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Abstract

Management strategies for control of vector-borne diseases, for example Zika or dengue,

include using larvicide and/or adulticide, either through large-scale application by truck or

plane or through door-to-door efforts that require obtaining permission to access private

property and spray yards. The efficacy of the latter strategy is highly dependent on the com-

pliance of local residents. Here we develop a model for vector-borne disease transmission

between mosquitoes and humans in a neighborhood setting, considering a network of

houses connected via nearest-neighbor mosquito movement. We incorporate large-scale

application of adulticide via aerial spraying through a uniform increase in vector death rates

in all sites, and door-to-door application of larval source reduction and adulticide through a

decrease in vector emergence rates and an increase in vector death rates in compliant sites

only, where control efficacies are directly connected to real-world experimentally measur-

able control parameters, application frequencies, and control costs. To develop mechanistic

insight into the influence of vector motion and compliance clustering on disease controlla-

bility, we determine the basic reproduction number R0 for the system, provide analytic

results for the extreme cases of no mosquito movement, infinite hopping rates, and utilize

degenerate perturbation theory for the case of slow but non-zero hopping rates. We then

determine the application frequencies required for each strategy (alone and combined) in

order to reduce R0 to unity, along with the associated costs. Cost-optimal strategies are

found to depend strongly on mosquito hopping rates, levels of door-to-door compliance,

and spatial clustering of compliant houses, and can include aerial spray alone, door-to-door

treatment alone, or a combination of both. The optimization scheme developed here pro-

vides a flexible tool for disease management planners which translates modeling results

into actionable control advice adaptable to system-specific details.
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Author summary

Mosquitoes spread diseases, including West Nile virus, dengue, and most recently, Zika.

Control of mosquitoes in residential areas involves a combination of aerial spraying

from planes and door-to-door treatment of individual yards. There are benefits to both

approaches. With aerial spraying, it’s easy to reach every yard; however, aerial pesticides

are short-lived and less effective. With door-to-door treatment, pesticides are longer last-

ing and more effective; however, not all people allow officials into their yards. Conse-

quently, large portions of a neighborhood can go untreated, leaving ample mosquito

habitat. We study how the optimal combination of aerial spraying and door-to-door treat-

ment varies with the fraction of houses that allow treatment, as well as with clustering of

non-compliant houses, and the extent to which mosquitoes move from one yard to

another. Overall, we find that aerial spraying is best at low compliance levels and when

non-compliant houses are clustered. At high compliance levels and when non-compliant

houses are dispersed, door-to-door treatment is most cost-effective. Finally, there are

intermediate scenarios where combinations of aerial spraying and door-to-door treatment

are optimal. Interestingly, less mobile mosquitoes are harder to control, because they can

‘hide’ in inaccessible habitats. This allows diseases to spread in these localized regions.

Introduction

The increased worldwide emergence and re-emergence of vector-borne diseases seen in recent

decades demands increasingly efficacious responses from health and government agencies for

the prevention of public health crises [1–3]. Zika, for example, a flavivirus spread primarily

between humans and mosquitoes with links to Gullain-Barré syndrome [4] and congenital

brain defects [5], remained sequestered to the Eastern hemisphere until 2013 [6]. The first evi-

dence of local Zika transmission on the United States mainland was reported by the Centers

for Disease Control and Prevention (CDC) on July 29, 2016, when four cases of human infec-

tion were confirmed in Miami-Dade County, Florida [7]. Days later, the CDC subsequently

labeled a 1 square mile block of the Wynwood neighborhood (located within the city of

Miami) an active Zika transmission zone [8], followed by 4.5 square miles of Miami Beach and

1 square mile of the Little River neighborhood in October [9]. When an active transmission

zone is identified, the CDC recommends focusing and intensifying vector control efforts

within the immediate vicinity of the area in order to keep diseases localized [10]. Due in part

to intensified control efforts, by the end of 2016, all zones in Miami-Dade County had been

cleared of active transmission status after going 45 days with no detected cases of new local

transmission [11, 12]. The Miami-Dade County outbreak suggests that Zika spread in human

population centers is highly localized, with 256 cases reported over a small number of neigh-

borhood areas no more than a few square miles in size [13, 14].

In Miami-Dade County and elsewhere, officials control and manage localized vector-borne

disease outbreaks like the 2016 Zika event through integrated vector management strategies

[2, 3, 15]. Strategies typically consist of regular, large-scale larvicide and adulticide application

by airplanes and/or street trucks, combined with door-to-door control efforts that require offi-

cials be given access to yards and other private property where they check for and eliminate

sources of standing water susceptible to oviposition, in addition to applying larvicide and adul-

ticide precisely and thoroughly. Both strategies have advantages and disadvantages. Aerial

spraying can quickly provide blanket coverage to an entire neighborhood area. However, adul-

ticide aerial spray is only effective against active mosquitoes who come into contact with
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short-lived airborne insecticide plumes, so repeated frequent applications may be required to

achieve sufficient levels of control [15]. Repeated application of aerial adulticide can become

costly and promote insecticide resistance, and residents may be uncomfortable with planes fly-

ing overhead frequently [3, 16]. Therefore, aerial spraying alone may not always be a viable

strategy. With door-to-door control, a longer lasting, more effective residual barrier adulticide

spray can be applied to vegetation and other mosquito landing surfaces in individual yards,

and potential larval habitats (e.g. receptacles for standing water) can be identified and

removed. This approach, however, is reported to be costly and time-consuming, and residents

may decline to admit control officials access to their yard or may not be at home when control

is being implemented, thereby making large-scale neighborhood coverage and sufficient levels

of control potentially difficult to achieve [15]. The inaccessible yards within a neighborhood

may be randomly dispersed or highly clustered, potentially due to social influences or other

interactions between individual neighbors, and the clustering of control access can influence

overall control efficacy [17]. Further, although accessible and inaccessible yards are spatially

localized to individual sites or clusters of sites, mosquito motion allows localized heteroge-

neous levels of vector control to produce effects over larger, potentially neighborhood-wide,

spatial scales [17, 18].

Aerial spraying and door-to-door control strategies provide a trade-off between small-scale

localized control efficacy and ease in achieving efficient large-scale neighborhood-wide control

coverage [15]. This trade-off, together with local social, political, and economic concerns,

makes the design and implementation of effective integrated vector management strategies a

logistical challenge [3, 16]. Given the complexities inherent to designing integrated vector

management programs, mathematical models are useful tools for analyzing and predicting the

efficacy of intervention strategies. In this paper, we develop an ordinary differential equation

(ODE) model to analyze the efficacy of integrated vector management strategies, specifically

those comprised of adulticide aerial spraying and door-to-door control, for preventing vector-

borne disease outbreaks in at-risk neighborhood-scale environments comparable to the 2016

Miami-Dade Zika active transmission zones.

Many previous studies have analyzed integrated management strategies using ODE models

assuming a single-patch homogeneous system of hosts and vectors. Such models have analyzed

control efficacy for reducing mosquito populations [19, 20], and also for mitigating specific

vector-borne diseases like dengue [21–23], West Nile virus [24, 25], malaria [26], and Zika

[27]. Many models incorporate control in a simplistic but mathematically tractable manner

through its overall gross effects on model parameters, often assuming time-independent con-

trols and analyzing intervention strategies through the model basic reproduction number [20,

24, 26, 27]. Models of this class have also successfully applied optimal control theory to derive

time-dependent control protocols which optimally balance measures of control cost against

measures of disease severity [20, 23, 25, 26]. Other models consider impulsive control proto-

cols with finite natural efficacy times which are mathematically more complicated, but are also

more realistic and more directly connected to real-world actionable control advice [19, 22]. A

few studies explore both approaches to control modeling [21, 25]. In contrast, this paper uti-

lizes a hybrid approach to control modeling introduced in Ref. [28]. Specifically, we incorpo-

rate control through its overall gross effects on model parameters, where the degrees of

control’s influence are given as functions of real-world experimentally measurable control

parameters, costs, and impulse application frequencies, and we quantify intervention efficacy

through the basic reproduction number to determine actionable control advice in the form of

cost-optimal impulse application schedules.

Single-patch models, while useful for studying control strategies and disease dynamics,

are unable to capture features paramount to neighborhood-scale management strategies,
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specifically heterogeneous control, control clustering, and vector motion. Metapopulation

models incorporate individual homogeneous patches of vector and host populations con-

nected via a network structure allowing host and/or vector movement between connected

patches, and are natural candidates for modelling disease systems with spatial heterogeneities

at both large and small spatial scales. Like single-patch models, metapopulation models study

control strategies for reducing vector populations [17], as well as control strategies for mitigat-

ing specific vector-borne diseases, where control efficacy is determined using the basic repro-

duction number [29–31], optimal control theory [32, 33], or impulsive controls with naturally

decaying efficacies [34–36]. Results from metapopulation models have shown that network

connectivity allows for disease levels to persist in patches where they would otherwise face

rapid extinction, which can have important implications for designing vector management

strategies [31, 37, 38]. Many metapopulation studies are concerned primarily with movement

between patches which have no a priori spatial relationship to one another, so the models of

motion used in such studies are not entirely mechanistic. In this paper, our goal is to provide

actionable control advice which could in principle be adapted to experimentally measurable

conditions encountered in the field, so we prefer a mechanistic model of motion. In this

regard, our model is similar to the metapopulation model of Lutambi et al. in Ref. [17], which

incorporates heterogeneous integrated vector management strategies and vector motion

under various levels of control clustering. However, the model in Ref. [17] determines control

efficacy through vector population reduction with no explicit regard to disease dynamics,

while we are concerned with control efficacy for disease suppression as determined by the

basic reproduction number.

To capture the complexities of vector management on neighborhood spatial scales with het-

erogeneous control access and mobile mosquitoes, in the paper, we construct a metapopula-

tion model consisting of a grid of square patches representing residential properties connected

via nearest neighbor mosquito motion. Within the grid, we assume that aerial spray control

covers the entire neighborhood, while access to properties by door-to-door control workers

varies spatially. To analyze the efficacy of integrated vector management strategies, we first

study the model’s basic reproduction number R0, and we determine to what extent R0 is influ-

enced by vector motion and the strength of control in accessible and inaccessible sites. The

goal of this analysis is to provide mechanistic insight into the effects of spatially heterogeneous

control and vector motion on epidemic outbreak potential. In this effort, we derive expressions

for R0 in simplified but analytically tractable special cases, and we utilize degenerate perturba-

tion theory, a technique most commonly applied in physics to determine perturbations to

quantum energy levels, to analyze the case of slow mosquito motion. Next, for each type of

control (aerial and door-to-door), we associate the degree of the control’s influence on model

parameters with real-world experimentally measurable control parameters and costs, and we

determine the application frequency needed to reduce the basic reproduction number to one,

as well as the optimal monetary costs associated with doing so. In this analysis, we assess under

what conditions door-to-door control alone can suppress an outbreak, and when it can do so

at less cost than with aerial spray alone. We also assess under what conditions cost-optimal

strategies call for door-to-door control alone, aerial spray control alone, or a combined door-

to-door/aerial spray strategy. We investigate how the answers to these questions depend on

the percentage of compliant houses that admit officials into their yard, the physical location of

compliant/non-compliant houses, and the speed with which mosquitoes move between yards.

The cost-optimization scheme we develop for this analysis is mathematically simple in com-

parison to the Pontryagin maximum principle and Bellman equation techniques typically uti-

lized throughout the optimal disease control literature [39]. Despite its simplicity, however,

our scheme yields actionable control advice for real-world intervention methods. The model
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and optimization scheme presented in this paper are straightforward to adapt to system-spe-

cific disease parameters, as well as to natural and control-related spatial heterogeneities which

may be encountered in the field, and therefore may serve as a useful tool for disease-manage-

ment professionals seeking to better plan vector control programs.

Methods

Model development

We model a residential neighborhood as a two-dimensional lattice of N �N square patches

indexed by integers i, where i 2 f1; 2; . . . ; N 2
� 1; N 2

g, laid out as in Fig 1. Each patch rep-

resents a physical area of size l × l, and we assume Nh
i humans reside in a home located within

patch i. A typical patch encompasses the dwelling, the surrounding property, and a portion of

the adjacent street. We posit that while present in the neighborhood, humans spend the major-

ity of their time in and around their home patch, and that the time spent traveling throughout

the neighborhood is negligible by comparison. This description of human activity is applicable,

for example, to residents of neighborhoods who typically use a vehicle or public transportation

when they need to leave the area (as opposed to walking or biking through the neighborhood).

