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ABSTRACT The hologenome concept of evolution postulates that the holobiont (host plus symbionts) with its hologenome
(host genome plus microbiome) is a level of selection in evolution. Multicellular organisms can no longer be considered individ-
uals by the classical definitions of the term. Every natural animal and plant is a holobiont consisting of the host and diverse sym-
biotic microbes and viruses. Microbial symbionts can be transmitted from parent to offspring by a variety of methods, including
via cytoplasmic inheritance, coprophagy, direct contact during and after birth, and the environment. A large number of studies
have demonstrated that these symbionts contribute to the anatomy, physiology, development, innate and adaptive immunity,
and behavior and finally also to genetic variation and to the origin and evolution of species. Acquisition of microbes and micro-
bial genes is a powerful mechanism for driving the evolution of complexity. Evolution proceeds both via cooperation and com-
petition, working in parallel.

So, like it or not, microbiology is going to be in the center
of evolutionary study in the future—and vice versa.
—Carl R. Woese

The hologenome concept of evolution was first published
8 years ago (1, 2). Since then, numerous experimental and

theoretical articles have appeared, providing additional support
for the concept. We review here these data and ideas and discuss
how they were the inspiration behind the hologenome concept of
evolution and how they continue to expand and develop it.

Since certain specialized terms are used throughout this ar-
ticle, we begin with defining these terms. The term holobiont
was introduced in 1991 by Margulis (3) to describe a host and
its endosymbiont. In 2002, Rohwer et al. (4) described the coral
holobiont to also include Bacteria, Archaea, protists, and vi-
ruses. We subsequently further generalized with respect to the
term “holobiont” to include all animals and plants and intro-
duced the term “hologenome” to describe the sum of the ge-
netic information of the host and its symbiotic microorganisms
(2). After we published several papers on the hologenome con-
cept, Richard Jefferson informed us that he had used the term
hologenome in a seminar that he had given in 1994. The mi-
crobiota refers to all of the microbes associated with an animal
or plant, while the microbiome is defined as the sum of the
genetic information of the microbiota (5). The term host gen-
erally refers to the larger, eukaryotic, multicellular organism in
or on which the symbionts reside.

THE HOLOGENOME CONCEPT

The hologenome concept of evolution asserts that the holobiont
with its hologenome, acts as a unique biological entity and there-
fore also as a level of selection in evolution (1, 2, 6). During the last
few years, numerous experiments have provided support for the
hologenome concept. The major arguments for considering the
holobiont as a level of selection are the following.

(i) All multicellular organisms contain abundant and diverse
microbiota. Often, the number of microbial cells and the
sum of their genetic information are above that of their
host.

(ii) Not only the host genome but also the microbiome can be
transmitted between generations with reasonable fidelity
and thus maintains the unique properties of the holo-
biont.

(iii) Microbiotas and their hosts interact in a manner that af-
fects the fitness of the holobiont in many ways, including
its morphology, development, behavior, physiology, and
resistance to disease. Taken together, these interactions
characterize the holobiont as a single and unique biolog-
ical entity (7).

One of the important outcomes of accepting the holobiont as
an independent level of selection (6, 8) is that several previously
underappreciated modes of genetic variation and evolution be-
come apparent. Genetic variation in the hologenome can be
brought about by changes in the host genome and also by changes
in the microbiome. Since the microbiome can adjust more rapidly
and by more processes than the host genome to environmental
dynamics, it plays a fundamental role in the adaptation and evo-
lution of the holobiont.

ABUNDANCE AND DIVERSITY OF MICROBES ASSOCIATED
WITH ANIMALS AND PLANTS

Microbes are present in large numbers on the surfaces of multi-
cellular organisms and in their fluids (exosymbionts), including
the skin, the digestive tract, and the airways, and also inside some
animals and plant cells (endosymbionts). Humans, for example,
contain about 1014 microbes in the digestive tract. Although it has
often been asserted that the number of cells in the human micro-
biota is 10 times higher than the number of cells in the human
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body, the ratio is actually quite variable and closer to 1 (9). Re-
garding plants, up to 108 bacteria per g are found on leafs (10), and
the rhizosphere of plants contains up to 109 bacteria and 106 fungi
per gram soil, the highest concentration being attached to the root
epidermis (11).

