibits DSBR
by SSA in human cells (Figure 2B and C and
Supplementary Figure S4). On the contrary, depletion of
RAD52 protein resulted in a dramatic decrease in the fre-
quency of SSA repair events, which is consistent with the
proposed role for RAD52 in promoting DNA annealing
during SSA (Figure 2B and C) (31). We repeated our
experiments with U2OS/SA-GFP cells, and we found that
knockdown of RAD51 resulted in lethality. However, cells
depleted for BRCA2 were viable and showed a dramatic
increase in SSA repair efficiency compared with control
cells, further supporting the aforementioned proposal
(Figure 2D). As shown with the HEK293/SA-GFP cells,
knockdown of RAD52 in U2OS/SA-GFP cells dramatic-
ally impaired SSA repair efficiency (Figure 2D).

Depletion of RECQ5 caused a significant reduction
in SSA repair efficiency, but only if the cells contained
RAD51 (HEK293/SA-GFP cells) and BRCA2
(HEK293/SA-GFP and U2OS/SA-GFP cells) (Figure 2
and Supplementary Figure S4). HEK293/SA-GFP cells
depleted for both RECQ5 and RAD51 displayed a SSA
repair capacity that was similar to that of cells depleted
for RAD51 alone (Figure 2B and C). Similarly, the SSA
defect caused by lack of RECQ5 was rescued by co-
depletion of BRCA2 (Figure 2D and Supplementary
Figure S4). Thus, these data suggest that RECQ5
counteracts the inhibitory effect of RAD51 on DSBR by
SSA, most likely by catalyzing disruption of RAD51

filaments formed on ssDNA generated by DNA-end
resection.
To verify this hypothesis, we compared the effects of

overexpression of wild-type and mutant forms
of RECQ5 on the efficiency of SSA-mediated repair of
I-SceI-induced DSBs in U2OS/SA-GFP cells. The follow-
ing RECQ5 mutants were tested: (i) mutant containing a
K58R substitution in the ATP-binding site of RECQ5,
which abolishes the ATPase and helicase activities of the
enzyme; and (ii) mutant containing an F666A substitution
in the RAD51-binding domain of RECQ5, which impairs
RECQ5-RAD51 complex formation (21,35). Both
mutants are defective in catalyzing RAD51 filament dis-
ruption (20,21). In line with the proposed model, we found
that overexpression of wild-type RECQ5 in U2OS/SA-
GFP cells resulted in a marked increase in SSA repair
efficiency as compared with cells harboring control
vector (Figure 2E and F). In contrast, the K58R mutant
of RECQ5, which is proficient in binding to RAD51, ex-
hibited a significant trans-dominant negative effect on the
repair efficiency, possibly by preventing the access of the
endogenous RECQ5 protein to RAD51 filaments formed
on resected DNA ends (Figure 2E and F). For the
F666A mutant of RECQ5, we found that its overexpres-
sion had no effect on SSA-mediated DSBR in U2OS/
SA-GFP cells, which is consistent with the inability
of this mutant to interact with RAD51 filaments
(Figure 2E and F). Thus, our data strongly suggest that
RECQ5 enhances the efficiency of SSA-mediated DSBR
by disrupting RAD51-ssDNA filaments formed at
resected DNA ends.

Figure 1. RECQ5 promotes homologous recombination with non-crossover outcome. (A) Scheme of the DR-GFP reporter cassette. The site-specific
DSB in the reporter cassette is generated by I-SceI endonuclease. Only NCO events give rise to a functional GFP allele. (B) Western blot analysis of
extracts from HEK293/DR-GFP and U2OS/DR-GFP cells transfected with indicated siRNAs. Blots were probed with indicated antibodies.
(C) Efficiency of HR-mediated repair of I-SceI-induced DSB in HEK293/DR-GFP cells treated with indicated siRNAs. Cells were transfected
with appropriate siRNA (40 nM) two days before transfection of I-SceI-expressing plasmid. Percentage of GFP-positive cells was measured by
flow cytometry 2 days after DSB induction and taken as a measure of DSBR efficiency. Values plotted represent relative repair efficiency calculated
as a percentage of repair efficiency measured in cells transfected with control siRNA (siLuc; 100%). All data points represent an average of at least
three replicates with error bars indicating standard deviation. (D) Efficiency of HR-mediated repair of I-SceI-induced DSB in U2OS/DR-GFP cells
treated with indicated siRNAs as compared with cells transfected with control siRNA. Experiments were performed as in (C) except that the flow
cytometry analysis was performed 3 days after I-SceI transfection. HR, homologous recombination; DSB, double-strand break; NCO, non-crossover;
and GFP, green fluorescent protein.
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RECQ5 counteracts the inhibitory effect of RAD51 on
RAD52-mediated DNA annealing in vitro

