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Abstract

Background

Accurate prediction of operative transfusions is essential for resource allocation and identi-

fying patients at risk of postoperative adverse events. This research examines the efficacy

of using artificial neural networks (ANNs) to predict transfusions for all inpatient operations.

Methods

Over 1.6 million surgical cases over a two year period from the NSQIP-PUF database are

used. Data from 2014 (750937 records) are used for model development and data from

2015 (885502 records) are used for model validation. ANN and regression models are

developed to predict perioperative transfusions for surgical patients.

Results

Various ANN models and logistic regression, using four variable sets, are compared. The

best performing ANN models with respect to both sensitivity and area under the receiver

operator characteristic curve outperformed all of the regression models (p < .001) and

achieved a performance of 70–80% specificity with a corresponding 75–62% sensitivity.

Conclusion

ANNs can predict >75% of the patients who will require transfusion and 70% of those who

will not. Increasing specificity to 80% still enables a sensitivity of almost 67%. The unique

contribution of this research is the utilization of a single ANN model to predict transfusions

across a broad range of surgical procedures.

Introduction

Surgical patients frequently require transfusions both during and immediately following sur-

gery. Transfusions have been shown to improve patient outcomes and reduce mortality [1–3],

as well as length of stay and readmission [4]. However, patients requiring transfusion are often

also at greater risk for postoperative morbidities and mortality [5], such as: blood borne
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infections, ABO incompatibility, hemolytic reactions, transfusion-associated circulatory over-

load, transfusion related acute lung injury, immunosuppression [6], increased risk of perioper-

ative infection [7], and earlier recurrence of malignancies after resection [8,9]. Preoperative

knowledge of likely patient transfusion requirements would improve blood resource manage-

ment, inform clinicians of the likelihood for postoperative morbidities, lower cost by avoiding

preoperative typing and crossing patients unlikely to need a transfusion, and could serve to

further improve patient outcomes [10].

The ability to identify patients who would be most likely to receive blood transfusions

could greatly help in perioperative and postoperative planning and preparation. Regression

models have been previously used to predict or model operative and postoperative transfu-

sions [10,11]. Besides regression, artificial neural networks (ANNs) are also a reliable choice

for modeling and problem solving in medicine [12].

ANNs are a machine learning methodology based on modeling the neuronal activity of the

human brain and have been widely used across various disciplines of medicine [13,14]. Prior

research indicates that ANNs generally outperform comparative regression models [12].

ANNs have been used in prior research to predict the surgically-related transfusion needs

of patients, but they have all been for a single type of operation. Prior research has used ANNs

to predict the transfusion needs of surgery patients undergoing abdominal aortic aneurysm

repair [15] and coronary artery bypass grafting [16] operations. Other ANN-based transfusion

prediction research is also singularly focused and includes transfusion needs for patients of

trauma [17], and acute myeloblastic leukemia [18].

Our research goal is to evaluate the efficacy of using a single ANN model to preoperatively

predict perioperative transfusion needs of patients over a wide spectrum of operations. This

will significantly extend prior research that has developed ANN prediction models that only

work for a single type of operation or disease. A corollary benefit will be the examination of

several variables to determine their contribution to the ANN model’s prediction accuracy and

subsequent explanatory power of the variables. Although the primary emphasis of this research

is to prove that a single ANN may be used for transfusion prediction across any type of sur-

gery, the examination of the impact of the variables selected is important to clinicians [19–21]

and hence why two of the selected input variables for the ANN are further examined to estab-

lish their clinical contribution to a transfusion decision.

Materials and methods

The study was approved by the institutional review board of the University of South Florida.

The American College of Surgeons National Surgical Quality Improvement Program’s

(NSQIP) participation use files (PUF) for the time period of 1/1/2014 to 12/31/2015 were used

for the analysis. A total of 1,636,438 records of surgical procedures were obtained. The 2014

dataset was used for model development, while the 2015 dataset which was unique from the

2014 dataset was used for model validation. The validation data set was used only a single time

for each version of the ANNs developed, emulating prospective use of the ANN on new out-

of-sample data. Results are only reported for the 2015 validation dataset. Although retrospec-

tive, applying the ANN models trained using 2014 data on 2015 data for validation simulates

the real-world ongoing generalization capabilities of the ANN models. For example, a new

ANN model developed from a 2020 dataset using the method and variables described next,

should have similar performance in predicting transfusion requirements of patients undergo-

ing any type of surgery in the year 2021.

ANN models were developed using NeuralWorks1 Professional II/Plus to predict the

intraoperative and/or postoperative blood transfusions for patients undergoing any type of
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surgery. Variables for the ANN transfusion prediction model were selected following review of

36 prior research articles on predicting or administering surgical transfusions and/or surgical

bleeding. The prevalence of various variables used in these prior studies is shown in Table 1.