Mosquitoes, on the other hand, move continually in a somewhat random manner, and they

may pass through many patches over the course of a lifetime depending on the physical patch

size; Aedes aegypti, for example, will disperse hundreds to thousands of meters from their

emergence site over the course of a lifetime [40]. Based on this observation, we consider a

simplified model in which mosquitoes are able to move between neighboring patches while

humans remain fixed at their home patch.

Fig 1. Site indices and corresponding locations within the neighborhood.

https://doi.org/10.1371/journal.pcbi.1008136.g001
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Mosquito motion. Let Nv
i ðtÞ denote the distribution of mosquitoes evaluated at patch i at

a time t. We model mosquito motion with a nearest neighbor random walk between patches,

and we assume the following population dynamics for Nv
i ðtÞ:

_Nv
i ðtÞ ¼ Li � miNv

i þ
XN

2

j¼1

oijN
v
j ðtÞ; ð1Þ

where the overdot denotes a time derivative, Λi denotes the mosquito emergence rate in patch

i, μi denotes the per-capita mosquito death rate in patch i, ωij denotes the transition probability

per unit time for an individual mosquito to hop from patch j to patch i for j 6¼ i, and ωii is

defined as −1 multiplied by the probability per unit time for a mosquito to transition out of

patch i:

oii ¼ �
XN

2

j ¼ 1

j 6¼ i

oji: ð2Þ

The parameters Λi and μi will vary across the network due to mosquito control efforts. Assum-

ing unbiased nearest neighbor hopping with hopping rate ω, we can write ωij as

oij ¼ � oLij; ð3Þ

where Lij denotes the elements of an N 2
�N 2

Laplacian matrix associated with nearest neigh-

bor connectivity of our network. The actual form of the Laplacian matrix will depend on the

boundary conditions we choose for the edge of our neighborhood. We desire a mathematically

closed system which prohibits mosquitoes from fluxing in or out of the neighborhood bound-

ary, so we must choose between periodic or reflecting boundary conditions. The choice is

immaterial for the mathematics developed throughout our Methods, but will be needed for

some numerical simulations in our Results. For numerical simulations which consider specific

neighborhood configurations, we compare results for both sets of boundary conditions (our

results will show that the choice makes little practical difference). For numerical simulations

which require large numbers of neighborhood configurations to be generated, we choose peri-

odic boundary conditions for simplicity. The form of both Laplacian matrices are given in S1

Appendices Sec. 1 for reference.

Throughout this paper, we leave the hopping rate as a variable parameter and avoid focus-

ing on specific numerical values wherever possible. The hopping rate may vary widely between

real systems based on the vector species, environmental conditions, and the physical patch

size, so in order to apply the results of this paper to the field, one must find an estimate for the

hopping rate based on the specifics of the real system under consideration. In this regard, it is

helpful to recognize that the discrete patch/hopping system is a simplified approximation for a

more realistic continuous diffusion system. For a two-dimensional diffusion process with dif-

fusion constant D, the hopping rate under the discrete approximation scales with D according

to D� ωl2, where l2 is the physical patch size. For example, using the diffusion constants from

previous modeling studies for Aedes albopictus in Ref. [41] and Aedes aegypti in Refs. [18] and

[42], we obtain the values ω = 0.288 day−1, ω = 0.09 day−1, and ω = 25.0 day−1, respectively,

assuming a patch size l2 = 500 m2. The diffusion constant can in principle be determined

experimentally by releasing a large number of mosquitoes into the system under consideration

at a single point, and then measuring their mean squared displacement hΔx2i over their natural

lifetime 1/μ0. In two-dimensions, the mean squared displacement over a time 1/μ0 is related to

the diffusion constant via hΔx2i = 4D/μ0.
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SEIR model equations. We consider the following SEIR model for vector-borne disease

spread throughout the neighborhood:

_Svi ðtÞ ¼ Li � miSvi ðtÞ � o
XN

2

j¼1

LijS
v
j ðtÞ � b

vb
Ihi ðtÞ
Nh

Svi ðtÞ ð4aÞ

_Ev
i ðtÞ ¼ � miEv

i ðtÞ � o
XN

2

j¼1

LijE
v
j ðtÞ þ b

vb
Ihi ðtÞ
Nh

Svi ðtÞ � pvEv
i ðtÞ ð4bÞ

_I vi ðtÞ ¼ � miIvi ðtÞ � o
XN

2

j¼1

LijI
v
j ðtÞ þ pvEv

i ðtÞ ð4cÞ

_Shi ðtÞ ¼ � b
hb
Shi ðtÞ
Nh

Ivi ðtÞ ð4dÞ

_Eh
i ðtÞ ¼ b

hb
Shi ðtÞ
Nh

Ivi ðtÞ � phEh
i ðtÞ ð4eÞ

_Ihi ðtÞ ¼ phEh
i ðtÞ � rIhi ðtÞ ð4fÞ

_Rh
i ðtÞ ¼ rIhi ðtÞ; ð4gÞ

where Svi ðtÞ; E
v
i ðtÞ; and Ivi ðtÞ denote the distribution of susceptible, exposed, and infectious

mosquitoes in patch i at time t, respectively, and Shi ðtÞ; E
h
i ðtÞ; I

h
i ðtÞ and Rh

i ðtÞ denote the distri-

bution of susceptible, exposed, infectious, and recovered hosts in patch i at time t. As we are

primarily interested in the heterogeneities introduced by compliance to control efforts, we

assume the total number of hosts in each patch is a fixed constant Nh (the Nh hosts in patch i
represent the humans who live in the residential dwelling located in patch i). Similarly, the

per-bite human-to-vector and vector-to-human transmission probabilities, βv and βh, respec-

tively, the extrinsic and intrinsic incubation periods, 1/pv and 1/ph, respectively, and the aver-

age human recovery time, 1/r, are all assumed to be patch-independent. We assume human

birth and death rates are negligible over the time scale of interest and that all infectious mos-

quitoes die before recovering. The meaning of each parameter, as well as the example values

used for numerical simulations, is summarized in Table 1.

Control and compliance. We incorporate door-to-door and adulticide aerial spray con-

trol strategies into our neighborhood disease model as patch-dependent, time-independent

reductions and increases in vector emergence and death rates, respectively. Controls incorpo-

rated in this manner are simple but effective models for describing the effects of regularly

repeated fixed strategy real-world controls (e.g. an aerial spraying campaign in which airplanes

deploy a fixed amount of pesticide repeatedly according to a fixed schedule, or a door-to-door

control campaign in which employees visit residences repeatedly according to a fixed sched-

ule) [28]. Under this modeling methodology, the optimal control protocols we find for reduc-

ing the basic reproduction number will be naturally phrased in terms of actionable control

advice based on real-world control parameters.

In the absence of control, we assume homogeneous natural death and emergence rates,

denoted by μ0 and Λ0, respectively, in each patch throughout the neighborhood. Adulticide

aerial spray is an area-wide control assumed to cover the entire neighborhood equally, so we
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model this strategy as a uniform increase in vector death rates at every site. Door-to-door con-

trol affects only the ‘compliant’ sites for which the residents permit yard access to government

or health agency workers to apply residual barrier adulticide spray and conduct larval habitat

reduction. We model this strategy as uniform increase in vector death rate and decrease in vec-

tor emergence rate in compliant sites only. We thus have three possible assignments for the

vector death rate in patch i:

mi ¼

m0; No controls applied to system

mN ; Controlled system; patch i non‐compliant

mC; Controlled system; patch i compliant

8
>>><

>>>:

ð5Þ

where μ0� μN� μC. Likewise, the vector emergence rate in patch i can take one of three val-

ues:

Li ¼

L0; No controls applied to system

LN ; Controlled system; patch i non‐compliant

LC; Controlled system; patch i compliant

8
>>><

>>>:

ð6Þ

where Λ0� ΛN� ΛC. Our model does not contain a larval class, so larvicide controls for both

area-wide spraying and door-to-door strategies applied in conjunction with larval source

reduction controls are outside the scope of our work (see Ref. [28] for a detailed explanation),

and are not considered in this paper. We will therefore always have Λ0 = ΛN, but we retain the

above notation to emphasize the structure of compliant and non-compliant sites.

Table 1. Model parameters and values used in numerical simulations. The values here are taken to represent a typi-

cal sample of Ae. aegypti population parameters and a typical sample of disease parameters for a vector-borne disease

such as Zika in North America (see Ref. [27] and the references contained within). These parameters are expected to

vary widely between locations, mosquito species, and diseases, and values should be carefully estimated when applying

the techniques in this paper to specific situations in the field.

Parameter Description Value

N 2 Number of patches 100

Nh Humans per patch 4

Λ0 Natural mosquito emergence rate per patch 3 day−1

μ0 Natural mosquito death rate 1/14 day−1

b Mosquito biting rate 1 / 3 day−1

1/pv Extrinsic incubation period 14 days

1/ph Intrinsic incubation period Irrelevant

1/r Average human recovery time 7 days

βv Human to mosquito transmission probability 0.25

βh Mosquito to human transmission probability 0.25

ω Mosquito hopping rate Variable

ΛN Controlled non-compliant patch mosquito emergence rate 3 day−1

ΛC Controlled compliant patch mosquito emergence rate Variable

μN Controlled non-compliant patch mosquito death rate Variable

μC Controlled compliant patch mosquito death rate Variable

https://doi.org/10.1371/journal.pcbi.1008136.t001
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The basic reproduction number

We evaluate the efficacy of control strategies for suppressing epidemic outbreaks through the

model basic reproduction number R0. The basic reproduction number is a general measure of

outbreak severity which, for our system, determines the stability of the disease-free equilibrium

against small perturbations in the infected population [43]: perturbing an entirely susceptible

population will result in epidemic outbreak if R0 > 1 and disease die-out if R0 < 1. To calcu-

late the basic reproduction number as a function of model parameters, we utilize the next gen-

eration matrix method as outlined in [44]. Under this formalism, R0 provides a measure of the

maximum number of infected individuals generated over the lifetime of a single infected indi-

vidual introduced into a background system held at 100% susceptible disease free equilibrium.

In S1 Appendices Sec. 3, we show that R0 can be found by finding the largest non-negative

eigenvalue solution to either of the following eigenvalue problems:

R2

0
Ih ¼ MIh ð7Þ

R2

0
Iv ¼ MIv: ð8Þ

We refer to the N 2
�N 2

matrices M and M as the “second generation matrices.” The i, j
component of M represents the expected number of infectious hosts generated in site i over

the lifetime of a single infectious host introduced in site j who passes the disease through the

vector population (assuming disease dynamics which are linearized about disease-free equilib-

rium), and vice versa for infectious vectors and the components of M. The second generation

matrices are non-negative such that R2

0
is their largest eigenvalue [45], so by the Perron-Frobe-

nius theorem for non-negative matrices [46], the eigenvectors Ih and Iv can be taken to be non-

negative such that their components sum to unity. Under this convention, Ih and Iv represent

the worst case scenario spatial distributions of a given number of initial infectious hosts and

vectors, respectively, which produce the largest asymptotic infectious growth rate under the

disease dynamics linearized about the disease-free equilibrium. In order to provide biological

interpretation to our mathematical results, we determine both R0 and the corresponding eigen-

vectors Ih and Iv. Generally, Eqs (7) and (8) can only be solved numerically. There are, however,

a few biologically relevant simplified special cases, detailed in the following subsections, for

which one can derive analytic expressions. These cases represent extreme limits of hopping rate

and spatial homogeneity which place bounds on more realistic intermediate cases, and will be

useful for interpreting numerical results from the optimized control mathematics to be devel-

oped. The details of these R0 derivations are provided in S1 Appendices Sec. 4.

Isolated sites. For a neighborhood comprised of a single isolated site (e.g. N 2
¼ 1), the

hopping rate ω and Laplacian matrix L are irrelevant, and our system reduces to a basic sin-

gle-patch SEIR model. The single site basic reproduction number takes one of the following

expressions:

R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
v b
r
b
h b
m0

pv
pv þ m0

1

Nh

L0

m0

s

R0N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
v b
r
b
h b
mN

pv
pv þ mN

1

Nh

LN

mN

s

R0C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
v b
r
b
h b
mC

pv
pv þ mC

1

Nh

LC

mC

s

;

ð9Þ
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where R00;R0N ; and R0C refer to uncontrolled, non-compliant, and compliant patches,

respectively.

Homogeneous systems. For the special cases of no control, 100% compliance, and 100%

non-compliance, all model parameters are equivalent at every site in the neighborhood, and

we find

R0 ¼

R00; Uncontrolled system

R0N ; 100% non‐compliant system

R0C; 100% compliant system:

8
>>><

>>>:

ð10Þ

The corresponding eigenvectors Ih and Iv, regardless of control or compliance, are found to be

Ih ¼ Iv

¼
1

N 2
1;

ð11Þ

where 1 denotes the N 2
dimensional vector comprised of all ones. In other words, Ih and Iv

are uniformly distributed over the entire neighborhood.