During the last decade, there have been numerous reports on
the number of bacterial species associated with different hosts
(Table 1). These values are minimum numbers because minor
species (�0.1% of the total) would not be detected with current
methods. Although these rare bacteria would have little effect on
the holobiont at present, they could become more abundant when
conditions change and thus contribute to the fitness of the holo-
biont and to its adaptation and evolution.

The growing databank on microbiota associated with specific
animals and plants has led to certain generalizations. (i) In addi-
tion to Bacteria, the holobiont may also include Archaea, protists,
and viruses. (ii) Microbes associated with hosts are different from
the microbial community in the bordering environment. (iii) The
microbiota is host species specific, even in different environments.
(iv) The compositions of microbial symbionts differ from tissue to
tissue in the same organism. We suggest that the diversity of mi-
crobial species in holobionts depends on the variety of niches in
different tissues, the activity of the immune system, and the
changing environmental conditions, especially diet. In addition,
bacteriophages may contribute to diversity by preventing any spe-
cific bacterial strain from dominating according to the “kill the
winner” hypothesis (12).

Analyses of the microbiota of humans indicate that there is a
core microbiota, which includes bacterial species that are com-
mon to all individuals and are present most of the time in rela-
tively large numbers (13). The noncore microbiota includes those
species that are readily exchangeable and vary as a function of
environmental conditions, such as diet and disease state. It is usu-
ally the noncore microorganisms that are changeable by external
manipulation (e.g., probiotics). Sometimes they can become sta-
ble inhabitants of the holobiont and part of the core microbiota
(14).

MICROBIOTAS ARE TRANSMITTED BETWEEN HOLOBIONT
GENERATIONS

For microbiotas to play a role in the evolution of animals and
plants, they must be transmitted between generations. Not only
the host genome but also the symbiont genomes must be trans-
mitted. It has been demonstrated in recent years that microbial
symbionts can be transmitted from parent to offspring by a variety
of methods, including via cytoplasmic inheritance (15), eggs (16),
coprophagy (consumption of feces) (17), direct contact during
(18) and after (19) birth, and insect vectors (20), and in various
other ways via the environment (21). Vegetative (asexual) repro-
duction takes place in many animals and plants. During vegetative
reproduction, the microbiota is automatically transferred to off-
spring.

Ley et al. (22, 23) have demonstrated that different mammals
have specific and typical microbiota that have coevolved and co-
diverged with them. In ants (genus Cephalotes), for example, it has
been suggested that many members of the microbiota have been
present since the diversification of the host genus in the Eocene
(24). Great apes have retained many of their microbiota by vertical
transmission over evolutionary timescales (25, 26). The fact that
some human symbionts are transmitted with fidelity has led to
their application in the study of human migration. In particular,
the bacterium Helicobacter pylori has been used as a conserved
marker of ancestry and migration (27). In summary, regardless of
the means, it is now evident that an important fraction of the
microbiota is transferred from one generation to the next. How-
ever, it is also possible that the presence of some of the microbes
within the microbiota is a result of recent acquisition from the
environment, via diet, for instance (22, 23).

In humans, most of the colonization of the newborn gut occurs
by inoculation with maternal vaginal and fecal microbes when the
baby transits the birth canal. Interestingly, recent data suggest that
intrauterine fetuses are not sterile and that a prenatal mother-to-
child efflux of commensal bacteria may occur (28, 29). An infant’s
first postpartum bowel movement is referred to as the meconium.

TABLE 1 Examples of estimated number of bacterial species associated with animals and plants

Host Estimated no. of bacterial species Reference(s)

Invertebrates
Drosophilia melanogaster 209 Wong et al. 2012 (92)
Marine sponge 2,567 Schmitt et al. 2013 (93)
Hydra 350 Franzenburg et al. 2013 (94)
Coral 1,508 Ainsworth et al. 2015 (95)
Termite gut 800 He et al. 2013 (96)

Vertebrates
Human gut 1,000–10,000 The Human Microbiome Project Consortium 2012 (97); Sankar et al. 2015 (98)
Human skin 4,742 Fierera et al. 2008 (99)
Bovine rumen 5,271 Jami and Mizrahi 2012 (100)
Great ape gut 8,914 Ochman et al. 2010 (26)
Land iguana 356–896 Hong et al. 2011 (101)