Variables were selected using a heuristic of 12.5% prevalence in the literature examined, thus a

variable is used in the ANN models if it was mentioned in at least 5 prior research articles

which is a 12.9% prevalence. An exception is made for diabetes, which although the diabetes

variable did not meet the initial inclusion heuristic, diabetes is mentioned as a bleeding risk

factor in a sufficient number of other research publications that are not specific to surgery

[55–60]. The variables selected following the prior research variable selection heuristic method

(as shown in Table 1) were: age, sex, body mass index (BMI), presence of diabetes, hematocrit

level, platelet count, international normalization ratio (INR), and creatinine.

ANN variables should not be highly correlated [61,62] to avoid noise and overly strong out-

put effects from the correlated variables, so a Pearson’s correlation matrix is used to validate

that all the input variables are relatively uncorrelated, with the matrix shown in Table 2. Sex is

a Boolean variable, diabetes is a categorical variable, and all other variables are continuous real

values. Text data from the NSQIP database were converted to the appropriate type for the sex

and diabetes variables. All data were normalized prior to training to prevent undue influence

from variables that held much larger values than the rest of the variables: age, BMI, and platelet

count.

In addition to these variables used in the transfusion prediction models, presence of bleed-

ing disorders, co-morbidity severity as measured by the American Association of Anesthesiol-

ogists (ASA) classification, whether the operation was elective or an emergency, operation

complexity as measured by the work relative value units (w RVU), operation time (in min-

utes), and mortality were recorded as demographic data. The demographic data is used to

determine similarities and differences between transfused and non-transfused data, but again

was not used as input to the ANN models.

Records for individual patient operations were eliminated from use in both the training

and validation datasets if they were missing any of the ANN variable values other than INR or

creatinine, with the cohort flow diagram shown in Fig 1. The output or dependent variable is

the number of units transfused of either whole blood or packed red blood cells, since these are

the only values reported for transfusions in the NSQIP database. The goal of the ANN output

is to predict whether or not a transfusion will be needed by a specific surgery patient, thus any

non-zero dependent value is used to indicate a transfusion will occur, while zero output values

indicate that no transfusion will be needed by the patient.

Four different ANN transfusion and regression transfusion models are developed around

different combinations of the heuristically selected variables, dependent on the presence or

absence of INR and/or creatinine. Set 1 uses all of the variables listed: age, sex, BMI, diabetes,

hematocrit, platelet count, INR, and creatinine. Set 2 use the same variable set as Set 1, but

eliminates the creatinine variable. Set 3 uses the same variable set as Set 2, but also eliminates

the INR variable. Set 4 uses the same variables set as Set 1, but eliminates just the INR variable.

As shown in Fig 1, the number of training and validation samples for each model ranged from

297670 training samples and 343780 validation samples for Set 1 with all variables present to

615785 training samples and 721992 validation samples for Set 3, which had the fewest number

of variables missing both INR and creatinine.

Supervised learning techniques of backpropagation (BP) and radial basis function (RBF)

were both attempted along using varying quantities of hidden nodes per layer and different

numbers of hidden layers (one or two), following recognized ANN research methodology [61–

63]. BP training is selected due to its very wide usage in clinical decision support models so as

to facilitate comparison of results with other ANN clinical decision making models [13,64].
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RBF training is selected as an alternative training method due to its proven performance when

extrapolation is required [65].

The initial architecture for each ANN model used a hidden layer composed of a number of

nodes equal to the input layer, or preceding hidden layer in the case of the two hidden layer

backpropagation trained model. Training occurred for one million training epochs and also

required that the root-mean-square error (RMSE) for training was below 0.01, with an epoch

size of 6 samples. If after one million training epochs the RMSE was still not below 0.01, then

training continued using 1000 epoch training size iterations until the desired RMSE was

reached. The reason that just a RMSE stopping condition is not used to stop training is due to

Table 1. Values used in prior research to predict surgical transfusions or bleeding.

Factor Number of times used References

age (in years) 12 [15,16,18,22–30]

anemia 2 [26,31]

ASA or other score 4 [15,16,32,33]

blood pressure 3 [34–36]

BMI / weight 11 [16,22,24,27–30,32,37–39]

creatinine 5 [16,25–28]

diabetes 3 [26–28]

fibrinogen 1 [36]

heart rate 2 [34,35]

hematocrit 9 [15,28,29,31,32,35,37,40,41]

hemoglobin 17 [15,22,24–26,28,30,31,35,36,40,42–47]

history of heart disease 3 [15,16,29]

history of pulmonary disease 1 [15]

history of smoking 2� [16,48]

LV-EF 4 [16,26,27,29]

platelets 9 [15,16,18,36,43,44,49–51]

PT / INR 7 / 3 [15,36,43,46,49,50,52]

PTT 4 [36,49,50,52]

sex 14�� [15,16,18, 22–24,26–29,37,45,53,54]

type of trauma 2 [34,36]

white blood cell count 1 [18]

� one study by Jung et al. showed smoking had no effect.

�� one study by Millett et al., showed sex had no effect.

https://doi.org/10.1371/journal.pone.0229450.t001

Table 2. Input variable correlation matrix.