Infinitely fast hopping. For the case of infinitely rapid mosquito hopping, we consider

the limit ω!1. This is a singular limit, and we utilize the methods of Tien et al. outlined in

[47] to perform our calculations (see S1 Appendices Sec. 4.3). We find

R0 ¼
o!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
v b
r
b
h b
hmi

pv

pv þ hmi
1

Nh

hLi

hmi

s

; ð12Þ

where the expression hgi denotes the average of a site dependent quantity g over the entire

neighborhood. The corresponding eigenvectors are found to be uniformly distributed:

Ih ¼
o!1

Iv

¼
o!1

1

N 2
1:

ð13Þ

Infinitely slow hopping. In the infinitely slow hopping ω = 0 limit, all patches decouple

from one another. Here and throughout the rest of this paper, we use the subscript (0) to refer

to quantities evaluated for the special case ω = 0. The basic reproduction number R0ð0Þ is

found to be

R0ð0Þ ¼ max
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
h b
mi
b
v b
r

pv

pv þ mi

1

Nh

Li

mi

s( )

¼

R00; Uncontrolled system

R0N ; Less than 100% compliant system

R0C; 100% compliant system:

8
>>><

>>>:

ð14Þ

The eigenvectors Ih
ð0Þ

and Iv
ð0Þ

are not uniquely determined by Eqs (7) and (8) due to degeneracy

in the eigenspaces of the second generation matrices when ω = 0 (see S1 Appendices Sec. 4.4).

Specifically, any vector which is distributed entirely within any subset of the non-compliant

sites will be an eigenvector with eigenvalue R2

0ð0Þ
. Consequently, we know that the worst
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case distributions of infectious vectors and hosts will lie entirely within the non-compliant

sites in the no-hopping limit, but we have no way of distinguishing which, if any, of all possible

distributions are more “important” or “correct” practically, in terms of biological meaning and

control strategies. This ambiguity can be resolved to some extent by considering perturbations

to the no-hopping case caused by small but non-zero hopping rates.

Finitely slow hopping. For the case of slow but non-zero hopping, we analyze our system

using degenerate perturbation theory. Here, we give the only the necessary definitions and

mathematical formulae from which we obtain results. Details of the derivation are provided in

S1 Appendices Sec. 5, and details of the perturbation formalism in general can be found at a

utilitarian level in Ref. [48], or at a more rigorous mathematical level in Ref. [49]. Perturbation

theory will provide accurate results for our system when the parameters ω/μ0 and ω/(μ0 + pv)
are much smaller than unity. Under this assumption, one can Taylor expand the terms in Eqs

(7) and (8) to first order in ω about ω = 0:

ðR0ð0Þ þ dR0Þ
2
ðIh
ð0Þ
þ dIhÞ ¼ ðMð0Þ þ dMÞðI

h
ð0Þ
þ dIhÞ; ð15Þ

ðR0ð0Þ þ dR0Þ
2
ðIv
ð0Þ
þ dIvÞ ¼ ðM

ð0Þ
þ dMÞðIv

ð0Þ
þ dIvÞ; ð16Þ

Here, the subscript (0) refers to quantities evaluated in the no-hopping limit ω = 0, and the

perturbations signified by δ are linear in ω, where all terms quadratic and higher in ω are dis-

carded. Rð0Þ is given in Eq (14), and Iv
ð0Þ

and Ih
ð0Þ

are non-zero in only the non-compliant sites,

but are otherwise yet to be determined.

To solve the perturbed eigenvalue problem, assume that exactly J� 1 sites are non-compli-

ant, and let {i1, i2, . . ., iJ} denote their indices. In S1 Appendices Sec. 5, we show that the solu-

tions to the perturbed eigenvalue problem are ultimately determined by the spectrum of the J
× J-dimensional matrix W defined by the following elements:

W jk ¼

� k degNðijÞ � k x degCðijÞ; j ¼ k

k; If sites ij and ik are nearest neighbors

0; otherwise;

8
>>><

>>>:

Here, degC(n) and degN(n) denote the numbers of compliant and non-compliant nearest

neighbors connected to a site n, respectively, and the dimensionless constants κ and ξ are

given by

k ¼
1

2
R0N

mN
m0

� �� 1

þ
pv

m0

þ
mN
m0

� �� 1
" #

o

m0

; ð17Þ

and

x ¼ 1þ
1

1þ
mN

pvþmN

1 �
LC=mC
LN=mN

� �

: ð18Þ

The solutions to the perturbed eigenvalue problem are summarized as follows. The pertur-

bation dR0 is the largest eigenvalue of W, is non-positive, and depends only on ξ, the spatial

configuration of non-compliant sites, and linearly on κ. The J-dimensional eigenvectors α
defined by the relation

dR0α ¼ Wα; ð19Þ
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can be taken to be non-negative and normalized. The components of α determine Ih
ð0Þ
; Iv
ð0Þ
; dIh;

and δIv as follows:

Ih
ð0Þ
¼ Iv

ð0Þ

¼
XJ

k¼1

akeik ;
ð20Þ

dIh ¼ �
XJ

k¼1

XN
2

j¼1

j 6¼i1; i2; . . . ; iJ

dMj ik

R2

0N � R2

0C

akeik þ
XN

2

j¼1

j 6¼i1; i2; . . . ; iJ

XJ

k¼1

dMj ik

R2

0N � R2

0C

akej; ð21Þ

dIv ¼ �
XJ

k¼1

XN
2

j¼1

j 6¼i1; i2; . . . ; iJ

dMj ik

R2

0N � R2

0C

akeik þ
XN

2

j¼1

j 6¼i1; i2; . . . ; iJ

XJ

k¼1

dMj ik

R2

0N � R2

0C

akej: ð22Þ

Here, ek denotes the standard unit vector in RN 2

which points along the kth dimension. The

first double summations in δ Ih and δ Iv are the perturbations to Ih
ð0Þ

and Iv
ð0Þ

within the sites

occupied by Ih
ð0Þ

and Iv
ð0Þ

(all of which are non-compliant), while the second double summations

give the perturbations at the sites not occupied by Ih
ð0Þ

and Iv
ð0Þ

. The matrix element perturba-

tions dMij and dMij are non-zero only if i = j or if site i and site j are connected (see S1

Appendices Sec. 5), and so the eigenvector perturbations δ Ih and δ Iv effectively transport the

unperturbed eigenvectors from connected blocks of non-compliant sites out into the corre-

sponding bordering compliant sites.

The above mathematics can be interpreted by recognizing that W is the matrix for a linear

ordinary differential equation describing the population dynamics of a nearest neighbor ran-

dom walk through the non-compliant sites at (unit-less) hopping rate κ, with reflecting bound-

ary conditions imposed at the boundaries between connected blocks of non-compliant sites

and the surrounding compliant sites, together with site-dependent (unit-less) death rates pro-

portional to κξ. Specifically,

W ¼ � kL� � k xD; ð23Þ

where L� is a nearest neighbor hopping Laplacian matrix and D is a diagonal death rate matrix

with components Djj ¼ degCðijÞ. Thus, by relabeling the indices of the non-compliant sites,

W can always be brought into block diagonal form, where each matrix block corresponds to

a distinct block of connected non-compliant sites. We denote the block-diagonalized matrix

by fW for reference. Each matrix block of fW will have a largest real non-positive eigenvalue

which represents a candidate value for dR0, and the actual value for dR0 is found by calculat-

ing all candidate values for all matrix blocks and taking the largest (e.g. smallest-in-magnitude)

result.

For a hypothetical population distribution evolving in time under W, within each block of

connected non-compliant sites, the action of � kL� conserves total population levels, while the

action of � k xD decreases the total population level via non-zero death rates within the blocks’

border sites. For each matrix block of fW , the magnitude of its largest eigenvalue (e.g. the mag-

nitude of that matrix block’s candidate dR0 value) gives the characteristic asymptotic rate of

death for a hypothetical population distributed in the corresponding non-compliant block,

thus implying that the value of dR0 is determined by the non-compliant block (or blocks) with
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the smallest characteristic rate of death under the dynamics driven by W. Within a non-com-

pliant block, the death rate under W at any one site increases with the number of nearest

neighbor connections from that site to the compliant sites that border the block, so one intui-

tively expects to associate smaller characteristic rates of death to the non-compliant blocks that

have a reduced capacity to leak distributions out through their boundaries into the surround-

ing compliant sites (that is, blocks that are more tightly clustered together, with smaller bound-

aries and greater ratios of inner non-compliant connections to outer compliant connections).

The mathematics of perturbation theory thus indicate that, for a given set of compliant and

non-compliant control efficacies and a given neighborhood compliance structure, the reduc-

tion in R0 induced by small non-zero mosquito hopping (e.g. the value of dR0) will be deter-

mined by the larger and more tightly clustered non-compliant blocks. Correspondingly, Eqs

(19) and (20) imply that Iv
ð0Þ

and Ih
ð0Þ

will lie entirely in the larger more tightly clustered non-

compliant blocks.

Optimized control

In this section, we formulate the mathematics needed to determine cost-optimal door-to-door

and aerial spray application strategies for reducing the model R0 to unity. Our goal is to trans-

late the mathematical formalism developed for our R0 analysis into actionable control advice

for the real world. Specifically, we wish to determine the degree to which vector hopping rates,

compliance levels, and compliance clustering influence the efficacy and optimal cost-effective-

ness of door-to-door control. We are particularly interested in determining conditions under

which door-to-door control becomes more or less cost-effective than area-wide aerial spray-

ing. Here, we assume a 10 × 10 neighborhood consisting of 100 houses. We note that although

our focus is on preventative control, the cost-optimal R0 reduction strategies derived in this

section are also effective strategies for containing the total size of an active outbreak. It is

important to note, however, that although effective, cost-optimal strategies for the control goal

R0 ¼ 1 are unlikely to also be cost-optimal for the control goal of total outbreak reduction.

This is due in particular to the fact that the total outbreak size depends on the full disease

dynamics and initial conditions, while R0 depends only on the dynamics linearized about the

disease-free equilibrium. Details and examples are provided in S1 Appendices Sec. 8.

Control modeling methodology. Controls representing vector management strategies

are incorporated into our model as time-independent, site-dependent increases and decreases

in vector death and emergence rates, respectively, as defined in Eqs (5) and (6). Door-to-door

adulticide and larval source reduction uniformly increase death rates and reduce emergence

rates, respectively, in compliant sites only, while area-wide adulticide spray uniformly

increases death rates in all sites. Defining the effects of control in this manner is useful for asso-

ciating changes in model parameters, and therefore predictions for outbreak potential via R0,

with notions of control effort. However, controls modeled as fixed variations in model param-

eters can only serve as approximate representations of the effects of real-world vector-manage-

ment strategies, which are, in reality, applied in discontinuous impulses and have finite

efficacy times. In order to relate reductions in R0 to real-world control actions and costs, one

must specify a scheme by which fixed variations in death and emergence rates approximate

real-world discontinuous control impulses.

In this paper, we apply the control methodology established in Ref. [28]; the modified

death and emergence rates in our model describe the time-averaged effects of real-word vec-

tor control strategies applied repeatedly at fixed frequencies, where potential resonance-like

synergistic effects arising from the interaction and relative timing of controls are ignored.

Results obtained from this control modeling methodology are intended to give public health
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workers a basic intuitive sense of approximately how often different classes of controls need

to be applied in order to suppress vector-borne disease outbreaks in a neighborhood setting.

This type of utilitarian information can serve as one of the many scientific and practical con-

siderations which together inform public policy decisions for vector management. This con-

trol modeling methodology is not intended for use in recommending specifically timed

impulse control protocols tuned to specific biological details, as results obtained at such

detailed levels are likely to depend sensitively on model structure and assumptions which

can not easily or reliably capture biological complexity and real-world constraints encoun-

tered in the field.

In S1 Appendices Sec. 6, we relate the emergence and death rates in compliant and non-

compliant sites to the aerial spray and door-to-door application frequencies, denoted fA and

fD, respectively, in terms of real-world control parameters like percent knock down and effi-

cacy decay time. These parameters are given real-world values based on experimental observa-

tions. The aerial spray application frequency represents a fixed rate at which airplanes are sent

out to apply aerial adulticide spray, and the door-to-door application frequency represents a

fixed rate at which teams of workers are sent out to apply residual barrier spray and reduce

larval sources in yards. When a control is applied regularly at a fixed rate, it is reasonable to

expect the associated cost of control to be roughly proportional to the application frequency.