Next, we performed biochemical experiments addressing
the effect of RAD51 on RAD52-mediated annealing
of two complementary oligonucleotides either in the
absence or in the presence of RECQ5. In these assays,
we used an ATP hydrolysis-deficient mutant of RAD51,

RAD51K133R, which can form a stable nucleoprotein
filament in the presence of ATP, mimicking the in vivo
ATP-bound form of the filament that is capable of
catalyzing DNA strand exchange (20). Before annealing
reactions, a 30-mer oligonucleotide was pre-incubated
with RPA to form an ssDNA-RPA complex, whereas
the other oligonucleotide (59-mer, radioactively labeled
at its 50 end) was pre-incubated either with RAD51K133R

Figure 2. RECQ5 suppresses inhibitory effect of RAD51 on DNA DSBR by SSA. (A) Scheme of the SA-GFP reporter cassette. SSA-mediated
repair of I-SceI-generated DSB results in the formation of a functional GFP allele. (B) Western blot analysis of extracts from HEK293/SA-GFP cells
transfected with indicated siRNAs. The blots were probed with indicated antibodies. (C) Efficiency of SSA-mediated repair of I-SceI-induced DSB in
HEK293/SA-GFP cells transfected with indicated siRNAs. Cells were transfected with appropriate siRNA (40 nM) 2 days before transfection of
I-SceI-expressing plasmid. Percentage of GFP-positive cells was determined by flow cytometry 2 days after DSB induction and taken as a measure of
repair efficiency. Values plotted represent relative repair efficiency calculated as a percentage of repair efficiency measured in cells transfected with
control siRNA (siLuc; 100%). All data points represent an average of at least three replicates with error bars indicating standard deviation.
(D) Efficiency of SSA-mediated repair of I-SceI-induced DSB in U2OS/SA-GFP cells transfected with indicated siRNAs. Experiments were per-
formed as in (C) except that the percentage of GFP-positive cells was determined 3 days after DSB induction. (E) Western blot analysis of extracts
from U2OS/SA-GFP cells transfected with pcDNA3.1/HisC-based vectors expressing wild-type RECQ5 or its mutants, K58R and F666A, respect-
ively, as fusions with an Omni-tag. The blots were probed with indicated antibodies. (F) Effect of overexpression of the wild-type and mutant forms
of RECQ5 on the efficiency of SSA-mediated repair of I-SceI-induced DSB in U2OS/SA-GFP. Cells were transfected with appropriate RECQ5
expression vector in combination with the plasmid expressing I-SceI. Percentage of GFP-positive cells was determined 3 days after plasmid trans-
fection. Values plotted represent relative repair efficiency calculated as a percentage of repair efficiency measured in cells transfected with empty
vector. All data points represent an average of at least three replicates with error bars indicating standard deviation. SSA, single-strand annealing;
DSB, double-strand break; and GFP, green fluorescent protein.
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to form a nucleoprotein filament or with the reaction
buffer alone. We found that addition of RPA-coated
30-mer oligonucleotide to free 59-mer oligonucleotide in
presence of RAD52 resulted in rapid formation of partial
DNA duplex structure with a 30-tail (Figure 3A, first panel
from the left, and Supplementary Figure S5). However,
this RAD52-mediated ssDNA annealing was impaired
if the 59-mer oligonucleotide was pre-coated with
RAD51K133R before its addition to the annealing
reaction, demonstrating that formation of RAD51-
ssDNA filaments inhibits ssDNA annealing by RAD52
(Figure 3A and B). Similar results were obtained with
wild-type RAD51, although the observed inhibitory
effect was less pronounced than that of RAD51K133R

