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Impaired or insufficient protein kinase G (PKG) signaling and protein quality control
(PQC) are hallmarks of most forms of cardiac disease, including heart failure. Their
dysregulation has been shown to contribute to and exacerbate cardiac hypertrophy
and remodeling, reduced cell survival and disease pathogenesis. Enhancement of
PKG signaling and PQC are associated with improved cardiac function and survival in
many pre-clinical models of heart disease. While many clinically used pharmacological
approaches exist to stimulate PKG, there are no FDA-approved therapies to safely
enhance cardiomyocyte PQC. The latter is predominantly due to our lack of knowledge
and identification of proteins regulating cardiomyocyte PQC. Recently, multiple studies
have demonstrated that PKG regulates PQC in the heart, both during physiological
and pathological states. These studies tested already FDA-approved pharmacological
therapies to activate PKG, which enhanced cardiomyocyte PQC and alleviated cardiac
disease. This review examines the roles of PKG and PQC during disease pathogenesis
and summarizes the experimental and clinical data supporting the utility of stimulating
PKG to target cardiac proteotoxicity.
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INTRODUCTION

Protein kinase G (PKG) elicits cardioprotection during various forms of cardiac stress by
transducing a vast array of beneficial processes (Dunkerly-Eyring and Kass, 2019; Pinilla-Vera
et al., 2019). PKG stimulates left ventricular relaxation and counters pathological hypertrophy and
remodeling (Dunkerly-Eyring and Kass, 2019). Insufficient PKG signaling has been implicated in
the pathogenesis of cardiac disease toward heart failure, giving considerable interest to strategies
to enhance PKG signaling (Kokkonen and Kass, 2017; Dunkerly-Eyring and Kass, 2019). New
pharmacological approaches to stimulate PKG are being evaluated as therapy for heart failure
and other forms of cardiac disease in clinical trials (Pinilla-Vera et al., 2019). However, a
better understanding of the substrates targeted by PKG for cardioprotection is needed. Recently
the activation of PKG was demonstrated to regulate protein homeostasis (proteostasis), to
attenuate disease pathogenesis (Dunkerly-Eyring and Kass, 2019). The protein targets, underlying
mechanisms, and therapeutic strategies to facilitate PKG regulation of proteostasis are only
beginning to be identified.

Cardiomyocyte proteostasis is maintained by elaborate protein quality control (PQC) systems.
These systems help fold polypeptide chains into properly functioning proteins, refold proteins
that become misfolded or damaged during stress, and then remove terminally misfolded and/or
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aggregated proteins by degradation (Wang and Robbins, 2006;
Wang et al., 2008). Cardiomyocyte PQC is maintained by
three separate but interlinking systems: molecular chaperones
(protein folding/refolding), the ubiquitin proteasome system
(UPS) (proteasome mediated degradation of soluble proteins),
and autophagy (lysosomal degradation of protein aggregates
and organelles) (Wang et al., 2008). Similar to PKG signaling,
cardiomyocyte PQC is also perturbed/insufficient during
cardiac disease pathogenesis. This results in the intracellular
accumulation of proteins targeted for degradation, aggregation
of proteins, and subsequent declined cardiac function; a
class of disorders termed cardiac proteotoxicity (Wang and
Robbins, 2006; Willis and Patterson, 2013). The proteins and
macromolecular structures that are responsible for maintaining
cardiomyocyte PQC are known; however, only recently have
we begun to understand the proteins and/or posttranslational
modifications that regulate PQC. Pharmacological strategies to
safely enhance PQC are beginning to be explored. This review
focuses on one protein, PKG, which has shown promise as a
cardiac PQC-enhancing therapy. We will detail the studies that
demonstrate a role for PKG regulating PQC during physiological
and pathological states, examine the therapeutic potential of
targeting PKG, and discuss potential future directions.

PROTEOTOXICITY IN HEART FAILURE

The ubiquitin-proteasome system (UPS) removes damaged
and/or misfolded proteins that are first tagged by ubiquitination
for degradation by the proteasome (Wang et al., 2008).
Ubiquitination is mediated by multiprotein ubiquitin-
activating enzymes (E1), ubiquitin-conjugating enzymes
(E2), and ubiquitin ligases (E3). Ubiquitinated proteins are then
translocated to the core proteasome for degradation (Amerik
and Hochstrasser, 2004; Reyes-Turcu et al., 2009; Metzger et al.,
2012). The mammalian proteasome is a multi-subunit protease
complex composed of the 20S catalytic core particle and two 19S
regulatory cap particles. The 19S regulatory subunits recognize
the polyubiquitin chain and unfold the protein for subsequent
degradation by the 20S catalytic core (Nussbaum et al., 1998;
Lasker et al., 2012).