Age Sex BMI Diab. 1 Diab. 2 Hct Platelet count INR Creat

Age 1

Sex -0.033 1

BMI -0.148 0.065 1

Diabetes 1 0.054 -0.035 0.107 1

Diabetes 2 0.110 -0.032 0.120 -0.107 1

Hct -0.131 -0.209 0.101 -0.156 -0.039 1

Platelet count -0.142 0.175 0.013 0.009 -0.010 -0.109 1

INR 0.087 -0.061 -0.009 0.058 0.007 -0.147 -0.026 1

creatinine 0.077 -0.148 0.005 0.186 0.009 -0.187 -0.075 0.093 1

All matrix values rounded to 3 decimal places.

https://doi.org/10.1371/journal.pone.0229450.t002
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the very large number of non-transfused patients, which caused the ANN training RMSE to go

below 0.02 and sometimes 0.01 within 20–30 thousand epochs, but resulted in poor perfor-

mance on the validation set due to the fact that this used one half to less than one third of the

possible training samples to be evaluated by the ANN during training. The number of hidden

layer nodes was then increased or decreased by 2, separately for each hidden layer, until no fur-

ther improvement in performance as measured by sensitivity for a 70% specificity was detected

for the validation set. Interestingly, this happened very quickly for the BP models. The best

performing architecture for variable Sets 2 and 3 is a single hidden layer model with the hidden

layer nodes equal to the number of input nodes. The best performing ANN architecture for

variable Sets 1 and 4, containing the INR variable, is a two-hidden layer BP trained model with

the first hidden layer equal to two times the number of input nodes minus 1 and the second

hidden layer being half the size of the first hidden layer. All of the connection weights were

always randomized anytime one of the ANN models was trained. An example of the backpro-

pagation trained ANN model architectures for transfusion prediction with a single hidden

layer for Sets 2 and 3 are shown in Fig 2. Each validation set is used only a single time for each

model following training.

Examining the contribution of using ANN modeling for transfusion predictions is facili-

tated by comparing the ANN results against a comparable logistic regression model, since

regression is one of the most popular clinical decision making tools [12,66]. Because a binary

decision is being modeled: whether or not a patient will require a transfusion, logistic regres-

sion is the appropriate choice for the type of regression. Regression models for each of the four

data sets are developed using MatLab1.

Because both the ANN models and the logistic regression models produce a continuous

value, a single cutoff value is need for each model to determine which values, those above the

cutoff, represent a required transfusion (sensitivity) and which values below the cutoff repre-

sent no need for a transfusion (specificity). While it is possible to maximize sensitivity to 100%

with a very small cutoff value, this also reduces the specificity to the point where a transfusion

is predicted for almost all patients. Therefore, the heuristic of maximizing sensitivity while at

the same time having a specificity of 70–80% is used to select cutoff values for both the ANN

and regression models. The cutoff values, which started at zero, were determined using the

training data output were modified by one tenths and then by one hundredths and could also

be altered by 5 thousandths to move the respective specificity level towards either 70% or 80%,

with the closest value at or above the respective heuristic specificity value chosen using these

cutoff value guidelines. Respective model performance is determined using the level of

Fig 1. Cohort selection flow diagram.

https://doi.org/10.1371/journal.pone.0229450.g001
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sensitivity achieved for specific pre-defined levels of specificity on the out-of-sample validation

set from surgeries performed during 2015.

Statistical methods

The nonparametric machine learning method of backpropagation trained ANNs is the pri-

mary statistical method utilized for development of the transfusion prediction models, as

described above. Logistic regression models are also developed for each of the four variable

sets evaluated with the ANN models.

Area under the receiver operator characteristic (AUROC) curve for each of the ANN and

regression models is calculated using trapezoidal approximation. Statistical significance

Fig 2. Sample ANN architectures for variable sets Set 2 and Set 3. Size of the boxes representing the processing

elements in the ANN indicates the size of numeric difference from zero. Hollow boxes indicate negative values and

filled in boxes indicate zero or positive values. Dashed lines represent the weighted connections between processing

elements, with the length of the dashes indicating positive or negative values and the color indicating relative value.

https://doi.org/10.1371/journal.pone.0229450.g002
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between the differences of the various models and AUROC values are calculated using a Chi-

squared test for differences, since this test is nonparametric and does not require a normal dis-

tribution of either the data or the variances [67]. The Chi-square tests for differences are run at

a 0.05 significance level with one degree of freedom.

Results

The surgical patient population demographics for the largest sets of training and validation

data, Set 3, which is a superset of all other data sets, are shown in Table 3. There are no clini-

cally significant differences between the 2014 model development cohort and 2015 model vali-

dation cohort. However, there were important clinically significant differences between the

transfused and non-transfused patients for both the 2014 model development and 2015 model

validation cohorts. Transfused patients were, on average, older, more likely to have diabetes

mellitus and bleeding disorders, have more severe co-morbidities (as assessed by ASA class),

more likely to undergo emergency operations, which were more complex (as measured by

wRVU’s), and requiring longer time to complete. These patients also had higher creatinine val-

ues, INR values and PTT values. Lastly, transfused patients had a significant increase (p< .01

using a standardized t-test with known variances) in the rate of 30-day mortality compared to

non-transfused patients with transfused patients being 14 times more likely to die.