(Supplementary Figure S6). Remarkably, the inhibitory
effect of RAD51K133R on RAD52-mediated ssDNA
annealing was almost completely lost on addition of
RECQ5 to the reaction (Figure 3A and B). On the

contrary, the helicase-deficient mutant of RECQ5
(RECQ5K58R) or a RECQ5 mutant lacking the RAD51-
interacting domain (RECQ5�652�674) did not alleviate this
inhibitory effect, suggesting that RECQ5 stimulated the
ssDNA-annealing reaction by disrupting RAD51K133R-
ssDNA filaments (Figure 3A and B and Supplementary
Figure S7). In addition, we found that the inhibition of
RAD52-mediated ssDNA annealing by RAD51K133R was
not relieved if RECQ5 was substituted by WRN RecQ
helicase or by FBH1, indicating that this reaction is
specific for RECQ5 (Supplementary Figure S7).
To substantiate the aforementioned findings, ssDNA

annealing reactions were also carried out in presence
of a homologous DNA duplex (59-mer), conditions
resembling the post-synaptic phase of SDSA. We found
that this DNA duplex had no effect on RAD52-mediated
annealing of the two complementary oligonucleotides
(Figure 3C and D). However, if the 59-mer

Figure 3. RECQ5 helicase counteracts the inhibitory effect of RAD51 on RAD52-mediated ssDNA annealing in vitro. (A) Upper panel: reaction
scheme depicting the effect of RAD51 (green circles) on annealing of two complementary oligonucleotides (59-mer and 30-mer represented by red
and blue lines, respectively) in presence of RAD52 and RPA. RAD52 is depicted as a heptameric ring structure (red circles). The 30-mer oligo-
nucleotide can accommodate binding of one RPA heterotrimer (light blue ovals). Lower panel: all reactions were carried out at 30�C in buffer R
supplemented with ATP-regenerating system. Reactions contained 50 end radiolabeled 59-mer oligonucleotide (2.5 nM), either free or pre-coated with
RAD51K133R (100 nM), a 30-mer oligonucleotide (2.5 nM) complementary to the 50-half of the 59-mer, RAD52 (60 nM) and RPA (30 nM). Where
indicated, RECQ5 or RECQ5K58R were present at a concentration of 80 nM. Reaction aliquots at indicated time points were subjected to PAGE
followed by phosphorimaging as described in ‘Materials and Methods’. (B) Quantification of data shown in (A). Each data point represents the mean
of three independent experiments. Error bars represent standard deviation. (C) Upper panel: reaction scheme depicting the effect of RAD51 on
annealing of two complementary oligonucleotides in presence of a homologous duplex, RAD52 and RPA. RAD51 filament formed on the
radiolabeled oligonucleotide (red line with asterisk) inhibits RAD52/RPA-mediated annealing and promotes strand exchange with the homologous
duplex. Lower panel: reactions were carried out and analyzed as in (B). Homologous 59-mer duplex was present at a concentration of 2.5 nM.
Schemes of radiolabeled DNA species are shown on left. Radioactive label at the 50 end is depicted by asterisks. (D) Quantification of data shown in
(C). Each data point represents the mean of three independent experiments. Error bars represent standard deviation.
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oligonucleotide was pre-coated with RAD51K133R, we
again observed a strong inhibition of RAD52-mediated
ssDNA annealing with concomitant appearance of radio-
actively labeled 59-mer oligoduplex, an indicative of
strand exchange reaction (Figure 3C and D). On
addition of RECQ5, RAD51K133R-catalyzed strand
exchange was inhibited, and RAD52-mediated ssDNA an-
nealing was restored to a level detected in absence of
RAD51K133R (Figure 3C and D). Again this effect was
not seen with the K58R mutant of RECQ5 (Figure 3C
and D). These data suggest that RAD51 can promote
reformation of D-loop during the post-synaptic phase of
SDSA and that RECQ5 can counteract this reverse
reaction by removing RAD51 from the invading strand.

RECQ5 deficiency is associated with increased occupancy
of RAD51 on DNA sequences flanking a DSB

To prove that the lack of RECQ5 is associated with per-
sistence of RAD51 filaments on resected DNA ends
during HR, we used ChIP to evaluate the effect of
RECQ5 knockdown on RAD51 occupancy at chromatin
flanking the I-SceI site in U2OS/DR-GFP cells two days
after I-SceI plasmid transfection. Immunoprecipitated
DNA fragments were subjected to quantitative real-time
PCR analysis using primers amplifying the regions located
downstream of I-SceI recognition sequence: P1, +181 to
+325 and P2,+1037 to+1172 (Figure 4A). We found that
RECQ5 knockdown in U2OS/DR-GFP cells was
accompanied by a marked increase in the abundance of
RAD51 localized near the I-SceI cutting site as compared
with mock-depleted cells (Figure 4B). No significant
binding of RAD51 to chromatin flanking the I-SceI site
was detected in absence of I-SceI expression with both
RECQ5-proficient and RECQ5-deficient cells. Thus,
these data provide direct evidence that RECQ5 regulates
RAD51 filament formation at DNA DSB sites.