All forms of cardiac disease, including heart failure, present
with an accumulation of ubiquitinated proteins, demonstrating
the vital role the UPS has during pathogenesis (Drews et al.,
2010; Su and Wang, 2010; Willis et al., 2010; Wang et al.,
2011; Powell et al., 2012; Day, 2013). Indeed, dysfunctional
UPS has been reported in human end-stage heart failure,
ischemic heart disease, and cardiac hypertrophy (Hein et al.,
2003; Weekes et al., 2003; Drews et al., 2010; Powell and
Divald, 2010; Predmore et al., 2010). Weekes et al. first reported
increased levels of ubiquitinated proteins in myocardial samples
obtained from patients with familial dilated cardiomyopathies,
which has been supported by others (Weekes et al., 2003;
Chen et al., 2005; Liu et al., 2006a,b). Left ventricular
unloading in humans with chronic heart failure leads to
improved proteasome activity (Wohlschlaeger et al., 2010).
Similar results were reported by Predmore et al. (2010),

who demonstrated markedly reduced proteolytic activities in
failing human hearts that was restored after LV unloading.
The mechanism by which ventricular unloading stimulates
proteasome activity remains unknown; however, there are
multiple potential explanations: (1) LV unloading decreases
intracellular ROS, thus oxidized proteins for proteasomal
degradation along with less oxidation of the proteasome itself;
(2) a separate post-translational modification(s) of the UPS by
yet to be identified kinase(s) (Predmore et al., 2010). Proteasome
inhibition in pre-clinical models is associated with exacerbated
or accelerated pathogenesis of cardiac disease. Mice treated
with bortezomib (proteasome inhibitor) worsened transaortic
constriction (TAC)-induced cardiac hypertrophy, resulting in
early heart failure and death in mice (Tang et al., 2010).
These findings were supported by a study using a genetic
cardiomyocyte restricted-proteasome inhibited mouse model
(beta5T60A) following TAC surgery (Ranek et al., 2015). Similarly,
models of myocardial ischemia demonstrated that pretreatment
of isolated rat hearts with a proteasome inhibitor dose-
dependently decreased post-ischemic cardiac function (Powell
et al., 2005). Tian et al. (2012) reported mice that express a
threonine 60 to alanine mutation on the proteasome subunit
beta 5 (beta5T60A) to reduce the proteolytic activity of the
proteasome had worsened myocardial ischemia-reperfusion
injury. Impaired or insufficient proteasome activity has been
associated with myocarditis (Szalay et al., 2006) and diabetic
cardiomyopathy (Li and Wang, 2011). Genetic overexpression of
key proteasome subunits enhances proteasome-mediated protein
degradation and protects the heart against oxidative stress,
proteotoxicity, and myocardial ischemia (Li et al., 2011a,b).
Together, these studies demonstrate the prominent role the
UPS has in degrading proteins to maintain proteostasis during
cardiac disease.

The other primary mediator of cardiomyocyte proteostasis
is autophagy, which is comprised of macroautophagy,
microautophagy, chaperone-mediated autophagy, and
organelle-specific autophagy (e.g., mitophagy) (Ghosh and
Pattison, 2018). Macroautophagy involves the formation of an
autophagosome which surrounds the cargo for degradation
by the lysosome. Microautophagy is the direct engulfment
of cellular debris by the lysosome. Chaperone-mediated
autophagy degrades proteins containing a KFERQ pentapeptide
motif that are translocated into the lysosome via a heat
shock cognate 70 (Hsc70) chaperone complex (Dice, 1990).
Autophagy is required for the development, differentiation,
and function of cardiomyocytes (Nakai et al., 2007; Zhang
et al., 2012; Ikeda et al., 2015) and has an important
role in cardioprotection (Gustafsson and Gottlieb, 2008;
Sciarretta et al., 2014).

Dysregulated autophagic flux is associated with and has been
implicated in the pathogenesis of many forms of cardiac disease.
Formation of autophagosomes in dilated cardiomyopathy
patients has a positive correlation with better prognosis,
indicating the protective role of autophagy in heart failure
(Saito et al., 2016). Many pre-clinical models have associated
reduced autophagy with heart failure and cardiac functional
decline (Eisenberg et al., 2016; Shirakabe et al., 2016; Ghosh
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and Pattison, 2018). Mice with mutations in MYBPC3 (cardiac
myosin-binding protein C) and in MYH7 (β-myosin heavy)
forms of hypertrophic cardiomyopathy (HCM) present with
an accumulation of autophagic vacuoles, suggesting impaired
autophagic flux (Schlossarek et al., 2012; Song et al., 2014;
Carrier et al., 2015; Singh et al., 2017). Further, deletion of
Atg5 (autophagy related gene 5), a key protein involved in
the extension of the phagophore membrane during autophagic
vesicle formation, causes cardiac hypertrophy and left ventricular
dysfunction (Nakai et al., 2007; Pattison et al., 2011). In
a cardiac proteinopathy model (CryABR120G), cardiac-specific
overexpression of Atg7 increased autophagic activity and
improved cardiac function (Bhuiyan et al., 2013). Obese mice
see the downregulation of several autophagic genes, including
Atg7 (Sciarretta et al., 2012). The exact mechanism for the
downregulation of Atg7 was not revealed in these studies;
however, it is known that proteinopathy and obesity are
characterized by increased mammalian (mechanistic) target of