The backpropagation learning algorithm produced better performing ANN models than

the RBF, with respect to maximizing sensitivity at the specified specificity levels. The sensitiv-

ity, specificity, and AUROC curve values for the backpropagation trained ANN models and

the logistic regression models are reported in Table 4. Recall that the best performing architec-

tures for variable sets 1 and 4 are both two hidden layer architectures and the best performing

architecture for variable sets 2 and 3 are both single hidden layer architectures. Significance

values in Table 4 are calculated using Chi-square at a .05 significance level. From Table 4, the

Set 2 ANN had the best overall sensitivity performance at both the 70% specificity and 80%

specificity levels. However the Set 3 ANN had the best AUROC values, indicating superior per-

formance for all levels of desired specificity. The ANNs for data sets 2 and 3 both outper-

formed all of the regression models, however the regression models did perform better on data

sets 1 and 4 over the corresponding ANN models. The best AUROC value for the ANN model

using variable set 3 is statistically significantly better than all other models except for the ANN

model for variable set 2 for which there was not significance difference. Specifically, the ANN

model using variable set 3 was p< .01 better than the regressions models for variable sets 1

and 4 and p< .001 better than all of the other models, based on the Chi-squared test for

differences.

A total of 2678 different current procedural terminology (CPT) codes, which are used to

report different surgical procedures, are represented in the ANN training and validation data

sets. These codes came from 531 different hospitals across the United States in 2014 and 615

hospitals in 2015. The operations represented by these CPT codes are shown in Table 5. The

training set had 2498 CPT codes, of which 155 were not present in the validation set. The vali-

dation set had 2523 CPT codes of which 180 were not present in the training set. The large

number of diverse CPT codes will help validate the research goal of demonstrating the efficacy

and generalization of a single ANN model for predicting transfusions for patients of any oper-

ation, not just a single operation as has been done in prior research.

Table 5 also reports the number of operations for each type of surgery in the 2015 validation

set that had transfusions and also the ANN variable Set 3 sensitivity at a 70% specificity level

for each operation type, which yielded the 75.4% overall sensitivity value for the ANN. Only 2

specific types of operation, out of the 56 types reported, had no transfusion and this was for a
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total of 3 operations out of the 721992 operations predicted by the ANN model. This demon-

strates that although the transfusion prevalence may be low for some types of operations,

transfusions do occur across a wide variety of operation types, which further demonstrates the

need for transfusion prediction models capable of working across a large collection of surgery

types. Remembering that all of the transfusion predictions made for all of the surgeries

reported in the NSQIP-PUF dataset were made by a single ANN prediction model, the Set 3

validation sensitivity does vary across the different types of operation reported, but only 3 out

of the 56 operation types, representing 4.3% of the operations for which a transfusion is

administered, were below 50% sensitivity.

Discussion

Preoperative assessment of patients at risk for intraoperative and postoperative hemorrhage

and need for blood transfusions is both a patient safety issue and a cost issue. Obviously, in

cases of life-threatening intraoperative hemorrhage, blood transfusions are potentially lifesav-

ing. However, “routine” type and cross-matching of blood is a costly and potentially wasteful

endeavor. Each type and cross-match Medicare payment is $37.30 with an additional $17.96

for each additional unit cross-matched [68]. The ability to accurately classify 70–80% of

patients who will not require any transfusion, along with identifying a corresponding 66–75%

of patients who will need a potentially lifesaving transfusion, can reduce surgical blood costs

by eliminating a large number of unneeded type and cross-matches for those patients

Table 3. Surgical patient demographics.

Factor 2014 Training Set 2015 Test Set

Transfused

(n = 41,254)

Not Transfused

(n = 709,682)

Transfused

(n = 45,621)

Not Transfused

(n = 839,881)

Sex (% Male: Female) 42.8: 57.2 43.0: 57.0 42.8: 57.2 43.4: 56.6

Age, years (mean ± standard deviation, range) 65.4±14.6 (18–90+) 55.8±16.4 (18–90+) 65.0±14.7 (18–90+) 55.6±16.5 (18–90+)

Height, in. (mean ± standard deviation, range) 65.3±4.2 (41–82) 66.0±4.1 (40–84) 65.4±4.3 (42–91) 66.±4.1 (40–95)

Weight, lbs. (mean ± standard deviation 172.0±50.0 (53–580) 186.6±50.7 (37–657) 172.3±50.5 (56–667) 188.2±51.3 (44–882)