RECQ5 acts as CO suppressor in human cells

To assess the role of RECQ5 in suppression of mitotic
COs, we investigated the effect of siRNA-mediated deple-
tion of RECQ5 and BLM on the frequency of SCEs in
U2OS cells before and after induction of DNA DSBs by
camptothecin (CPT). We observed that RECQ5 depletion
in untreated cells had no significant effect on the SCE
frequency, whereas depletion of BLM increased the SCE
frequency by almost 3-fold compared with control cells
(Figure 5A and C). Cells depleted for RECQ5 and BLM
showed a much higher SCE frequency than cells depleted
for BLM alone (Figure 5A and C), which is consistent
with the studies in chicken and mouse cells (22,23).
Importantly, on CPT treatment, a marked elevation of
SCE frequency was observed not only in BLM-deficient
cells but also in RECQ5-deficient cells, suggesting that
RECQ5 has a role in CO suppression even in the
presence of BLM if the load of DNA damage exceeds a
certain threshold (Figure 5B). Again cells depleted for
both RECQ5 and BLM exhibited a much higher fre-
quency of CPT-induced SCEs than cells depleted for
either of these proteins (Figure 5B). Thus, these data
indicate that RECQ5 and BLM act in two different

pathways to suppress CO formation during HR and
support our hypothesis that RECQ5 promotes SDSA. It
is conceivable that at low levels of DSBs in the cell, all
dHJs formed as a consequence of SDSA failure (e.g. due
to RECQ5 deficiency) are dissolved by the BTR complex
to yield NCO products. However, at high load of DSBs,
the level of dHJs formed in SDSA-deficient cells is likely
to exceed the repair capacity of the BTR complex,
favoring resolution to CO products. This is consistent
with our finding that RECQ5-deficient cells exhibited a
marked increase in SCE frequency only on exposure to
CPT (Figure 5B).

DISCUSSION

Here we provide several lines of evidence suggesting
that the human RECQ5 helicase promotes DNA DSBR
by the SDSA pathway of HR. We show that (i) RECQ5
promotes the formation of NCO products during DSB-
induced HR and counteracts the inhibitory effect
of RAD51 filaments on DSBR by SSA; (ii) RECQ5
helicase alleviates the inhibitory effect of RAD51-
ssDNA filament on RAD52-mediated DNA annealing
in vitro; (iii) RECQ5 depletion in human cells leads to
increased occupancy of RAD51 at chromatin flanking a
DSB; and (iv) RECQ5 depletion is associated with
increased frequency of SCEs in cells lacking the dHJ
dissolvasome or in normal cells on induction of a high
load of DNA damage. These data suggest that RECQ5

Figure 4. Effect of RECQ5 deficiency on RAD51 occupancy at chro-
matin flanking the I-SceI-induced DSB in U2OS/DR-GFP cells. (A) A
schematic diagram of a part of the DR-GFP reporter cassette showing
the locations of the regions amplified in ChIP-qPCR assays (P1 and
P2). The GFP open reading frame with a single I-SceI recognition site
is shown as gray box. The numbers correspond to base pairs. (B) Plot
of ChIP-qPCR data. Mock-depleted (siLuc) and RECQ5-depleted
(siRECQ5#1) cells were transfected with either I-SceI expression
vector (+I-SceI) or empty vector, respectively. Chromatin for ChIP
analysis was prepared 2 days after I-SceI transfection. Fold enrichment
was calculated as a ratio of RAD51 antibody signal versus control IgG.
ChIP, chromatin immunoprecipitation; and qPCR, quantitative real-
time PCR.
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might act as a RAD51 filament disruptase during the post-
synaptic phase of SDSA to prevent reformation of the
D-loop, which would favor the classical DSBR pathway
and hence increase the risk of COs (Figure 6). Futile cycles
of D-loop disruption and reformation could also lead to
cell death due to persistence of recombination intermedi-
ates. Consistent with our hypothesis, it has been shown
that genetic ablation of RECQ5 in mouse cells is
associated with persistence of RAD51 foci and increased
lethality after exposure of cells to CPT, which induces
DSBs during replication (20,36). Moreover, ablation of
the interaction between RECQ5 and RAD51 leads to an
elevation of SCEs in chicken DT40 cells lacking BLM
(24). Our hypothesis is also supported by the finding
that overexpression of human RAD51 has a dominant
negative effect on DSB-induced gene conversion in CHO
and human cells (37). RAD51 overexpression can also
stimulate SCEs and the formation of interchromosomal
COs (38,39). Thus, our study establishes RECQ5 as a
factor that controls HR sub-pathway choice.