Plants
Phylosphere 252 Bulgarelli et al. 2013 (102)
Endophytes 77 Whipps et al. 2008 (103)
Rhizosphere 30,000 Berendsen et al. 2012 (104)
Marine green alga, Ulva australis 1,061 Burke et al. 2011 (105)
Pitcher plant, Sarracenia 1,000 Koopman et al. 2010 (106)
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Unlike later feces, the meconium is composed of materials in-
gested during the time the infant develops in the uterus. The
meconium had been thought to be sterile, but recent studies have
indicated that it contains a complex bacterial community domi-
nated by lactobacilli and enteric bacteria, such as Escherichia coli
(30, 31). Another source of microbiota for the infant is breast milk
(32). The fact that babies acquire microbial diversity from their
mother’s milk represents another mechanism for the transmission
of microbiota between generations.

MICROBIOTAS ARE PART OF HOLOBIONT FITNESS

Table 2 lists some of the important contributions of microbiotas
to the fitness of holobionts. It should be noted that the fitness of
holobionts involves beneficial interactions between the host and
its symbionts, as well as between the symbionts themselves. Al-
though the term “outsourcing” has been applied to describe func-
tions that microbiotas contribute to their hosts, the term “in-
sourcing” may be more appropriate since microbiotas are an
integral part of holobionts.

Mitochondria and chloroplasts can be considered “extreme
symbionts” because they were derived from alphaproteobacteria
(33) and cyanobacteria (34), respectively. Mitochondria are the
major sites of energy production in all eukaryotes, and chloro-
plasts are responsible for photosynthesis and a number of addi-
tional functions, including fatty acid synthesis, amino acid synthe-
sis, and the immune response in plants. Resident microbes also
protect animals and plants against pathogens. Evidence for this
comes mainly from studies performed with germ-free animals,
which are extremely sensitive to infection and mostly die follow-
ing administration of a pathogen (35). In humans, the resident
microbiota has been shown to help protect against infection by
pathogens along the alimentary tract (from mouth to colon), on
the skin, and in the urinary tract and vagina. It has also been
shown in plants that symbiotic bacteria can protect the holobiont
against phytopathogens by direct interaction with the pathogen
and by elicitation of induced systemic resistance (36).

Another important general fitness contribution of microbiota
to the holobiont is performance of metabolic processes that the
animal or plant cannot carry out without the microbiota, mainly

regarding nutrient provision. Examples include nitrogen fixation
in legumes (37), cellulose degradation in ruminants, termites, and
cockroaches (38, 39), photosynthesis by microalgae in corals,
mollusks, and sponges (40), and oxidation of inorganic com-
pounds in deep-sea invertebrates (41). In some obligatory biosyn-
thetic processes, cointeractions between microbiotas and their
host are required. For example, the mealybug Planococcus con-
tains the bacterium Tremblaya princeps, which in turn contains
the bacterium Moranella endobia (42). In this holobiont, the syn-
thesis of phenylalanine requires enzymes that are encoded by Mo-
ranella, Tremblaya, and the genome of the host insect (43).

In humans, gut microbiota plays an all-important function in
the production of vitamins and amino acids, breakdown of dietary
fiber to short-chain fatty acids, and detoxification of harmful
chemicals (44). Bacteria and fungi associated with plant roots con-
tribute to nitrogen metabolism, mineralization of organic mate-
rials, and phosphate uptake and increase access to water (45).
Rhizosphere microbiotas are a key component of plant fitness.

It has been shown in mice, chickens, and humans that obesity is
correlated with certain microbiota. More significantly, the Gor-
don group (46) showed directly that both microbiota and diet
influence obesity. When germ-free mice were inoculated with mi-
crobiotas from the feces of obese and lean human twins, the mice
that received bacteria from the obese twin showed a significantly
greater increase in weight than those that received bacteria from
the lean twin. Moreover, it is well known that obesity is correlated
with reduction of reproductive fitness in men and women (47,
48). However, research has also shown that the numbers of these
“obese bacteria” increase during the third trimester of pregnancy
(49). Such a microbiota would induce metabolic changes that pro-
mote energy storage in fat tissue that in turn encourages growth of
the fetus.