Door-to-door control requires small teams of government or health agency employees to visit

every site in the neighborhood so that they may request property access from the sites’ resi-

dents, and teams will spend additional time at compliant sites implementing residual barrier

spray and larval source reduction, so greater numbers of man-hours are required to deliver

door-to-door control to neighborhoods with higher levels of compliance. We therefore assume

the following daily cost of control C which depends linearly on the application frequencies fA
and fD:

C ¼ cAfA þ ðcDCf þ cDNð1 � f ÞÞfD: ð24Þ

In the above equation, cA is the cost per application of adulticide aerial spray applied to the

entire neighborhood, cDC is the cost for applying door-to-door control to a 100-house neigh-

borhood at 100% compliance, cDN is the labor cost for applying door-to-door control to a

100-house neighborhood at 0% compliance, and f is the fraction of compliant sites in the

neighborhood. The numerical values of cA, cDC, and cDN used in our analysis are based on

expert opinion (Kevin Caillouët, personal communication), and are given in S1 Appendices

Table A.

Control problem formulation. We consider the following control problem: for combined

aerial spray and door-to-door control strategies, aerial spray only, and door-to-door control

only, find the application frequencies fA and fD which suppress outbreak potential by reducing

R0 to unity while minimizing the cost of control C, subject to control bounds fA 2 [0 day−1, 1

day−1] and fD 2 [(20 year)−1, 1 day−1]. The upper bounds on fA and fD limit control applica-

tions to occur at a rate of at most once per day. Even if unlimited resources were available,

societal and logistical concerns would likely prohibit government or health agency employees

from applying pesticides and invading yards more than once per day. The lower bound on fD
is close to enough zero for all practical purposes, but is set to a non-zero number so that certain

integrals can be computed over a finite range (see door-to-door adulticide in S1 Appendices

Sec. 6). The cost function in Eq (24) is linear in the application frequencies fA and fD, so our

control problem is a bounded linear optimization problem subject to a non-linear constraint

R0 ¼ 1. We solve all optimization problems numerically using the fmincon function in Matlab
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R2017a. Note that in using a local optimization function like fmincon, one is required to make

an initial guess for the optimal application frequencies, and a poorly chosen initial guess may

produce sub-optimal solutions.

For our numerical analysis, we use the model parameter values in Table 1 and control

parameter values given in S1 Appendices Table A. Under these parameters, for any hopping

rate or compliance distribution, it is always possible to find application frequencies fA and fD
within the control bounds which reduce R0 to unity for aerial spray only control and for com-

bined aerial spray and door-to-door control strategies. For door-to-door only control, how-

ever, there exist hopping rate / compliance distribution combinations for which R0 cannot be

brought to one for any fD less than or equal to 1 day−1. In such circumstances, we refer to the

system as being uncontrollable under door-to-door control alone. For an uncontrollable sys-

tem, as long as there is at least one compliant site in the neighborhood, door-to-door only con-

trol will provide some benefit by reducing R0 to an extent, even if not all the way to one. In

this case, the optimal door-to-door only control solution will be fD = 1 day−1, meaning that

door-to-door only control should be applied as often as possible in order to bring R0 as close

as possible to one. If there are no compliant sites in the neighborhood, door-to-door only con-

trol will have no influence over R0, and the optimal door-to-door only control solution will be

to never spend money on door-to-door control, so fD = 0 day−1.

To obtain numerical results, we first solve the optimized control problem for the special

cases of no-hopping, infinitely fast hopping, and homogeneous systems by using the explicit

analytic expressions obtained for R0 in Eqs (10), (12), and (14). For these special cases, com-

pliance spatial structure and boundary conditions are irrelevant. Second, we solve the opti-

mized control problem for four specific compliance distributions (20% compliance and 60%

compliance, both randomly dispersed and highly clustered) under a range of hopping rates

by numerically obtaining R0 as the largest eigenvalue of either second generation matrix.

Here, boundary conditions must be specified, so we employ both periodic and reflecting

boundary conditions in order to compare the effects of boundary choice on model behavior.

Third, we determine the average optimized costs and application frequencies for door-

to-door control alone as a function of percent compliance by solving the optimization

problem over large numbers of random compliance distributions at compliance level

between 0% and 100%, assuming periodic boundary conditions for simplicity. To randomly

generate compliance distributions, we apply the landscape pattern with random clusters

algorithm of Saura and Martı́nez-Milláan [50]. This algorithm produces random compli-

ance distributions at any desired percent compliance, such that the degree of compliance

clustering is specified by a clustering parameter P 2 [0, 1]. When P = 0, the compliant sites

are randomly dispersed around the neighborhood with no spatial correlation, and as P
approaches 1, the compliant sites tend gather into a single random cluster. When P = 0.59,

about half of the compliant sites tend to clump into a single random cluster, while the other

half tend to gather in clusters of smaller size [50]. For these random configuration simula-

tions, we select the hopping rates 0.5μ0, μ0, and 5μ0, and for each hopping rate we generate

200 random dispersed distributions at P = 0 and 200 random clustered distributions at

P = 0.59 for all levels of compliance between 0% and 100%. For each compliance level / hop-

ping rate / clustering setting, we find the optimized door-to-door only control costs and

application frequencies for all generated configurations, and then calculate the average opti-

mized cost of control and application frequency. In addition, we calculate the fraction of

configurations controllable under door-to-door control alone, as well as the fraction of con-

figurations that are both controllable and cheaper to control with door-to-door control than

with aerial spray.
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Results

The basic reproduction number

To aid in interpreting our results, Table 2 summarizes the meanings of relevant parameters

and quantities used in our figures.

No-hopping, infinitely fast hopping, and homogeneous systems. In Fig 2, we plot the

analytic expressions for R0 derived for infinitely slow hopping, infinitely fast hopping, and

homogeneous systems, assuming model parameters given in Table 1. Fig 2a represents the sin-

gle-site, homogeneous system, and no-hopping R0 values as a function of relative adulticide

strength μi/μ0 and relative larval source reduction strength Λi/Λ0 (we plot in terms of relative

strengths so that the results are presented most transparently in terms of control effort). For

the case of a single site, μi and Λi represent the site’s controlled death and emergence rates, and

for the case of a homogeneous system, μi and Λi represent the controlled death and emergence

rates which are uniform over the entire system. For an inhomogeneous system, Fig 2a repre-

sents the no-hopping basic reproduction number when μi and Λi represent non-compliant

death and emergence rates. We assume that non-compliant sites are only subject to an adulti-

cide spray which does not decrease vector emergence rates below their natural value Λ0, so the

relevant values of R0 are given along the top of Fig 2a where Λi/Λ0 = 1. In general we see that

R0 decreases as μi/μ0 increases from zero to infinity, and that R0 increases as Λi/Λ0 increases

from zero to one, thus implying that R0 generally decreases with increasing control efficacy.

The red line in Fig 2a represents R0 ¼ 1 so parameter values to the right of and below this line

will effectively suppress outbreak potential for our model parameters in a single-site system,

homogeneous system, or no-hopping system. The case of no control is given in the upper left-

hand corner of Fig 2a, where R0 ¼ 1:89. Note that for the case of negligible intrinsic incuba-

tion period pv!1, our parameters give R0 ¼ 2:67 under uncontrolled conditions.

Table 2. Quantities used in the analyses of the basic reproduction number results.

Quantity Meaning Notes

Λi/Λ0 Relative measure of larval source reduction

control effort in an isolated patch

Weak control when close to 1, decreases with

increasing control strength

μi/μ0 Relative measure of adulticide control effort in an

isolated patch

Weak control when close to 1, increases with

increasing control strength

μN/μ0 Relative measure of adulticide aerial spray control

efficacy in a non-compliant patch

Weak control when close to 1, increases with

increasing control strength

μN/pv Alternative relative measure of adulticide aerial

spray control efficacy in a non-compliant patch

Increases with increasing control strength

LC=mC
LN=mN

Relative compliant patch combined adult and

larval control efficacy to non-compliant patch

control efficacy

Equal compliant and non-compliant control efficacy

when equal to 1, decreases as compliant control

efficacy increases

ω/μ0 Average number of hops taken by a vector over

the average natural lifespan

Fast hopping regime when much greater than 1,

slow hopping regime when much less than 1

R01 Infinite hopping basic reproduction number None

R0ð0Þ No-hopping basic reproduction number None

dR0 Perturbation to the no-hopping basic

reproduction number induced by small hopping

rates

Function of only the size and spatial structure of

non-compliant blocks, the parameter ξ, and linear

dependence on the parameter κ

ξ Abstract unit-less “death rate” in non-compliant

blocks which determines dR0

Function of only μN/μ0 and
LC=mC
LN=mN

κ Abstract unit-less “hopping rate” in non-

compliant blocks which determines dR0

Function of uncontrolled model parameters, non-

compliant adulticide control efficacy μN/μ0, and

linear dependence on ω/μ0

https://doi.org/10.1371/journal.pcbi.1008136.t002
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Fig 2. (a) Single-site basic reproduction number values as a function of the relative controlled death rate μi/μ0 and

relative controlled emergence rate Λi/Λ0, assuming model parameters given in Table 1. These values also represent the

homogeneous system basic reproduction numbers when μi and Λi are uniform across the neighborhood, as well as the

no-hopping basic reproduction numbers when μi and Λi are the non-compliant death and emergence rates. Control

efficacy increases along the μi/μ0 axis and decreases along the Λi/Λ0 axis. The case of no control is represented by the

upper left corner where R0 ¼ 1:89, and the red line indicates R0 ¼ 1. Control efficacy for non-compliant sites is

represented along the top of the plot where Λi = Λ0. (b) Infinitely fast hopping basic reproduction number values as a

function of percent compliance, assuming model parameters given in Table 1. The black line represents the

uncontrolled value R01 ¼ 1:89, and the different color curves represent varying degrees of control efficacy in

compliant and non-compliant sites. Blue represents strong compliant efficacy and weak non-compliant efficacy

(μN = 1.25μ0, μC = 10μ0, ΛC = .5Λ0), orange represents moderate compliant efficacy and weak non-compliant efficacy

(μN = 1.25μ0, μC = 5μ0, ΛC = .75Λ0), green represents strong compliant efficacy and moderate non-compliant efficacy

(μN = 4μ0, μC = 10μ0, ΛC = .5Λ0), and red represents moderate compliant efficacy and moderate non-compliant

efficacy (μN = 4μ0, μC = 5μ0, ΛC = .75Λ0).

https://doi.org/10.1371/journal.pcbi.1008136.g002
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Fig 2b shows the infinite hopping basic reproduction number R01 under our model

parameters as a function of percent compliance, assuming various compliant and non-compli-

ant control efficacies. At zero percent compliance, door-to-door control has no effect on the

system, so the corresponding R01 values in Fig 2b represent aerial control only and are equiv-

alent to the homogeneous system R0 values. In general, R01 decreases as a function of percent

compliance, and it decreases more rapidly when the relative efficacy of compliant control to

non-compliant control is larger.

Finitely slow hopping. Figs 3, 4, and 5 together give the perturbation analysis numerical

results for small non-zero hopping rates. For small hopping rates (meaning ω/μ0� 1), the

basic reproduction number is given by R0 ¼ R0ð0Þ þ dR0, where R0ð0Þ is the no-hopping basic

reproduction number (the values of which are given in Fig 2a), and dR0 is the perturbation

induced by small hopping. The value of dR0 depends only on the number and spatial structure

of the non-compliant sites, the parameter κ, and the parameter ξ. The perturbation dR0 is pro-

portional to κ, and κ is a function of the uncontrolled model parameters, the relative strength

of non-compliant control μN/μ0, and is proportional to ω/μ0. In Fig 3a, we plot k=ðom� 1
0
Þ as a

function of μN/μ0 for the model parameters given in Table 1. We scale κ by ω/μ0 to remove the

linear dependence on this parameter so that the results presented apply as universally as possi-

ble; the plot is applicable for any hopping rate, while the plotted quantity is unitless and there-

fore independent of the units used for time. We plot κ as a function of μN/μ0 so that the results

are presented most transparently in terms of control effort. This figure shows that κ decreases

to zero as non-compliant control efficacy increases, and reaches its maximum value 2.23 for

the case of no non-compliant control μN = μ0 (meaning no aerial spray). We note that in the

limit of negligible extrinsic incubation period pv!1, our model parameters give a k=ðom� 1
0
Þ

curve nearly identical to the one in Fig 3a.