ASA Distribution (%) I: 1.24 I: 10.33 I: 1.16 I: 9.41

II: 18.05 II: 46.93 II: 17.24 II 46.39

III: 53.33 III: 37.90 III: 54.33 III: 39.21

IV: 25.74 IV: 4.76 IV: 25.40 IV: 4.90

V: 1.71 V: 0.0008 V: 1.87 V: 0.0009

Diabetes (%) 24.0 14.6 24.1 15.0

Bleeding Disorders (%) 12.9 3.5 14.1 3.7

INR (mean ± standard deviation, range) 1.16±0.38 (0.1–10) 1.07±0.29 (0.1–10) 1.16±0.40 (0.1–10) 1.07±0.29 (0.1–10)

PTT, sec (mean ± standard deviation, range) 32.3±10.4 (6.7–120) 30.4±7.2 (6.2–120) 32.5±11.3 (5.2–120) 30.3±7.4 (5–120)

Hematocrit, % (mean ± standard deviation, range) 33.7±6.4 (8.1–59) 39.8±4.9 (8–60) 33.6±6.6 (8–60) 40.1±5.0 (8–60)

Platelet Count, 1,000/mm3 (mean ± standard deviation,

range)

252.2±115.3 (1–992) 249.0±77.6 (1–998) 254.4±116.8 (1–1,000) 249.1±78.2 (1–1,000)

Creatinine 1.25±1.23 (0.1–14.72) 0.99±0.85 (0.1–15) 1.26±1.27 (0.1–15) 0.99±0.84 (0.1–15)

Elective Surgery (%) 52.9 80.8 51.0 80.7

Operative Time, mins. (mean ± standard deviations,

range)

191.7±145.6 (1–1314) 100.9±82.9 (1–1440) 200.3±149.4 (1–1440) 104.8±84.9 (1–1435)

wRVU (mean ± standard deviations, range) 24.45±10.81 (0.33–

92.99)

15.87±8.26 (0.3–83.12) 24.53±10.89 (0.3–

83.12)

16.20±8.51 (0.3–108.91)

Mortality (%) 5.6 0.4 5.7 0.4

https://doi.org/10.1371/journal.pone.0229450.t003
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identified as not requiring a transfusion for operations that would typically perform a type and

cross-match.

The standard approach to assessing operative bleeding risk includes history, physical exam-

ination, laboratory evaluation (INR, PTT, platelet count, bleeding time), type of operation,

patient co-morbidities (e.g., inherited coagulopathies, coagulopathy of liver disease), drug-

induced coagulopathy (e.g., anticoagulation therapy for cardiovascular disease), and platelet

dysfunction (e.g., immune thrombocytopenic purpura) [6,69]. Our patient data has also

shown that age, ASA class, presence of diabetes mellitus and bleeding disorders were more

associated with patients receiving transfusions. Operations on or near large vessels, those with

extensive dissections, and prolonged operations are generally considered heuristics of a higher

risk of bleeding and consequent need for transfusion. Our data do reflect that patients receiv-

ing transfusions were more likely to undergo more complex operations (as measured by w

RVU values) and longer operations. Although useful, these heuristics have not been precise in

identifying the amount a patient will bleed or who will need a transfusion [70,71]. Therefore,

better predicting models would be useful and ANNs provide the opportunity to create better

transfusion prediction models.

In addition to being a machine learning method able to learn solutions to arbitrarily com-

plex problems [72], ANNs have several other advantages over regression and other statistical

Table 4. ANN and regression model results for each of the 4 data sets.

Data Set Prediction model Sensitivity Specificity AUROC

Set 1: ANN 71.8% 70.1%

Traininga 62.2% 80.0%

ANN 73.7% 70.0% 0.814

validation 64.5% 80.0%

Regression 74.2% 70.3% 0.832

64.3% 80.8%

ANN 75.7% 70.1%

Traininga 65.8% 80.1%

Set 2: ANN validation 75.6%� 70.6% 0.847��

66.6%�� 80.6%

Regression 73.7% 70.7% 0.816

64.1% 80.7%

Set 3: ANN Traininga 73.1% 70.0%

62.6% 80.1%

ANN validation 75.4%� 70.1% 0.858��

66.2%�� 80.0%

Regression 72.9% 71.6% 0.815

64.2% 80.5%

Set 4: ANN Traininga 75.7% 70.1%

65.0% 80.1%

ANN validation 73.7% 70.0% 0.832

64.4% 80.1%

Regression 74.1% 70.5% 0.831

64.0%† 81.0%

a Training set values are provided at the request of a PLoS One reviewer. AUROC values are not supplied for the training set, since these will never be used in practice.

� p < .05, ANN model better than regression model.

�� p < .01, ANN model better than regression model.

https://doi.org/10.1371/journal.pone.0229450.t004
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Table 5. Surgeries performed for 2014 training and 2015 validation data sets.