Animal and plant development is predicated on intimate rela-
tions with microbes (50, 51). In many organisms, microbially pro-
duced chemical signals trigger the development of organs (52).
For example, the endosymbiont Wolbachia produces signals that
prevent the ovaries of its parasitoid wasp host from undergoing
apoptosis (53). Wolbachia bacteria are also responsible for the
correct anterior-posterior patterning in nematodes (54). Vibrio
fischeri bacteria are required for the development of the light or-
gan in squids (55).

In vertebrates, the development of the immune and digestive
systems is triggered by and not completed without gut bacteria
(56, 57). In germ-free mice, gut-associated lymphoid tissue is ab-
sent or poorly developed. Also, they have insufficient intestinal
capillaries and a T-cell repertoire so diminished that they have a
severe immunological disorder which makes them highly sensitive
to infectious diseases (58, 59). Thus, to a large degree, humans and
other mammals “co-develop” with their symbionts (60).

Mouse studies have shown that the gut microbiota has an im-
pact on the development of the mammalian brain and subsequent
adult behavior. For example, germ-free mice spend significantly
more time in the light compartment of a box than control mice.
Inoculating the gut microbiota from healthy mice into germ-free
mouse pups caused them to behave in the “normal” cautious
manner (61). The hypothesis that the microbiota affects the brain
is supported by experiments showing a more than 2-fold differ-
ence between germ-free and conventional mice in levels of gene
expression in more than 100 genes in the brain (62). There is also
recent evidence that microbial products released into the blood-

TABLE 2 Examples of microbial participation in the fitness of
holobionts

Contribution of microbiota Example(s)

Respiration and ATP production Mitochondria (bacteria) in
all eukaryotes

Photosynthesis Chloroplasts (cyanobacteria)
in all plants

Protection against pathogens General
Provision of essential nutrients

to host
General

Fat storage and obesity In mice, chickens, and humans
Development Squid eye organ, legume nodule,

immune system, angiogenesis,
muscle thickness

Behavior Brain, metabolites, hormones, stress,
autism, sleep, mating selection,
group living

Detoxification of toxic substances Plant and fungal toxins in food,
heavy metals

Temperature adaptation In fish, desert plants, grass
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streams of mammals cross the blood-brain barrier and affect sleep
and autism (63). In Drosophila melanogaster, the commensal bac-
terium Lactobacillus plantarum alters the level of sex pheromones
and thereby influences mating behavior (64).

In addition to metabolizing food that cannot be digested by
animals alone, microbes also protect them against environmental
toxic materials, such as heavy metals, hydrazine, fungal and plant
toxins, and oxalic acid (65). Changes in temperature present a
problem to plants and ectothermic animals regarding how to carry
out cellular metabolism at both the high and low temperatures.
Microbiotas can help solve this problem by providing enzymes
optimized for the different temperatures (66). It has frequently
been reported that the survival of corals is threatened by increased
seawater temperature resulting from global warming. Recently it
has been shown that acquisition of certain strains of symbiotic
algae increases the temperature tolerance of the corals by 1 to 2°C
(67).

GENETIC VARIATION OF HOLOBIONTS

One of the most significant aspects of the hologenome concept is
the introduction of novel modes of genetic variation and evolu-
tion. Prior to the formulation of the hologenome concept, genetic
variation in animal and plants was assumed to occur exclusively as
a result of genetic changes during sexual reproduction, chromo-
some rearrangements, and epigenetic changes and ultimately by
mutation in the host. However, in holobionts, three additional
processes can occur: microbial amplification or contraction, ac-
quisition of novel microbial strains from the environment, and
horizontal gene transfer (HGT). These three processes can occur
rapidly and, as we describe in the next section, are important pro-
cesses in the evolution of animals and plants.

Microbial amplification or contraction involves changes in the
relative abundances of the diverse microbial symbionts in holo-
bionts. This type of genetic variation in the microbiota is similar to
duplication of chromosomal genes. However, alterations in the
abundance of symbionts are rapid and responsive to the environ-
ment, whereas changes in host genes are slow and random. Envi-
ronmental factors that drive changes in the microbiota include
diet, changing temperatures, and exposure to antibiotics. For ex-
ample, De Filippo et al. (68) have shown that a high-fiber diet
results in a high abundance of bacteria from the genera Prevotella
and Xylanibacter, whereas a high-carbohydrate diet results in
abundant Shigella and Escherichia. Similarly, changing the diet
from milk to solid foods in infants causes an increase in the abun-
dance of Bacteroidetes (69). In mice, a 1-day change in diet from
high fiber to high fat brought about a rapid change in the gut
microbiota (70); because the diverse microbial population of ho-
lobionts contains a large amount of genetic information, gain or
loss of microbiota can be a powerful mechanism for adapting to
changing conditions. In general, gene variations in the micro-
biome can be transferred to offspring. This is particularly relevant
to changes in the microbiota that occur during pregnancy (71).