The parameter ξ itself depends many model parameters, but can be written as a function of

only two dimensionless quantities related to control effort: the relative efficacy of compliant

control to non-compliant control
LC=mC
LN=mN

(e.g. the ratio of the equilibrium vector population in

an isolated compliant site to that of an isolated non-compliant site), and the non-compliant

adulticide efficacy measured relative to the extrinsic incubation period μN/pv (e.g. a measure of

adulticide control effort). In Fig 3b, we plot ξ as a function of
LC=mC
LN=mN

and μN/pv. For the model

parameters considered in Table 1, we have pv = μ0, and all possible values of ξ will fall on or to

the right of the solid black line in Fig 3b. The solid black line corresponds to the case of no

non-compliant control (no aerial spray) when μ0 = pv, and ξ decreases from 5/3 to 1 along this

line as
LC=mC
LN=mN

increases. In the limit of infinitely strong non-compliant control μN/pv!1, ξ

decreases from 3/2 to 1 as
LC=mC
LN=mN

increases. In the limit of negligible extrinsic incubation period

pv!1, ξ decreases from 2 to 1 as
LC=mC
LN=mN

increases. Generally, ξ will fall somewhere in the inter-

val [1, 2], and will be larger when non-compliant control is weak in comparison to compliant

control and in comparison to pv.
In Fig 4, we draw a number of clustering arrangements for non-compliant blocks of sizes

one through six sites, and in Fig 5, we plot the corresponding values of dR0=k induced by

those non-compliant blocks as a function of ξ, assuming that the blocks pictured are

completely surrounded by compliant sites (e.g. are not a part of the neighborhood boundary

where the choice of periodic or reflecting boundary conditions will matter). We scale dR0 by κ
in Fig 5 to remove the linear dependence on this parameter so that the results apply universally

for any value of κ (larger κ values will uniformly increase the rates of decline of the curves in

Fig 5). If more than one non-compliant configuration in Fig 4 is present in a neighborhood,

the corresponding values of dR0 indicated by Fig 5 will represent candidate dR0 values, and
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Fig 3. (a) Linear scaling factor of κ with respect to o

m0
as a function of the relative non-compliant death rate

mN
m0

. Weakly

efficacious non-compliant control (e.g. weakly efficacious aerial spray) is represented in the regime
mN
m0
� 1, and

strongly efficacious non-compliant control is represented by large values of
mN
m0

. (b) Values of ξ as a function of the

relative efficacy of compliant control to non-compliant control
LC=mC
LN=mN

and non-compliant control efficacy μN/pv.
Relative compliant efficacy decreases along the vertical axis, and non-compliant efficacy increases along the horizontal

axis. The limit of negligible extrinsic incubation period pv!1 is represented by the vertical axis μN/pv = 0. For the

model parameters considered in Table 1, we have μ0 = pv, so the smallest possible value of μN/pv is 1 (which represents

no control in non-compliant sites, e.g. no aerial spray), and all possible values of ξ will fall to the right of the solid black

μN/pv = 1 line. Along this line, ξ decreases from 5/3 to 1 as
LC=mC
LN=mN

increases. In the limit of infinitely strong non-

compliant control μN/pv!1, the dotted black line representing ξ = 1.5 asymptotes to the μN/pv axis.

https://doi.org/10.1371/journal.pcbi.1008136.g003
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the actual value of dR0 will be determined by the block with largest candidate value (meaning

the candidate value which is smallest in magnitude due to all candidate values being non-posi-

tive). The shading within any one particular configuration in Fig 4 shows the distributions of

the unperturbed eigenvectors Ih
ð0Þ

and Iv
ð0Þ

as determined by first order perturbation analysis

when that configuration gives the unique largest candidate dR0 value in a neighborhood,

assuming ξ = 1.5 and that the pictured blocks are not part of the neighborhood boundary. For

a given configuration, we see that Ih
ð0Þ

and Iv
ð0Þ

tend to peak and decay away from the sites with

the fewest number of connections to the configuration border. We note that for values of ξ
other than 1.5, the distributions of Ih

ð0Þ
and Iv

ð0Þ
are visually similar to the the distributions in

Fig 4. Various possible arrangements of varying sizes of non-compliant blocks. The shading within a particular

configuration indicates the distributions of the unperturbed eigenvectors Ih
ð0Þ

and Iv
ð0Þ

as determined by first order

perturbation analysis when that configuration is the unique configuration which determines dR0 in a neighborhood,

assuming ξ = 1.5 and that the pictured blocks are not part of the neighborhood boundary. Any configuration of size

one through six can be obtained from one of the pictured configurations through a number of bending symmetry

operations.

https://doi.org/10.1371/journal.pcbi.1008136.g004
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Fig 4, and that larger and smaller values of ξ produce distributions which are slightly more and

less tightly clustered, respectively, around the sites with fewer border connections. The pertur-

bations dR0=k and no hopping eigenvectors Ih
ð0Þ

and Iv
ð0Þ

in Figs 4 and 5 were calculated by

solving Eqs (19) and (20) using the eigensystem function in Mathematica 11.0.

Fig 5 shows that dR0 generally decreases as ξ increases, meaning that small mosquito hop-

ping is most beneficial for suppressing outbreak potential when ξ = 2, and least beneficial

when ξ = 1. When ξ = 1, for a given configuration size, dR0=k increases as the configuration

border length decreases. For example, for the sites of size six in Fig 3, configuration T has the

Fig 5. Basic reproduction number perturbation (scaled by κ) as functions of ξ induced by the non-compliant

blocks pictured in Fig 4. In Fig. 5a, line A represents a single non-compliant site, line B represents a block of two

non-compliant sites, line C represents a block of three non-compliant sites, lines D, E, and F represent different

configurations of blocks of four non-compliant sites, and lines G, H, I, and J represent different blocks of five non-

compliant sites. All lines in Fig. 5b represent different blocks of six non-compliant sites. Note the change in vertical

scale between Figs. 5a and 5b. In both plots, the solid black vertical line ξ = 5/3 is the largest value of ξ achievable when

pv = μ0, and corresponds to the case of no control in non-compliant sites and strongly efficacious control in compliant

sites. The dotted vertical line ξ = 1.5 corresponds to the maximum possible value of ξ in the limit of strongly efficacious

non-compliant control μN/pv!1.

https://doi.org/10.1371/journal.pcbi.1008136.g005
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smallest border (ten connections between the non-compliant block and the surrounding com-

pliant sites), and gives the largest dR0=k of all the six site configurations when ξ = 1. The bor-

ders of configurations O, P, Q, R, and S have thirteen connections to surrounding compliant

sites, and give the next largest six-site dR0=k values. The borders of configurations K, L, M,

and N have fourteen connections to compliant sites, and give the smallest dR0=k values. For

configurations which have the same number of sites and boundary lengths, the configurations

with sites more tightly packed together tend to give larger dR0=k values when ξ = 1. As ξ
increases, Fig 5 shows that dR0=k tends to decrease at roughly similar rates for configurations

with visually similar geometries, such as configurations C, D, and G, or configurations Q and

S, for example. For configurations J, Q, and S, dR0=k decreases with ξ more slowly and “least

linearly” in comparison to the other configurations, and these configurations give the largest

dR0=k values when ξ = 2. Configurations J, Q, and S are also the only configurations which

have interior sites with no border connections.

It is important to note that first order perturbation results are invariant under “bending”

symmetry operations which act on the non-compliant blocks and do not change their nearest

neighbor configurations. For example, a straight line of n non-compliant sites will give the

same dR0 as an ‘L,’ ‘S,’ or ‘U’ shaped line of n non-compliant sites, and the values of the non-

zero components of Ih
ð0Þ

and Iv
ð0Þ

will be identical for all arrangements. For non-compliant

blocks of sizes one site through six sites, the configurations pictured in Fig 4 generate all possi-

ble values of dR0=k for a given value of ξ, assuming that the blocks are not part of the neigh-

borhood boundary. Any configuration of size one through six not pictured in Fig 4 can be

obtained from one of the pictured configurations through a number of bending symmetry

operations, and the corresponding value of dR0=k will be found in Fig 5.

Optimized control

No hopping and infinite hopping limits. Tables 3 and 4, and Fig 6 show optimized con-

trol results for the cases of no mosquito hopping, infinitely fast mosquito hopping, and homo-

geneous systems (at any hopping rate). These correspond to the special cases where we can

find analytic expressions for R0 that do not depend on the spatial distribution of compliant

Table 3. Optimal dollar per day costs in the no-hopping ω = 0 limit as a function of the fraction of compliant sites,

assuming model parameter values in Table 1 and control parameter values in S1 Appendices Table A. For the spe-

cial cases of 100% and 0% compliance, the above optimal application costs are equivalent to the optimal costs for a 100

site homogeneous neighborhood at any hopping rate.

Fraction Compliant Optimal Costs

Combined Controls Aerial Spray Only Door-to-Door Only

1 $3.08 $5.02 $3.08

less than 1 $5.02 $5.02 $0.00

https://doi.org/10.1371/journal.pcbi.1008136.t003

Table 4. Optimal application frequencies in units of inverse days in the no-hopping ω = 0 limit as a function of fraction of compliant sites, assuming model parame-

ter values in Table 1 and control parameter values in S1 Appendices Table A. For the special cases of 100% and 0% compliance, the above optimal application frequen-

cies are equivalent to the optimal application frequencies for a 100 site homogeneous neighborhood at any hopping rate.

Fraction Compliant Optimal Application Frequency

Aerial Spray: Combined Controls Door-to-Door: Combined Controls Aerial Spray Only Door-to-Door Only

1 0.00 0.007279 0.2083 0.007279

less than 1 0.2083 0.00 0.2083 0.00

https://doi.org/10.1371/journal.pcbi.1008136.t004

PLOS COMPUTATIONAL BIOLOGY Managing disease outbreaks: Vector mobility and spatially heterogeneous control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008136 August 21, 2020 22 / 39

https://doi.org/10.1371/journal.pcbi.1008136.t003
https://doi.org/10.1371/journal.pcbi.1008136.t004
https://doi.org/10.1371/journal.pcbi.1008136


Fig 6. Optimal costs and application frequencies in the infinite hopping ω!1 limit as functions of percent

compliance, assuming model parameter values in Table 1 and control parameter values in S1 Appendices Table A.

For the special cases of 100% and 0% compliance, the above optimal costs and application frequencies are equivalent to

the optimal costs and application frequencies for a homogeneous neighborhood at any hopping rate (assuming a

neighborhood comprised of 100 sites). In Fig. 6a, the blue curve is the optimal costs for combined aerial spray and

door-to-door strategies, while the green and black curves are the optimal costs for door-to-door only control and aerial

only control, respectively. The crossover points in the zoomed-in inset show the cut-off compliance levels, beyond

which combined control strategies or door-to-door only control becomes more cost effective than aerial only control.

In Fig. 6b, the blue and the red curves are the optimal aerial and door-to-door application frequencies, respectively, for

combined control strategies, while the green and black curves are the optimal application frequencies for door-to-door

only control and aerial only control, respectively. The optimal door-to-door only costs increase linearly between 0%

and 2.1% compliance in Fig. 6a, and the optimal door-to-door only frequencies are equal to 1 day−1 (not in the range of

Fig. 6b).

https://doi.org/10.1371/journal.pcbi.1008136.g006
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houses. In the no hopping limit, Table 4 gives the cost-optimal application frequencies

required to bring R0 to one as a function of percent compliance for combined aerial spray and

door-to-door control, aerial spray alone, and door-to-door control alone. Table 3 gives the cor-

responding optimized control costs. We find that unless the system is 100% compliant, the

optimal control action is to apply only aerial spray once every 4.80 days at a cost of $5.02 per

day on average. This daily cost reflects the fact that we set the aerial spray costs to $24.10 per

application. At 100% compliance, the optimal control action is to apply only door-to-door

control once every 4.5 months at a cost of $3.08 per day on average. This cost corresponds to

spending $422.90 to apply door-to-door control to the entire 100-house neighborhood once

every 4.5 months. Finding that door-to-door control is never recommended below 100% com-

pliance reflects the fact that at a hopping rate of zero, the basic reproduction number is deter-

mined solely by the non-compliant sites (if there are any in the neighborhood), together with

the fact that door-to-door control has no influence on non-compliant sites at zero hopping

rate. For homogeneous systems, R0 is independent of hopping rate, and Tables 3 and 4 there-

fore imply that for any ω, the optimal control action for a 100% compliant system is door-to-

door only control applied once every 4.5 months, and that the optimal control action for a

100% non-compliant system is aerial spray only control applied once every 4.80 days.