Counteracting Rad51 filament formation during post-
synaptic phase of SDSA could as well be the underlying
mechanism for the anti-recombinase function of Srs2 in
budding yeast. Consistent with this proposal, it has been
shown that overexpression of Rad51 in �srs2 mutant cells
reduces cell survival on DSB induction and nearly elimin-
ates the NCO pathway without affecting the formation of
COs, providing evidence that Rad51 inhibits the post-
synaptic stage of SDSA (14,40). In addition, like
RECQ5, Srs2 counteracts the inhibitory effect of Rad51
on DSBR by SSA (14,41–43). Moreover, it has been
shown that overexpression of Srs2 suppresses the high
level of COs in �sgs1 cells, suggesting that Srs2 can
shift the balance between DSBR and SDSA pathways in
favor of the latter (14). This is further supported by the
observation that �srs2 cells show increased frequency of
CO events during allelic recombination (14). Finally, yeast
Rad51 was shown to inhibit Rad52-mediated DNA
annealing in vitro (44).

It remains to be determined as to how the anti-
recombinase activity of RECQ5 is regulated to prevent
disassembly of the legitimate RAD51 filaments. One pos-
sibility that deserves further investigation is that the action
of this helicase on RAD51 filaments might be counter-
acted by RAD51 mediators such as BRCA2, which facili-
tates filament assembly by stabilizing RAD51 binding to
ssDNA (45,46). In support of this notion, it has been
demonstrated that the inhibitory effect of Srs2 on Rad51
focus formation in yeast cells is antagonized by Rad52,
which promotes Rad51 filament assembly by a mechanism
similar to that of BRCA2 (47). Moreover, yeast Rad52 has
been shown to inhibit Srs2-catalyzed Rad51-ssDNA
filament disruption in vitro (47). It is also interesting
to note that it has recently been shown that RECQ5 and
BRCA2 interact with the same region on RAD51, suggest-
ing that they exert their effect on RAD51 in a mutually
competitive manner (24). In addition, overexpression
of RECQ5 has been shown to impair HR-mediated
repair of I-SceI-induced DSB in the HEK293/
DR-GFP cells, suggesting that high levels of RECQ5
inhibit HR at the step of presynaptic RAD51 filament
assembly by outcompeting the action of RAD51 medi-
ators (21).
A previous study has shown that deletion of the mouse

RECQ5 gene results in an increased frequency of
I-SceI-induced HR events in cells carrying an SCneo
reporter cassette (20). However, it has been reported
that in addition to NCO-associated gene conversion, a
functional Neo gene in this reporter system is generated
by a CO recombination event, which might increase in
frequency in absence of RECQ5 (48). Similarly, the fre-
quency of I-SceI-induced HR repair within an integrated
SCneo substrate was significantly elevate on depletion
of RTEL1, which is proposed to promote SDSA by
catalyzing D-loop disruption (49,50).
Disruption of the RECQ5 gene in mice leads to elevated

levels of chromosomal rearrangements and cancer suscep-
tibility (20). Moreover, a recent study has shown that

Figure 5. RECQ5 and BLM act in different pathways to suppress crossovers in human cells. (A) Frequency of spontaneous SCEs in U2OS cells
transfected with indicated siRNAs. (B) Frequency of CPT-induced SCEs in U2OS cells transfected with indicated siRNA. Cells were treated with
40-nM CPT for 20 h where indicated. SCE assay and analysis was conducted as described in ‘Materials and Methods’. Each data point represents
number of SCEs per chromosome in a single metaphase spread. The 50 metaphase spreads were analyzed from each condition. (C) Western blot
analysis of extracts from U2OS cells transfected with indicated siRNAs. Blots were probed with indicated antibodies. SCE, sister chromatid
exchange; and CPT, camptothecin.
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RECQ5 expression levels are significantly reduced in
primary colorectal cancer cells (51). Our findings suggest
that these phenotypes may be a consequence of deregula-
tion of RAD51 filament assembly, which may alter recom-
bination pathways, leading to genomic instability.
Interestingly, increased expression of the RAD51 protein
has been reported in immortalized and tumor cells and its
link to the genomic instability observed in these cells has
been established (39,52). Thus, our study provides further
insight into the molecular mechanisms underlying the
build up of genomic instability associated with tumor
progression.
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