Acquisition of novel symbionts from the environment is an-
other mechanism for introducing genetic variation into holo-
bionts. During their lifetime, animals, including humans, encoun-
ter numerous microorganisms in the food that they eat, the water
that they drink, and the air that they breathe and by contact with
other organisms. Plants acquire microbes from the soil and atmo-
sphere and also from insect vectors. If the acquired microbe can
overcome the immune system and find a niche in the holobiont, it

can become established in the host. Acquiring a new symbiont
introduces novel genetic material into holobionts. Probiotics, in
some cases, could be considered applied examples of this princi-
ple. During the 20th century, research on the acquisition of mi-
crobes focused primarily on pathogens. Many of the principles
derived from studies of the transmission of pathogens should also
apply to beneficial microorganisms. Acquisition of beneficial bac-
teria probably occurs frequently but generally goes unnoticed.

Horizontal gene transfer (HGT), also termed lateral gene
transfer, refers to the transfer of genes between organisms in a
manner other than the vertical transmission of genes from parent
to offspring via sexual or asexual reproduction. HGT is generally
associated with gene transfer between different bacteria but can
also take place from microorganisms to animals and plants and
the other way around. Examples include transfer of fungal genes
to aphids (72), transfer of cellulase genes from bacteria to a nem-
atode (73), and transfer of genes for the cytoskeletal protein tubu-
lin from eukaryotes to the bacterium Prosthecobacter (74). Many
Wolbachia genes have been horizontally transferred from these
bacterial endosymbionts to the chromosomes of their insect hosts
(75). In general, it is clear that introduction of genes by HGT into
eukaryote genomes has been a major force propelling genetic vari-
ation and evolution, as discussed in the next section.

EVOLUTION OF HOLOBIONTS

How does microbe-driven variation lead to evolution of complex-
ity? Microbes were the only forms of life on this planet for 2.1
billion years. During that time, they “invented” biochemistry,
evolved enormous genetic diversity, and split into two domains,
Bacteria and Archaea. The first eukaryote was probably formed by
the uptake of bacteria to eventually form mitochondria (76) and
chloroplasts (77) and possibly by the uptake of an archaeon by
bacteria to form the nucleus (78), i.e., by variations of acquisitions
of microbes. Subsequent evolution of multicellular organisms
proceeded both by the uptake of whole microbes and by HGT of
genes from microbes into the microbiome and into the host ge-
nome, in addition to mutations. All of the fitness traits of holo-
bionts ascribed to microbes fit into this category.

An example of a major evolutionary event that was driven by
the acquisition of bacteria is the ability of some animals to use
cellulose and other complex polysaccharides as nutrients. It is
likely that the evolution of termite and cockroach hindgut micro-
biotas occurred by the gradual process of internalizing from the
environment microorganisms that digest plant litter. Instead of
plant cellulose/hemicellulose being broken down in the soil prior
to ingestion, it “rots” in the hindgut after consumption (79). Sim-
ilar claims have been made for the origin of herbivorous dinosaurs
and the first plant-eating mammals.

An example of probably recent evolution of humans by HGT
between bacteria is the ability of Japanese to digest agar because
they have a bacterium in their gut that contains a gene that codes
for agarase. Westerners lack this bacterium and cannot digest agar.
The gene coding for agarase was obtained by HGT to a resident gut
bacterium from a marine bacterium that was present on raw sea-
weed that is part of the traditional Japanese diet (80). In general,
HGT between bacteria is a frequent event in the human body (81).