Fig 6 plots the optimal costs and application frequencies as a function of percent compli-

ance in the infinitely fast hopping limit. At 0% compliance, Fig 6 is in agreement with the 0%

compliance values in Tables 3 and 4. Fig 6 only shows between 0% and 15% compliance for

visual clarity, but we note that when compliance approaches 100%, the infinitely fast hopping

costs and application frequencies curves approach the 100% compliance values in Tables 3 and

4. From Fig 6, we see that below 4.58% compliance, the optimal control action is aerial spray

only, applied once every 4.80 days. Above 4.80% compliance, the optimal control action is

door-to-door control only, with optimal application frequencies decreasing as compliance

increases. At 4.80% compliance, door-to-door control must be applied once every 19.5 days at

a cost of $4.74 per day on average, which reflects a cost of $92.12 for a single door-to-door

application applied to a 4.80% compliant neighborhood. The door-to-door only daily cost and

application frequency reduce to $3.08 per day and once every 4.5 months, respectively, as per-

cent compliance approaches 100%. We thus see that only within the narrow compliance inter-

val (4.58%, 4.80%) does optimal control require combined aerial spray and door-to-door

strategies. In this compliance interval, the combined controls are applied less frequently than

they would be if they were used on their own, and optimal costs are lower than the aerial spray

only and door-to-door only costs.

The flat black lines in Fig 6 indicate that compliance does not influence the optimized con-

trol costs and application frequencies for aerial spray alone in the infinite hopping limit (as is

expected to be the case for any hopping rate). However, optimized application frequencies and

control costs for door-to-door control alone do vary based on percent compliance in the infi-

nite hopping limit. At 0% compliance, Fig 6 shows that the cost-optimal action for door-to-

door only control is to never spend any money on control, which reflects the fact that door-to-

door only control can not influence a system at 0% compliance. Between 0% and 2.18% com-

pliance, Fig 6a shows that optimal costs for door-to-door control only increase linearly with

percent compliance, and that the corresponding optimal application frequencies are found to

be at the upper bound of once per day (note this is above the range shown in Fig 6b). This

implies the system is uncontrollable under door-to-door control alone when compliance is

below 2.18% in the infinite hopping limit. As compliance increases beyond 2.18%, the system

becomes controllable under door-to-door control, and optimal door-to-door only costs and

application frequencies rapidly reduce towards the 100% compliance values given in Tables 3

and 4. Note that although the system becomes controllable with door-to-door control at 2.18%
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compliance, Fig 6a shows that using door-to-door control alone does not become cheaper

than aerial control alone until compliance levels surpass 4.65%.

Finite hopping rates. The effects of varied finite hopping rates are shown in Fig 7. Here,

we show how optimized costs and application frequencies depend on hopping rate for specific

clustered and dispersed 60% compliance distributions under both periodic and reflecting

boundary conditions in a 10 × 10 neighborhood grid. Note that we plot these quantities against

Fig 7. Optimal controls and application frequencies for the 60% compliance dispersed and clustered distributions in Fig. 7f, where

white squares indicate compliant sites, and red squares indicate non-compliant sites. Blue and red curves correspond to the

dispersed distribution under periodic and reflecting boundary conditions, respectively. The differences in costs and frequencies between

reflecting and periodic boundary conditions is negligible for the clustered distributions, and the green curves in the figures correspond

to the clustered distribution under either reflecting or periodic boundaries (these curves coincide). The black line in Figs. 7a, 7b and 7d

corresponds to aerial spray control only (e.g. used without door-to-door control). The crossover points in the zoomed-in inset in Fig. 7d

are the cut-off hopping rates beyond which door-to-door only control becomes more cost-effective than aerial spray only control.

https://doi.org/10.1371/journal.pcbi.1008136.g007
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ω/μ0 rather than ω. The quantity ω/μ0 represents the average number of hops a vector makes

over an average lifespan, which sets a scale for ‘fast’ and ‘slow’ hopping. Hopping is considered

fast when ω/μ0� 1, and slow when ω/μ0� 1. We also consider clustered and dispersed 20%

compliance distribution, and find results visually and qualitatively similar to those given in Fig

7. The corresponding 20% compliance plots are given in S1 Appendices Sec. 7.

We find that for a given compliance level, the different boundary conditions yield negligible

differences in optimized cost and frequency curves for the clustered configurations, and yield

qualitatively and numerically similar curves for the dispersed configurations. Generally, the

periodic boundary systems are slightly cheaper to control than the corresponding reflecting

boundary systems, and require slightly less frequent control applications. Fig 7 also shows that,

unlike boundary conditions, compliance clustering can have a strong effect on optimal con-

trols. Clustered systems are much more expensive to control than the corresponding dispersed

systems, and they require much more frequent control applications. Further, Fig 7 shows that

as hopping rates increase, optimized control becomes cheaper and needs to be applied less

often, and that for small hopping rates, the optimal control action is to apply aerial only con-

trol once every 4.80 days. Focusing on any one neighborhood configuration and boundary

condition, we see that as the hopping rate increases from zero, there exists a threshold hopping

rate where the optimal control action transitions from an aerial spray only strategy to a com-

bined aerial spray and door-to-door strategy. At even larger hopping rates, we find a second

threshold where the optimal control action transitions from a combined control strategy to a

door-to-door only control strategy. For the clustered 60% compliance distribution pictured in

Fig 7f, under either boundary condition, optimal control action calls for combined strategies

for hopping rates ω 2 (1.65μ0, 3.18μ0). For hopping rates below and above this interval, opti-

mal control action calls for aerial spray only and door-to-door control only, respectively. The

corresponding intervals for the dispersed 60% compliance distribution are given by (0.175μ0,

0.475μ0) under periodic boundary conditions and (0.200μ0, 0.650μ0) under reflecting bound-

ary conditions. The corresponding intervals for 20% compliance distributions are given S1

Appendices Sec. 7. Generally, at a lower level of compliance, the intervals are found to be

wider and begin at larger values of ω.

Fig 7 shows that for aerial spray alone, optimal control costs and application frequencies are

independent of hopping rate, as expected from the fact that a system subject to only aerial con-

trol is homogeneous. Optimal results for door-to-door only control, however, are strongly

dependent on hopping rate. For ω = 0, the results in Fig 7 are consistent with the no-hopping

results in Tables 3 and 4. Here, we see that the optimal action under door-to-door control

alone is to never spend money on control. This reflects the fact that door-to-door control has

no influence on the system’s basic reproduction number at zero hopping unless compliance is

at 100%. For each boundary condition and each compliance configuration pictured in Fig 7f,

there exists a hopping rate interval where the system is controllable under door-to-door con-

trol alone, but is more expensive to control with door-to-door control than with aerial spray.

For hopping rates below this interval (excluding ω = 0), the system is uncontrollable with

door-to-door control alone, and door-to-door only control is optimally applied as frequently

as possible (once per day). Above this interval, the system is controllable under door-to-door

only and is cheaper to control than with aerial spray only. The intervals are given by (1.98μ0,

2.75μ0) for the clustered distribution under either boundary condition, (0.300μ0, 0.400μ0) for

the dispersed distribution under periodic boundary conditions, and (0.425μ0, 0.550μ0) for the

dispersed distribution under reflecting boundary conditions. The intervals for clustered and

dispersed 20% compliance (see S1 Appendices Sec. 7) are generally found to be wider and

begin at larger values of ω.
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Figs 8 and 9 show the results of our randomized door-to-door control only analysis. Gener-

ally, we see that for a given level of clustering, controllability increases with hopping rate, and

that control costs and application frequencies decrease on average. Likewise, for a given hop-

ping rate, the more dispersed distributions tend to be more controllable and cheaper to control

than the clustered distribution. In Fig 8, we see that for a given hopping rate and level of clus-

tering, there exists a region of low compliance where average costs increase linearly with per-

cent compliance and the corresponding average application frequencies are equal to 1 day−1.

This compliance region corresponds to the region in Fig 9 where nearly all generated configu-

rations for that hopping rate and clustering level are uncontrollable. As compliance levels

increase beyond this region, average costs and average frequencies quickly drop as more and

more of the generated configurations become controllable. For each hopping rate and cluster-

ing level in Fig 9, we note the existence of a compliance controllability interval. At compliance

levels below the controllability interval, no generated configurations are controllable, and

at compliance above the interval, all generated configurations are controllable. Within the

interval, a non-zero fraction of the generated configurations are controllable. We also note

the existence of a compliance cost-effectiveness interval. At compliance levels below the cost-

Fig 8. Door-to-door only control costs, application frequencies, and application periods required to bring R0 to unity (or as low as

possible when the system is uncontrollable) as a function of percent compliance. Blue, red, and green curves correspond to the

hopping rates ω = 5μ0, ω = μ0, and ω = 0.5μ0, respectively. For each value of percent compliance and hopping rate, we average over 200

random neighborhood compliance configurations that are either highly clustered (dashed curves) or randomly dispersed (solid curves),

assuming periodic boundary conditions. The crossover points in the zoomed-in plot in Fig. 8b indicate cut-off compliance levels beyond

which door-to-door only control becomes more cost-effective than aerial only control on average. Figures 8c and 8d represent the same

information; we display both application period and application frequency for visual clarity.

https://doi.org/10.1371/journal.pcbi.1008136.g008
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effectiveness interval, no generated configurations are cheaper to control than with aerial

spray alone, and at compliance levels above the interval, all generated configurations are

cheaper to control than with aerial spray alone. These controllability and cost-effectiveness

compliance intervals are given, respectively, by (7%, 12%) and (10%, 16%) for ω = 5.0μ0 dis-

persed, (13%, 26%) and (17%, 37%) for ω = 5.0μ0 clustered, (23%, 49%) and (29%, 62%) for

ω = 1.0μ0 dispersed, (56%, 81%) and (60%, 89%) for ω = 1.0μ0 clustered, (42%, 81%) and (52%,

89%) for ω = 0.5μ0 dispersed, and (79%, 92%) and (92%, 95%) for ω = 0.5μ0 clustered.

Discussion

Summary of main results

Throughout this paper, we have shown how mosquito motion and control compliance influ-

ence R0, and determined cost-optimal strategies for suppressing outbreak potential with com-

binations of aerial spray and door-to-door control. These findings are interrelated; the more

Fig 9. Shown here are the fraction of neighborhood configurations that can be controlled with door-to-door alone

as a function of percent compliance, as well as the fraction of configurations that are more cost-effective to be

controlled with door-to-door control compared to aerial spraying. Results are shown for three values of the vector

hopping rate: Blue, red, and green curves correspond to the hopping rates ω = 5μ0, ω = μ0, and ω = 0.5μ0, respectively.

For each value of percent compliance and hopping rate, we average over 200 random neighborhood compliance

configurations which are either highly clustered or randomly dispersed, assuming periodic boundary conditions. Solid

curves represent the fractions of randomly dispersed configurations that are controllable with door-to-door control

(e.g. those where R0 can be brought to unity), and the neighboring dotted curves represent the fractions of randomly

dispersed configurations that are both controllable and cost-effective (e.g. those that are both controllable and cheaper

to control with door-to-door control than with aerial spray). The dashed curves represent the fractions of highly

clustered configurations that are controllable, and the neighboring dashed-dotted curves represent the fractions of

highly clustered configurations that are both controllable and cost-effective.

https://doi.org/10.1371/journal.pcbi.1008136.g009
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abstract and theoretical R0 results provide the effective spatial distributions actually under

control when outbreak potential is reduced, and these distributions in-turn provide visual

intuition and insight into the mechanisms underlying the more biologically practical opti-

mized control numerical results. These results, and the interrelations among them, are sum-

marized here and discussed in detail in the following subsections.

We find that R0 will generally decrease with the vector hopping rate unless the system is

spatially homogeneous, in which case hopping rate will have no effect on R0. This implies

increased mosquito motion helps decrease the potential of epidemic outbreaks. We also find

that R0 generally increases with the number and degree of clustering of non-compliant sites.

Thus, having large connected blocks of non-compliant sites increases the potential for initially

large and rapid epidemic outbreaks. When compliance is very low with moderate to slow hop-

ping rates, when the hopping rate is very low, or when the non-compliant sites are highly clus-

tered with moderate to slow hopping rates, we find that the system can not be controlled with

door-to-door efforts alone, and adulticide aerial spray must be used in order to reduce R0 to

unity. Under any of these conditions, door-to-door control is extremely ineffective on a sys-

tem-wide level, and the optimal action is to control with aerial adulticide spray only. As these

conditions are relaxed, so compliance or hopping rate increases, or non-compliant houses

become less clustered, the optimal control action changes to a combined door-to-door and

aerial spray strategy. For large hopping rates and large levels of compliance, door-to-door con-

trol is extremely effective on a system wide level, and the optimal control action calls for a

door-to-door only strategy. In general, the efficacy of area-wide aerial spray control is indepen-

dent of the rate of mosquito motion, compliance levels, and compliance clustering, while the

efficacy of door-to-door control is highly dependent upon these factors. The results of this

paper show that useful, actionable advice for cost-optimal preventative control can be obtained

from a relatively simple linear optimization problem under the non-linear constraint R0 ¼ 1.