rapamycin complex 1 (mTORC1) activity, which suppresses
Atg7 expression (Sciarretta et al., 2018). Interestingly the
increased expression of Atg7 in the heart prevents the
heart from hypertrophying in response to high-fat diet-
induced obesity (Tong et al., 2018). Autophagic flux was
reduced in both type 1 and 2 diabetic mouse models and
in aged mice (Epstein et al., 1989; Lee et al., 1996; Xie
et al., 2011; Kanamori et al., 2015; Munasinghe et al., 2016;
Nakamura and Sadoshima, 2018).

Collectively, these studies demonstrate the pivotal role
that proteostasis, specifically the UPS and autophagy, has
during cardiac pathogenesis (Figure 1). To translate these
findings to the clinic to directly target cardiac proteotoxicity,
a better understanding of the mechanisms regulating PQC
and identification of druggable targets is needed. This review
describes exciting investigations into a potential target that
has the ability to enhance cardiomyocyte PQC and has many
therapeutic strategies available.

FIGURE 1 | Impaired cardiomyocyte proteostasis results in cardiac dysfunction. Cardiac pathologic stress increases production/formation of misfolded proteins that
if not removed form large, insoluble protein aggregates. Cardiomyocytes utilize various processes to maintain proteostasis: misfolded proteins will be catalyzed by
the ubiquitin proteasome system (UPS) through ubiquitination via a series of enzymatic reactions involving an ubiquitin activating enzyme (E1), ubiquitin conjugating
enzyme (E2), and ubiquitin ligase (E3) for degradation by the proteasome (A). Chaperone-mediated autophagy is a process by which the heat shock cognate 70
(HSC70) complex recognizes and binds select protein targets for internalization and degradation to the lysosome through the lysosome-associated membrane
protein 2A (LAMP2A) receptor (B). Macroautophagy is the bulk removal of proteins, protein aggregates, and organelles by first forming an autophagosome to
surround the cargo followed by merging with the lysosome for degradation (C). The insufficiency or overwhelming of the protein degradation systems during cardiac
stress results in an accumulation of aggregated proteins, culminating in reduced cardiac function and lifespan (D).
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The Role of PKG in Proteotoxicity
Protein kinase G is stimulated by cyclic guanosine
monophosphate (cGMP). cGMP is generated downstream
of nitric oxide (NO) or natriuretic peptide (NP) activation of
guanylate cyclase (GC-1, formerly soluble—sGC) and GC-2
(formerly particulate—pGC), respectively (Dunkerly-Eyring
and Kass, 2019). Phosphodiesterases (PDEs) selective for
cGMP (PDEs 5 and 9 in the heart) negatively regulate PKG
activity. PDE regulation of PKG activity is known to be highly
compartmentalized within the cardiomyocyte, adding a level
of regulation (Kokkonen and Kass, 2017; Dunkerly-Eyring and
Kass, 2019). Indeed, PDE5A primarily regulates NO-generated
cGMP, which tends to be dispersed throughout the cytosol
of the cardiomyocyte, whereas PDE9A regulates the cGMP
pool that is localized at the membrane (Kokkonen and Kass,
2017). PDE1, a dual cAMP and cGMP esterase, regulates
PKA and PKG activity in an isoform-specific manner in the
heart (Hashimoto et al., 2018; Kokkonen-Simon et al., 2018;
Dunkerly-Eyring and Kass, 2019).