Operation type Number performed 2014 Number performed 2015 (transfusions) 2015 Sensitivityb at 70% Specificity

Cardiac Surgery

coronary arterial 1858 2152 (1193) 59.9%

intrathoracic great vessel 739 786 (320) 62.2%

pericardium / non-coronary 1455 1473 (776) 59.4%

ENT Surgery

(Ear, Nose, Throat)a
6150 7121 (181) 75.7%

General Surgery

adrenal 857 931 (57) 61.4%

anorectal 7598 8087 (625) 71.5%

biliary 40008 47009 (585) 83.1%

breast 26108 28567 (213) 55.9%

colon 84396 97411 (6365) 83.9%

esophagus 6480 7076 (344) 79.1%

non-ENT head/neck 14893 16599 (46) 71.7%

hernia repair 52947 60627 (389) 71.2%

laparotomy 7494 8661 (681) 80.3%

liver 4919 5842 (961) 62.5%

lymphatic 2327 2641 (90) 65.6%

omentum 172 160 (11) 72.7%

pancreas 7316 8002 (1500) 75.3%

skin / soft tissue 295 354 (13) 100%

small bowel 8138 8841 (1002) 85.7%

spleen 807 904 (261) 90.4%

stomach 26524 28385 (920) 72.2%

Neurosurgery

cranial / brain 8110 9618 (488) 58.6%

peripheral nerve 393 551 (2) 100%

spine 19834 24136 (870) 56.8%

Obstetrics / Gynecology

Surgery

female genitalia 926 1093 (3) 100%

ovarian/fallopian tube 4396 5263 (729) 68.6%

uterus / cervix 38854 46197 (1891) 58.5%

vaginal 6506 7155 (44) 54.5%

Orthopedic Surgery

arthroscopy 12557 15458 (13) 92.3%

bone / muscle / extremity 287 398 (4) 100%

hand 4435 5724 (27) 81.5%

hip / pelvis 38042 49626 (7412) 84.0%

lower extremity 51145 67198 (3782) 80.9%

shoulder 4848 6133 (168) 80.4%

spine 18894 22579 (1638) 47.4%

upper extremity 1896 2538 (97) 93.8%

Plastic Surgery

bone graft 17 21 (4) 50.0%

breast 9620 10245 (183) 25.7%

head/neck 8 2 (0) N/A

omentum 31 32 (3) 100%

(Continued)
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methods that serve to improve medical model prediction performance, including: they are

nonparametric thus data is not required to fit specific prerequisite requirements and therefore

surgeons do not have to have advanced statistical analysis training [72], all variable interac-

tions do not need to be predefined since they are discovered through machine learning, and

once trained they are highly resistant to noise or errors in the data for the input variables. This

has been demonstrated in the current research by the fact that 180 new operations (CPT

codes) were included in the results for the ANN that were not present in the training set, thus

these operations were completely new to the ANN prediction model.

The principle drawback of ANN models in medicine is their black box nature [72] and sub-

sequent difficulty in determining which input variables are most significant for clinical deci-

sion making regarding surgical transfusions. Several techniques exist for trying to determine

the explanatory power of input variables, such as iteratively leaving out select variables [72,73]

or summing of the connected weights [74]. The leave-one-out strategy is used in the current

research to measure if INR or creatinine had any purpose or explanatory power in transfusion

prediction modeling. The results displayed in Table 4 show that the data sets that removed the

INR variable performed better than the other data sets, which indicates that this variable is not

contributing to the determination of a future transfusion need for any specific patient. The

lack of affect from the INR variable might be caused by high correlation with other variables

included in the input variable set and as such acts as noise to the ANN, reducing performance

[62]. A Pearson’s correlation matrix is calculated for all variables in the data set (see Table 2)

and no unusually high correlations were detected, with the highest absolute correlation value

being 0.209 indicating a small and acceptable level of correlation and validating the finding

Table 5. (Continued)

Operation type Number performed 2014 Number performed 2015 (transfusions) 2015 Sensitivityb at 70% Specificity

skin / soft tissue 9885 11874 (838) 86.8%

Thoracic Surgery

chest wall 491 537 (25) 88.0%

diaphragmatic 135 148 (12) 41.7%

mediastinal 887 883 (22) 63.6%

tracheal / lung 7974 8385 (522) 82.4%

Urology Surgery

bladder 7787 9318 (923) 82.9%

kidney 7392 9055 (823) 71.8%

male genitalia 2406 3025 (24) 91.7%

prostate / urethra 14707 18471 (438) 60.0%

ureter 334 403 (38) 73.7%

Vascular Surgery

endovascular 5331 5589 (659) 81.6%

intra-thoracic great vessel 0 1 (0) N/A

non-aortic arterial 32416 34823 (3604) 79.2%

aortic 1224 1249 (861) 57.4%

embolectomy / thrombectomy 1270 1301 (231) 74.0%

vein 1266 1334 (16) 93.8%

Total all surgery types 615785 721992 (42927)

a ENT operations include: larynx, glossectomy/tongue, mandible, palate, ENT tumor excision, and other ENT head and neck operations.
b Sensitivity is specified for the ANN using variable Set 3, which had the highest AUROC value, at a 70% specificity level.

https://doi.org/10.1371/journal.pone.0229450.t005
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that INR, which had a maximum absolute correlation value of 0.147, does not contribute to

transfusion predictions when used with the other indicated variables. This is in contrast to the

findings from Table 3, which indicate that transfused patients would have a higher INR, how-

ever the ANN demonstrates this value is unnecessary for predicting transfusions. The fact that

two hidden layer architectures performed better than single hidden layer architectures for the

ANN transfusion prediction models that utilize the INR variable (variable Sets 1 and 4), indi-

cates that the solution surface when INR is considered has additional nonlinearities [61].