This control problem formulation is more accessible to disease managment planners without

an advanced mathematical background as compared to typical optimal control theory tech-

niques [39], which themselves are not guaranteed to yield direct practical control advice like

optimized application frequencies.

Controlling infectious spatial distributions

In this paper, we focus on controlling outbreak potential by reducing R0. This amounts to

controlling outbreaks assuming that the infectious hosts and vectors are distributed such that

they produce the largest possible asymptotic disease growth rate under disease dynamics line-

arized about the disease-free equilibrium. These “worst-case” spatial distributions are given by

the eigenvectors Iv and Ih of the second generation matrices M and M, respectively, corre-

sponding to the eigenvalue R2

0
. The spatial distributions Iv and Ih provide a visual interpreta-

tion of what is actually being controlled when reducing R0, and may provide useful intuition

for researchers and workers hoping to adapt our baseline results to specific conditions encoun-

tered in the field.

For the special case of a spatially homogeneous system, our analysis shows that Iv and Ih are

uniformly distributed over the entire neighborhood, regardless of the vector hopping rate ω.

For spatially inhomogeneous systems, Iv and Ih generally depend on ω, but are found to be

uniformly distributed in the infinitely fast hopping limit ω!1, regardless of spatial struc-

ture. Thus, in order to reduce R0 for either infinite hopping or homogeneous systems, effec-

tively, one must control an infectious vector population that is spread uniformly over the

entire neighborhood.
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For the case of infinitely slow hopping (meaning no mosquito motion between sites), the

mathematical analysis at ω = 0 shows that Iv and Ih will be non-zero only within the neighbor-

hood’s non-compliant sites. However, the manner in which the distributions vary throughout

the non-compliant sites is left indeterminate due to the degeneracy in the eigenspaces of M
and M for the eigenvalue R2

0
when ω = 0. In other words, the no-hopping mathematical analy-

sis alone cannot identify which infectious distributions over the neighborhood’s non-compli-

ant sites are in any sense more biologically meaningful or more relevant to designing control

strategies for reducing R0 when ω = 0. Fortunately, first order perturbation analysis resolves

this degeneracy, identifying particular eigenvectors Iv
ð0Þ

and Ih
ð0Þ

from the R2

0
eigenspaces of M

and M at ω = 0. Specifically, for small but non-zero hopping rates, first order perturbation

analysis shows that the eigenvectors Iv and Ih vary continuously with ω and reduce to the par-

ticular no-hopping eigenvectors Iv
ð0Þ

and Ih
ð0Þ

as ω approaches zero. The results of our perturba-

tion analysis, particularly those displayed in Figs 4 and 5, show that Iv
ð0Þ

and Ih
ð0Þ

will generally

be distributed in the larger, more clustered blocks of connected non-compliant sites, and are

more heavily weighted towards the interiors of non-compliant blocks away from the bound-

aries in connection with the surrounding compliant sites. Here, the precise meaning of “more

clustered” depends on the relative difference between compliant and non-compliant control

efficacy as quantified by the unitless parameter ξ 2 [1, 2]. When compliant and non-compliant

control efficacies are nearly equal in strength, ξ� 1, and a “more clustered” block of a given

block size is taken to mean a block with a smaller boundary. The parameter ξ increases with

compliant control efficacy and decreases with non-compliant control efficacy, and when ξ = 2,

a “more clustered” block of a given size is taken to mean a block with more interior sites not

directly connected to the block’s boundary. Values of ξ between 1 and 2 represent a type of

weighting between the two notions of clustering. Note that for large non-compliant blocks

where boundaries are small in comparison to total block size, the distinction between the two

notions of clustering will be inconsequential. When ω is small but non-zero (meaning that the

majority of vectors do not leave their emergence site, and those that do will most likely make

only one hop over the course of their lifetime), the no-hopping eigenvectors are perturbed,

and the resulting slow hopping eigenvectors spread into the compliant sites directly surround-

ing the larger, more clustered non-compliant blocks. From these results, we conclude that in

order to reduce R0 for zero and small non-zero hopping rates, effectively, one must control

an infectious vector population that is distributed in and directly adjacent to the largest, most

clustered, non-compliant blocks.

First order perturbation theory lifts some, but not all of the eigenvector degeneracy present

in the no-hopping limit. For example, if there exist two largest, most tightly clustered non-

compliant blocks in a neighborhood with identical spatial structures of compliant and non-

compliant connections, first order perturbation analysis determines that Ih
ð0Þ

and Iv
ð0Þ

will be

distributed entirely within the two blocks, but will yield no information on how the distribu-

tions should be split or shared between the two blocks. Further, first order perturbation results

are invariant under “bending” symmetry operations which do not change the nearest neighbor

configurations of a non-compliant block, and this symmetry may cause some degeneracy to

linger at small non-zero hopping rates. For example, if there exists a straight line and a bent

‘L’, ‘U’, or ‘S’ shaped line of non-compliant sites of identical length, first order perturbation

theory cannot determine how Ih
ð0Þ

and Iv
ð0Þ

will be split among the two lines when they are the

only two non-compliant blocks in a neighborhood. These lingering degeneracies could be fur-

ther lifted by retaining terms of higher order in ω/μ0 and performing a higher order perturba-

tion analysis, but the mathematics are more involved and are outside the scope of this work.
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Higher order terms are able to break bending symmetry, and can be expected to, for example,

recognize the bent ‘L’ shaped non-compliant line as more clustered and more capable of pro-

ducing an epidemic outbreak than a straight line of the same length. The corresponding

refined no-hopping eigenvectors will presumably depend not only on the intraclustering

within individual non-compliant blocks, but also the interclustering between groups of non-

compliant blocks, and will be approximated by the first order perturbation no-hopping eigen-

vectors discussed in this paper. Further, one can show that an nth order perturbation expansion

will generally yield perturbed slow hopping eigenvectors that are non-zero in compliant sites

at most n hops out and away from the non-compliant blocks occupied in the no-hopping

limit. These higher order effects represent small corrections to the first order effects, and will

become more and more appreciable as ω/μ0 becomes larger (up to ω/μ0 = 1 where the series

expansions of M and M diverge). Taking these observations together with our mathematical

results for no hopping, slow hopping, and infinitely fast hopping, we conclude that in order to

reduce R0 for any vector hopping rate, effectively, one must control an infectious vector popu-

lation that is concentrated at and distributed around the larger, more clustered non-compliant

blocks, such that the degree of spreading away from the larger, more clustered non-compliant

blocks is a non-decreasing function of ω.

Mosquito motion and disease controllability

One of the primary results of the R0 analysis developed in this paper is that mosquito motion

is generally beneficial to disease controllability. In particular, we show that an infinitely fast

hopping system is easier to control than a slow hopping system (e.g. the infinitely fast R0 is

less than or equal to the finitely slow hopping R0), and that a slow hopping system is easier to

control than a no-hopping system. For these special cases where analytic expressions for R0

can be derived, the possible values of the system-wide basic reproduction number are found to

be bounded below by the single site compliant basic reproduction number R0C and bounded

above by the single site non-compliant basic reproduction number R0N . Specifically, when ω =

0, R0 is equivalent to R0N when the system is less than 100% compliant, and is equivalent to

R0C when the system is 100% compliant. For small non-zero values of ω, first order perturba-

tion analysis shows that R0 decreases by a small amount relative to R0N (unless the system is

either 100% compliant or non-compliant). The magnitude of this decrease is proportional to

the relative hopping rate ω/μ0 and the parameter κ, where κ decreases as a function of the rela-

tive non-compliant control efficacy μN/μ0. When ω!1, R0 has the same mathematical form

as the single-site basic reproduction numbers, but with the death and emergence rates aver-

aged over the entire neighborhood, meaning that R0 smoothly decreases from R0N to R0C as

compliance increases from 0% to 100%.

The decrease in R0 from no hopping to slow hopping to infinite hopping can be under-

stood intuitively by visualizing the effective infectious vector distribution that must be con-

trolled. At zero hopping, the effective distribution lies entirely in non-compliant blocks and is

therefore only influenced by R0N , while at slow hopping, the effective distribution spreads by a

small amount from the larger, more clustered non-compliant blocks into the surrounding

compliant sites, and therefore becomes less influenced by R0N while becoming more influ-

enced by R0C. This results in an overall decrease in the system-wide R0. At infinite hopping,

the effective distribution is equally influenced by all sites as it spreads uniformly over the

entire neighborhood and, consequently, the system-wide R0 is weighted between R0N and

R0C according to the fraction of compliant and non-compliant sites.

The general ω-dependent behavior of the effective mosquito distributions that must be con-

trolled in order to reduce the basic reproduction number provides insight into the general ω-
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dependent behavior of R0 outside of the analytically tractable special cases. This distribution is

concentrated in the larger, more clustered non-compliant blocks at ω = 0, and spreads away

from these blocks into the other neighborhood sites as ω increases, eventually becoming uni-

formly distributed as ω!1. Importantly, when ω increases, the magnitude of the distribu-

tion in the non-compliant blocks occupied at ω = 0 will never increase. This follows from the

fact that the total number of vectors represented by the distribution is constant, and so an

increase in the magnitude of the distribution at one site must come at the expense of a decrease

in the magnitude of the distribution at another site. Therefore, when an increase in ω causes

the distribution to spread and increase in a compliant site, one can expect a decrease in the

system-wide R0 due to an increased influence of R0C and decreased influence of R0N . If an

increase in ω causes the distribution to spread and increase in a non-compliant site, the

amount of increase ultimately comes at the expense of the distribution levels in the larger,

more clustered non-compliant blocks occupied at ω = 0, meaning that the influences of R0C

and R0N on the distribution will be unchanged, and so one can expect a non-increase in the

system-wide R0. We thus conclude that, in general, R0 will be a non-increasing function of

hopping rate for any compliance spatial structure, and that mosquito motion is generally bene-

ficial for controlling and preventing epidemic outbreaks. In essence, slow mosquito motion

allows infectious vector populations to remain concentrated in and around non-compliant

neighborhood sites where their populations can best flourish, and these conditions can pro-

duce very large localized outbreaks which are difficult to control. Fast mosquito motion, on

the other hand, prohibits infectious vector populations from remaining localized in sites ideal

for rapid disease growth, and so the worst-case scenario disease growth rates indicated by R0

will generally be smaller for more rapid mosquito motion. The non-increase in R0 as a func-

tion of hopping rate is corroborated indirectly by the optimized control results in Fig 7 for the

specifically considered 60% compliance distributions (and also by Fig. B in S1 Appendices Sec.

7 for 20% compliance distributions). Here, we see that optimal control costs are non-increas-

ing functions of hopping rate (aside from the special case of ω = 0 under door-to-door control

only, which optimally employs no control actions at no cost), thus indicating that the control

effort required to bring R0 to unity is a non-increasing function of hopping rate.

In addition to showing the general non-increase of R0 with hopping rate, our results imply

that the degree to which R0 decreases with hopping rate is determined by how close the system

is to homogeneous. Specifically, when compliant and non-compliant control efficacies are

more similar, an increased hopping rate will yield smaller reductions in R0 and will therefore

be less beneficial for disease control. When the system is exactly homogeneous, meaning

equivalent compliant and non-compliant control efficacies (which occurs under aerial spray

only control or under any control scheme in a 100% compliant or non-compliant system), R0

is independent of hopping rate, so an increase in hopping rate will have no effect on disease

controllability. At infinitely fast hopping, Fig 6a shows that when compliant and non-compli-

ant control efficacies are most similar, percent compliance has a minimal effect in decreasing

R0. Intuitively, the decrease in R0 at large hopping rates is driven by the effective infectious

distribution’s spread from the “bad” non-compliant sites into the “good” compliant sites, so

when the distinction between “bad” and “good” is negligible, the number of “good” sites that

the distribution is able to reach is largely inconsequential. The dependence of the ω-dependent

decrease in R0 on spatial homogeneity is illustrated directly by our first order perturbation

analysis, specifically in Fig 3. First order perturbation analysis shows that the rate at which R0

decreases with hopping increases with the unitless parameter ξ 2 [1, 2], where smaller values

of ξ indicate more similar non-compliant and compliant control efficacies. Values of ξ� 1 rep-

resent cases where the difference between compliant and non-compliant control efficacy is
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negligible, while the value ξ = 2 represents the case of strongly and weakly efficacious compli-

ant and non-compliant control, respectively, with a negligible extrinsic incubation period

1/pv! 0. Non-negligible incubation periods yield values of ξ which decrease from values

smaller than 2 towards the value 1 as compliant and non-compliant control efficacy become

more similar.