A key event in the evolution of placental mammals, including
humans, was the acquisition by HGT, from a retrovirus, of the
gene coding for the protein syncytin (82). Initially, the function of
syncytin was to allow retroviruses to fuse host cells so that viruses
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could move from 1 cell to another. Now, synctin is necessary for
the development of the placental syncytium, the essential part of
the barrier that prevents maternal antigens and antibodies getting
into the fetal bloodstream. Similarly, retrovirus-derived mole-
cules appear to have played a crucial function in the generation of
the progesterone-sensitive uterine decidual cell, allowing nutrient
provision to the developing embryo (83). These data indicate that
the integration of viral DNA into a host genome played a primary
role in a major evolutionary leap by enabling growth and matura-
tion of the fetus in placental mammals.

Recent analyses have shown that HGT in animals and plants
typically results in tens or even hundreds of active foreign genes.
In humans, 145 genes (not present in other primates) were attrib-
uted to HGT (84). These genes play a variety of roles and are
involved in such processes as fatty acid degradation and antimi-
crobial or inflammatory responses. Most of the foreign genes
identified in the study came from bacteria, but some originated
from viruses and yeasts. A total of 128 genes found in land plants
but absent from algae were identified as derived from prokaryotes,
fungi, or viruses. Many of these genes are related to essential or
plant-specific metabolic and developmental processes (85).

SPECIATION

Experiments on speciation in animals provide further support for
the hologenome concept of evolution. In 1989, it was reported
that splitting a homogenous population of fruit flies and propa-
gating some on a molasses medium and the others on a starch
medium resulted in mating preferences. The “molasses flies” pre-
ferred to mate with other molasses flies, and “starch flies” pre-
ferred to mate with other starch flies (86). The experiment was
considered important because mating preference is an early event
in the emergence of new species (87). However, the occurrence of
mating preference was too rapid to be explained by neo-
Darwinian evolutionary theory. Recently, we were able to demon-
strate that treatment with the antibiotic tetracycline abolished the
diet-induced mating preference, suggesting that the fly microbi-
ota was responsible for the phenomenon (64, 88). This was con-
firmed when it was shown that infecting antibiotic-treated flies
with pure cultures of L. plantarum isolated from starch flies rees-
tablished mating preference. Analytical data suggest that L. plan-
tarum changes the levels of cuticular hydrocarbon sex phero-
mones. The fact that bacteria contribute to the odor of animals
makes it likely that they play a general role in mating preference.

The microbiota also plays a role in post-zygote-stage reproduc-
tive success. When recently diverged wasp species were cross-
bred, the hybrids died during the larval stage. Antibiotics rescued
hybrid survival. The authors offered the following conclusion. “In
this animal complex, the gut microbiome and host genome rep-
resent a co-adapted hologenome that breaks down during hybrid-
ization, promoting hybrid lethality and assisting speciation” (89).

The “hologenomic basis of speciation” was also shown in two
subspecies of house mice (90). Hybrid mice displayed aberrant
immune gene expression and increased intestinal pathology. The
authors stated their conclusion as follows. “These results provide
unique insight into the consequences of evolutionary divergence
in a vertebrate hologenome, which may be an unrecognized con-
tributing factor to reproductive isolation in this taxonomic
group.”

CONCLUDING REMARKS

Although the hologenome concept is now widely accepted, it was
initially met with considerable criticism. The first criticisms came
from some coral biologists who claimed that the concept was
based on the incorrect assumption that bacteria protect corals
against bleaching. However, the hologenome concept was never
based solely on this assumption. Furthermore, it was subsequently
clearly shown that bacteria do protect corals against bleaching
(91). A more substantial criticism was that the microbiome was
not conserved with sufficient fidelity to play a role in evolution.
The data are now clear that at least part of the microbiota (the
core) is highly conserved. It is, in fact, the balance between the
conserved and dynamic microbiotas that aids holobionts in
adapting and evolving while conserving essential genes. Another
critical claim was that holobionts are nothing more than environ-
mental systems, such as small ponds. However, the close interac-
tion between the microbiota and its host, the fact that the micro-
organisms in the holobiont do not resemble those in the
surrounding environment, and the reproduction of the holo-
bionts all define the holobiont as a unique biological entity that
represents a level of selection in biological evolution.

Biology is undergoing a paradigm change. Animals and plants
can no longer be considered individuals. All are holobionts, con-
sisting of a host and numerous symbiotic microbes. The holog-
enome concept is a fundamental framework for understanding
the interaction between hosts and microbes in the health, disease,
and evolution of holobionts.
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