Future research could examine why the introduction of an INR value creates a more complex

solution surface for predicting transfusions.

The data set that removed just creatinine (Set 4) from the full set of variables (Set 1) had

similar performance, with no statistically measurable difference to the full data set. The data

set that removed creatinine and INR both did show improved performance and had the high-

est AUROC value. Future research is needed to further investigate the importance of creati-

nine and other different variable combinations, where variables are selected to minimize

correlation and to maximize predictive performance. Identification of contributing and non-

contributing variables has clinical significance in that contributing variables are further identi-

fied as key elements in the transfusion process. Non-contributing variables may successfully be

removed from the decision making process, making the transfusion decision more efficient by

reducing potential noise from non-contributing variables and less costly by eliminating the

need to perform specimen collection and the subsequent pathology to acquire these unneeded

values.

ANNs should definitely be in any clinical medicine researcher’s toolbox, as demonstrated

by the results for variable sets 2 and 3. However, from Table 4, depending on the specific vari-

ables used, regression modeling may perform as well as or slightly better than ANNs. Thus,

clinical researchers should utilize both ANNs as well as regression and possibly other machine

learning techniques such as random forests and then compare the results of all models to select

the best performing model and consequently optimize clinical outcomes.

It is interesting to note from Table 3 that postoperative deaths within 30 days of surgery

occurred 14 times more frequently in patients who required transfusions. The non-transfused

mortality rate was 4 per 1000 patients, while the transfused mortality rate was 56–57 per 1000

patients. The rates of postoperative morbidity were also significantly higher in transfused

patients. Higher mortality and morbidity rates for transfused patients may be due to the diffi-

culty of the operation, but the transfusions themselves may play a role [6]. The majority of the

complications in the transfused patients are infectious, thus the immunosuppressive nature of

transfusion may affect postoperative morbidity. The fact that transfused patients are much

more likely to suffer mortality or postoperative morbidity indicates that preoperative knowl-

edge of the likelihood for a transfusion to be needed perioperatively, could also be used by

anaesthesiologists and surgeons to proactively plan treatment and antibiotic regimens for

these patients in addition to improving the management of blood supply.

Bleeding and transfusion prediction models have been developed in a number of specialties,

including trauma [75], orthopedic surgery [76,77], cardiac surgery [78,79], vascular surgery

[80], liver transplantation [81], and otolaryngology [82]. Our study is unique in that rather

than assessing transfusion need for a single type of operation, we can do it across a broad spec-

trum of operation types. Most prior transfusion estimation models relied on conventional sta-

tistical techniques, such as multiple logistic regression modeling. However, our studies

demonstrates that the ANN modeling methodology can be superior to logistic regression

when the best independent variable set is used. The ANN model using variable Set 2 accurately

predicted the transfusion needs for two thirds of the surgical patients who would need one and

for over 80% of those who would not require any transfusion and the ANN model using
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variable set 3 produced a significantly higher AUROC. If a larger false positive rate can be tol-

erated at a 70% specificity level, then the ANN model is able to identify over three fourths of

patients for any type of surgery who will need a transfusion, assuming the pre-operative labs

would include either hematocrit or hemoglobin and also platelet count. The false positive rate

identifying individuals as needing a transfusion who ultimately did not receive one could have

a negative effect on the blood supply, but does not negatively affect the clinical outcomes for

these patients, other than a heightened vigilance for morbidity that is less likely to occur.

Others have used ANN to predict bleeding due to medical or surgical therapy. These

include lower gastrointestinal hemorrhage [83], cardiopulmonary bypass [84], experimental

hemorrhage model in rats [85], and radiation therapy for prostate cancer [86]. Although none

of these studies examined consequent transfusion requirements. Hayn, et al. [87] used predic-

tive modeling based on decision trees on a large dataset of multiple different types of opera-

tions to predict transfusion needs. These efforts reflect the need to better predict blood loss

and consequent transfusion requirements.

Limitations and future research

There are limitations to the reported ANN transfusion prediction model. Firstly, as intraopera-

tive hemorrhage is related to surgical trauma and surgeon skill, reducing blood loss and trans-

fusion need is very much operator dependent. In addition, although length of operation and

extent of dissection can be anticipated by the operating surgeon to a certain extent, these fac-

tors are still quite variable. There is no obvious way to include this in a preoperative prediction

model. Restrictive blood transfusion practices [88] were also not able to be represented in the

variables for the ANN model. Future research is needed to examine if analogous values for the

actual length and difficulty of an operation may be used in the transfusion prediction ANN

model and how this will affect performance of the ANN models.