Interestingly, our first order perturbation results indicate that mosquito motion is especially

beneficial for control when the extrinsic incubation period is negligibly small. This effect arises

due to the fact that the effective infectious vector distribution being controlled is most concen-

trated within blocks of non-compliant sites. When the incubation period is non-negligible,

newly infected vectors within a non-compliant block have an opportunity to die inside that

block before they become infectious and propagate the disease, despite the fact that non-com-

pliant control efficacy may be small to non-existent, and so the stronger control efficacy in the

surrounding compliant sites will have a diminished effect in reducing overall disease levels.

Stated another way, for a non-negligible incubation period, if a number of newly infected (but

not infectious) vectors leave their non-compliant blocks of origin and die due to strong control

in the surrounding compliant sites, a non-zero fraction of them would have died naturally

before becoming infectious in the absence of strong compliant control, and so strong compli-

ant control acting on this fraction will not have provided any actual benefit for suppressing

disease growth. On the other hand, when the incubation period is negligibly small or non-exis-

tent, all newly infected vectors within a non-compliant block become instantly infectious and

immediately begin propagating the disease. If a number of these infectious vectors were to

move into compliant sites and die quickly due to strong compliant control, the fraction that

would have died naturally before becoming infectious in the absence of the strong compliant

control is exactly zero, and so strong compliant control acting on the entire group will provide

benefits for suppressing disease growth.

It is important to note that the conclusions presented here regarding the influence of hop-

ping rate on R0 depend crucially on the manner in which we define the effects of control in

compliant and non-compliant sites. When vectors spread from “bad” (bad in the sense of a

greater single site basic reproduction number) non-compliant sites into “good” compliant

sites, they are traveling from regions of high emergence rate and low death rate into regions

with low emergence rate and high death rate. This feature is the ultimate source of the

observed non-increase of R0 with hopping rate. If, on the other hand, the “bad” sites were

defined to have high emergence rates and high death rates while the “good” sites were defined

to have have low emergence rates and low death rates, increased hopping rates have the poten-

tial to increase R0 by allowing the large numbers of infected vectors born in the “bad” sites to

escape into the “good” sites where they can live longer and find more opportunities to spread

disease. This situation will never arise in the context of compliant and non-compliant control

unless there exist natural heterogeneities that are independent of control.

Practical control advice: Door-to-door vs. area-wide aerial spray

The cost-optimal door-to-door and area-wide aerial spray application frequencies required for

reducing R0 to unity are influenced by the rate of mosquito motion, the level of door-to-door

compliance, as well as the degree of compliance clustering. The manner in which these factors

influence the optimal choice between door-to-door control only, aerial spray control only, and

a combined integrated vector management strategy is a central result of this work. At low lev-

els of compliance, door-to-door control alone can not control the system unless the mosquito

hopping rate is sufficiently large. Mathematically, this effect arises from the fact that the sys-

tem-wide R0 is determined by an infectious vector population which is distributed in and
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around the larger, more clustered non-compliant blocks of sites. In this sense, door-to-door

control can only reduce the system-wide R0 when the infectious vectors originating in the

non-compliant blocks have sufficient mobility such that they spend enough time in compliant

sites to feel the effects of strong compliant control. This explains why a greater level of cluster-

ing of non-compliant sites is more difficult to control than a dispersed distribution of non-

compliant sites; vectors existing in an extremely deep block of non-compliance require an

extreme amount of mobility in order to feel the effects of door-to-door control in compliant

sites. However, even at infinitely fast mosquito motion, under our model and control parame-

ters, the system is uncontrollable under door-to-door control at compliance levels below about

2%, regardless of compliance clustering. Simply put, even if the vector population is able to be

essentially eliminated in compliant sites, such sites must comprise about 2% of the total area,

at minimum, in order to have any hope of door-to-door control alone preventing an epidemic

outbreak. More realistically, at finite (potentially small) hopping rates, much greater levels of

compliance are required for door-to-door controllability, especially if the compliance distribu-

tion is highly clustered.

When a system is uncontrollable with door-to-door control alone, control efforts must be

supplemented by area-wide spraying, and the combined action of door-to-door control and

aerial spraying can potentially be more cost-effective than either strategy used alone. For a

given distribution of compliant sites, when hopping rates are far too slow for the system to

be controllable with door-to-door control alone, the optimal action is to use only area-wide

spraying. In such cases, an inability to spray frequently due to societal concerns, budgetary

constraints, or resistance concerns is detrimental to disease control, and no amount of door-

to-door control can make up for the deficit. As hopping rates approach the door-to-door con-

trollability threshold from below, the optimal control action becomes to supplement aerial

spraying with door-to-door control. Here, the disease is still uncontrollable under door-to-

door only, so an inability to conduct frequent area-wide spraying is still detrimental to out-

break prevention. However, mosquito motion is fast enough such that a non-trivial fraction of

infectious vectors originating in non-compliant sites will travel to compliant sites where they

experience the effects of door-to-door control. As hopping rates continue to increase past the

door-to-door controllability threshold, aerial spray is optimally applied less frequently, and

door-to-door is optimally applied more frequently. At these hopping rates, an inability to con-

duct aerial spraying will not be detrimental to outbreak prevention, but will require sub-opti-

mal spending on door-to-door efforts in order to control the system. At large enough hopping

rates, the system will not only be controllable under door-to-door efforts alone, but will also be

much more cost effective under door-to-door alone than under aerial spray alone. Here, the

optimal control action is to apply only door-to-door control.

Generally speaking, systems with lower levels of compliance and greater levels of clustering

will have larger intervals of hopping rates where optimal control actions call for using aerial

spray, either alone or combined with door-to-door efforts. Likewise, systems with smaller hop-

ping rates will have greater numbers of compliance levels and randomly dispersed distribu-

tions of compliant sites for which the the optimal control action is to apply aerial spray only

in comparison to systems with faster hopping rates. For a given hopping rate, there will be a

greater number of highly clustered compliance distributions for which the optimal control

action is only aerial spray in comparison to more randomly dispersed compliance distribu-

tions. As shown in Fig 9, the effects of compliance clustering is diminished at larger hopping

rates. This follows from the notion that highly mobile vectors experience the effects of compli-

ant and non-compliant sites in a more averaged sense in correspondence to the fraction com-

pliance in the neighborhood, where the actual spatial distributions of compliance and non-

compliance become increasingly irrelevant as ω!1.
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It is important to note than even when a system is controllable under door-to-door control

alone, using only door-to-door control may not be more cost-effective than aerial spray alone,

despite door-to-door’s higher control strength and lasting effects in compliant sites relative to

aerial spray. Specifically, Fig 9 indicates that for a given hopping rate, the number of compli-

ance configurations which are controllable under door-to-door alone is smaller than the num-

ber of configurations which are cost-effective under door-to-door alone. The differences

between the number of configurations which are controllable and the number of configura-

tions which are cost-effective, however, tends to be small outside of the narrow compliance

ranges where systems transition from always uncontrollable to always controllable. On the

other hand, Fig 7 shows that, for a given compliance configuration, the range of hopping rates

over which the system is controllable is greater than the range of hopping rates which are cost-

effective, and that the differences between the two ranges are rather small. In any event, we

obtain the following ‘rules of thumb’—when a system is in the range of uncontrollable to

almost controllable, the optimal control action is to apply only aerial spray; when a system is in

the range of almost controllable to controllable and slightly more cost-effective, the optimal

control action is to apply a combined aerial spray door-to-door strategy; when a system is con-

trollable and in the range of slightly more to much more cost-effective, the optimal control

action is to apply door-to-door control only.

Concluding remarks

We have shown that mosquito motion, door-to-door control compliance levels, and spatial

clustering of compliant sites play an important role in determining whether or not vector-

borne disease can be controlled by area-wide aerial spraying and/or door-to-door control, as

well as the most cost-effective strategies for control, in a neighborhood scale system. We find

that, in general, increased mosquito motion, increased compliance levels, and decreased com-

pliance clustering are all beneficial for the efficacy of door-to-door control efforts. Interest-

ingly, using a modeling framework similar to ours, Lutambi et al. [17] have previously shown

that clustered control can be slightly beneficial for reducing mosquito populations under low

compliance levels of residual adulticide and larval control strategies. By contrast, our model

shows that clustered door-to-door control is never beneficial for reducing outbreak potential.

It is unclear as to whether this difference is due to a difference in control goals (outbreak sup-

pression versus population suppression), or due to differences in model structure.

We note the numerical results presented here are all based on a disease-related parameter

set representative of typical values associated with vector-borne diseases such as Zika or den-

gue in North America. Our intent here is not to provide specific control advice which can be

responsibly applied directly in the field. Rather, we have focused on providing mechanistic

insight into the biological factors which should, in conjunction with additional practical con-

siderations that can not be reliably modeled, be considered when designing a real-world inte-

grated vector management strategy. Our specific numerical results are most appropriate for

use as a simplified baseline example case from which one can build some mathematical intui-

tion for control efficacy on neighborhood scales.

The optimization scheme for reducing R0 to unity presented in this paper is, to the best of

our knowledge, the first example of optimized R0 control where results can be consistently

and directly interpreted in terms of application frequencies for real-world control schemes

that are directly connected to real-world experimentally measurable control parameters. While

the numerical results presented here represent a simplified baseline example, the optimization

scheme serves as a template which can be easily adapted by workers and researchers seeking

results more fine-tuned to system-specific details. The essential mathematical ingredients for
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calculating R0 (e.g. the functions relating control application frequencies to changes in uncon-

trolled model parameter values and the mathematical forms of the second generation matrices)

provided here will remain unchanged under modified control parameters, cost parameters,

disease parameters, and spatially heterogeneous natural death rates, emergence rates, and host

densities. With these tools, one needs only a basic familiarity with built-in local optimization

packages found in mathematical software (such as the fmincon function in Matlab) in order to

find optimized control frequencies.

The model presented in this paper, while somewhat generic, is limited in several aspects,

and it will be interesting in future work to consider how adding more realistic detail will mod-

ify our baseline results. Of greatest interest will be to consider spatially heterogeneous natural

emergence rates, death rates, and host density in order to study the interaction between com-

pliance clustering and natural host and mosquito clustering. Such modifications, however, will

require no changes in model structure. Larval classes and host motion, on the other hand, are

potentially important factors omitted from our model whose inclusion would increase model

complexity. The addition of a larval class with a larval death rate would allow modelling of

area-wide larvicide as a control strategy, and we expect that the additional area-wide spray effi-

cacy given by larvicides can diminish the roles of mosquito motion, compliance levels, and

compliance clustering on disease controllability. The effects of adding host motion to our

model are difficult to predict, as human motion throughout a neighborhood is not straightfor-

ward to include in an ODE compartmental model. In contrast to mosquito motion, a random

walk analogous to a free Brownian particle is a poor description of human motion in a neigh-

borhood. This is because humans tend to spend most of their time in and around their home

site. A better description of host motion would be that of a Brownian harmonic oscillator cen-

tered at the host’s home site. In an ODE compartmental model, such a description would

translate to a host population where a given host’s presence is distributed in a roughly Gauss-

ian manner about their home site when in equilibrium. Additionally, one could include ran-

dom host hops into sites not directly connected to home sites in order to simulate hosts who

frequent the homes of friends and family living in distant locations throughout the neighbor-

hood. If the effects of host motion are indeed important factors, we expect models of host

motion to dominate the dynamics of disease spread when the mosquito hopping rate is very

small. By building further biological detail on top of the base model and optimization scheme

presented here, powerful tools for designing real-world control schemes tuned towards sys-

tem-specific details can be further developed.

Supporting information

S1 Appendices. Mathematical details and additional results. This series of appendices

gives mathematical expressions for the Laplacian matrices under periodic and reflecting

boundary conditions (Sec. 1), gives an expression for the equilibrium vector population dis-

tribution (Sec. 2), derives mathematical expressions for the second generation matrices

leading to the R0 eigenvalue problem (Sec. 3), provides detailed derivations of the R0

expressions in simplified limiting cases (Sec. 4), provides details related to the perturbation

theory formalism (Sec. 5), explains the mathematical relationships between controlled

model parameters and real-world control strategies’ application frequencies (Sec. 6), pro-

vides additional optimized control results for specific 20% compliance distributions (Sec.

7), and shows the relationship between total epidemic size and R0 for aerial spray and door-

to-door control strategies (Sec. 8).
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S1 Data and code. Optimized control code and data sets. This compressed file contains the

optimized control data presented in this paper, as well as the Matlab programs used to generate

the data.
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