Although 2678 different operations in total were evaluated, with 2523 different operations

in the validation set, these are all operations that reported the values for the variables used in

the ANN models. Any operation that did not record a hematocrit value, a platelet count value,

age sex, BMI, or diabetes status would not have been included in either the training or valida-

tion sets for the ANN models. While the ANN demonstrated very good sensitivity for the oper-

ations evaluated, its performance on the operations that did not report one of the required

variable values is undetermined. However, the lack of a hematocrit value specifically may indi-

cate that the operation being performed had an extremely low probability of requiring a trans-

fusion and as such it is generally safe to not evaluate transfusion requirements for these

operations.

Additionally, the current ANN models predict perioperative transfusion need for up to one

year following the training date. As long as there are no new surgery protocols, procedures, or

technologies that impact patient bleeding and transfusions, then the current model should be

able to continue predicting transfusions at the documented sensitivity and specificity levels

until such change occurs. Therefore, retraining of the ANN may be unnecessary until an

advancement in surgical protocol, process or technology occurs. Future research should exam-

ine how long diagnostic and prognostic ANN models may be used before re-training becomes

necessary, based on decreased sensitivity and specificity values.

As mentioned, the NSQIP database used for the reported research only reports transfusion

of whole blood or packed red blood cells. Other types of blood products may also be trans-

fused, such as plasma or platelets. The platelet count variable was not removed from any of the

ANN models attempting to determine the impact of variables because it is considered the pri-

mary indicator for platelet transfusions and the ANN model is designed to work for any type
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of transfusion. Since platelet transfusions were not reported in the NSQIP database, the valid-

ity of the model for predicting platelet transfusions in addition to whole blood and packed red

blood cell transfusions could not be ascertained. Future research is needed to attain databases

of surgical procedures that also report the transfusion of platelets in addition to other blood

products and use this data to further evaluate the efficacy of the proposed ANN model for pre-

operative transfusion predictions.

Finally, since not all possible ANN architectures were evaluated for each of the backpropa-

gation and RBF trained models, this represents another possible limitation in that a slightly dif-

ferent architecture could possibly improve the performance of the ANN surgical transfusion

prediction models. Thus, the reported results should be interpreted as the minimum possible

sensitivity achievable for the defined specificity levels and consequent AUROC values. Future

research in addition to examining different variable combinations to further clarify the impact

of each variable could also examine the various architectures not evaluated by the current

research, specifically incrementing or decrementing the number of hidden nodes in each layer

by one instead of two.

Clinical implications

The research reported in this article demonstrates the efficacy of using a single ANN model to

predict the transfusion requirements of patients across a wide range of operations as shown in

Table 5. This leads to the question of how the ANN results can be used in clinical practice. The

NeuralWorks1 Professional II/Plus shell tool used to develop the ANN transfusion prediction

models comes with a feature that enables the ANN to be produced in an executable format, uti-

lizing the C programing language, which may be run from a command line prompt. Clinicians

should not be expected to know how to execute the ANN executable application and thus a

user interface would be required to be produced that would either automatically acquire the

requisite input variable values or prompt the clinician for missing values. The user interface

would then execute the encoded ANN and translate the results into a more readable format,

such as reporting a “high likelihood for a transfusion,” when the ANN predicts a transfusion

occurring.

Automatic acquisition of variables could be accomplished by linking the ANN model with

existing electronic medical record (EMR) systems or surgical planning systems, such as One

Medical Passport1 (see https://www.onemedicalpassport.com/). Prior research has shown

that clinical decision support systems like ANNs may be connected and embedded with EMR

systems [89]. Because of the documented improvements in clinical decision making when cli-

nicians utilize EMR systems [90], integrating the ANN transfusion prediction decision support

system with an EMR or surgical planning system would facilitate access by integrating the

ANN transfusion prediction decision support tool into their workflow, which would further

improve blood bank planning and surgical and post-operative preparation [91] and conse-

quently improve patient outcomes. The ANN would be able to alert surgeons to possible unex-

pected complications that would lead to a transfusion even if none were anticipated and could

also be used to confirm the necessity of surgeon blood orders. Ultimately though, the decision

to type and cross-match and ultimately transfuse blood products is the surgeon’s and the

ANN-based clinical decision support system should be used as evidence to assist surgeons in

making those decisions.

Conclusion

ANNs have been shown to efficaciously provide a mechanism to preoperatively evaluate the

potential for need of perioperative transfusions for individual patients across a wide range of
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operation types. A single ANN model has been shown to work at 66–76% sensitivity with a

corresponding 80–70% specificity, with a corresponding AUROC of 0.847 to 0.858, across a

very large number of different operations (2678 CPT codes). This advances the state-of-the-art

where in the past ANN models have only predicted transfusions for a single type of operation.

Additionally, the sensitivity and specificity performance is across data from 615 different hos-

pitals indicating good generalization of these results for any hospital choosing to use this

ANN-based preoperative transfusion model. Incorporation of other anticipated factors, such

as difficulty and length of the operation, may additionally increase its predictive value.
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