Multiple strategies of PKG activation have proven to be
cardioprotective in response to various pathological stimuli:
inhibition of PDE5 or PDE9 reduced cardiac hypertrophy and
improved function following left ventricular pressure overload
(PO) induced by TAC (Takimoto et al., 2005; Nagayama et al.,
2009; Lee et al., 2015). Stimulating PKG directly reduced infarct
size and myocardial fibrosis/remodeling following myocardial
infarction and ischemia-reperfusion injury (Das et al., 2006;
Salloum et al., 2008; Krieg et al., 2009). Neurohormonal
stimulation of G-protein-coupled (Gq and Gi) receptor signaling
is suppressed by PKG phosphorylation of and/or binding to
the regulator of G protein signaling (RGS) proteins, RGS2
and RGS4 (Takimoto et al., 2009). PKG phosphorylates and
inhibits the transient receptor potential cation channels type
6 (TRPC6) to block calcineurin/NFAT signaling (Kinoshita
et al., 2010; Koitabashi et al., 2010; Nishida et al., 2010)
and RhoA to decrease Rho-kinase (Sawada et al., 2001).
PKG also regulates mechanosensing via phosphorylation of the
sarcomeric proteins: myosin-binding protein C, phospholamban,
TnI, and titin (Raeymaekers et al., 1988; Kruger et al., 2009;
Thoonen et al., 2015; Rainer and Kass, 2016). Collectively,
these studies demonstrate the ability of PKG to correct
pathological imbalances, but evidence that PKG stimulation
could restore proteostasis during cardiac disease is more recent
and forthcoming.

With PKG acting as a brake on many pathological processes,
the attention turned to a potential regulation of cardiomyocyte
proteostasis. Over the last decade, multiple studies have
indicated that PKG activation enhances PQC as a primary
mechanism of action to protect the myocardium. Pioneering
studies from the Wang lab discovered PKG positively regulates
proteasome activity by phosphorylating key proteasome
subunits, Rpt6 of the 19S cap and Beta5 of the 20S proteolytic
core (Ranek et al., 2013). Intriguingly, activation of PKG
pharmacologically (PDE5 inhibitor, sildenafil) or genetically
(expression of a constitutively active PKG) in a proteinopathy
model (CryABR120G) reduced the accumulation of ubiquitinated
proteins and cleared the degradation of misfolded, but not

normal, proteins (Ranek et al., 2013). Enhanced PQC with PKG
stimulation was associated with reduced cytotoxicity (in vitro)
and improved cardiac function (in vivo) (Ranek et al., 2013).
Similarly, VerPlank et al. (2020) reported stimulation PKG with
both a PDE5 inhibitor or GC-1 activator enhanced proteasome
proteolytic activity, the degradation of short lived-and long lived
proteins, and determined a direct relationship between PKG and
purified proteasomes. Stimulation of PKG via activation of the
muscarinic 2 receptor also increased proteasome activity (Ranek
et al., 2014), suggesting both the plasma membrane localized
and cytosolic localized pools of PKG can enhance proteasome
activity. Inhibition of PKG or antagonizing muscarinic 2
receptors decreased the proteasome peptidase activities in both
the absence or presence of ATP (Ranek et al., 2013, 2014),
suggesting that PKG basally regulates proteasome peptidase
activities. These data were supported by and expanded on by
a recent study using a PDE1 inhibitor, IC86430 (Zhang et al.,
2019). Here the authors utilized CryABR120G proteinopathy
mice, which develop a heart failure with a preserved ejection
fraction (HFpEF)-like phenotype, and show increased expression
of the PDE1A isoform. Inhibition of PDE1 in these mice and
cultured cardiomyocytes attenuated proteotoxic stress, increased
proteasome activity, and extended mouse lifespan in a PKA
and PKG-dependent manner (Zhang et al., 2019). Collectively
these findings demonstrate that PKG regulates proteasome
activities, proteasome-mediated degradation of misfolded
proteins, and that pharmacological approaches can be utilized to
elicit these responses.

Recently, it was reported that PKG can also enhance
macroautophagy to enhance cardiomyocyte PQC to attenuate
cardiac hypertrophy. Tuberous sclerosis complex 2 (TSC2,
tuberin), an upstream negative regulator of mTORC1, is
phosphorylated by various kinases that can either inhibit (Akt
and ERK) or stimulate (AMPK and GSK-3β) its activity. The Kass
lab recently reported a new signaling paradigm whereby PKG
phosphorylates TSC2 at serine 1365 (1364 in humans) (Ranek
et al., 2019). Interestingly, this regulation is itself dependent on
the redox state of PKG with reduced phosphorylation of TSC2
detected with oxidation of PKG at cysteine 42 (Oeing et al., 2020).
Unlike other TSC2 phosphorylation sites, the phosphorylation of
1365 did not affect basal mTORC1 activity. However, a potent
inhibition of mTORC1 hyperactivity was observed once mouse
hearts were subjected to hemodynamic (left ventricular pressure
overload), or cardiomyocytes to hormonal, stress (endothelin-1).
PQC was enhanced as evidenced by upregulation of autophagic
flux, clearance of ubiquitinated proteins, and decreased protein
aggregation (Ranek et al., 2019). TSC2 S1365 phospho-mimetic
decreased, whereas phospho-null exacerbated cardiomyocyte cell
size and cytotoxicity following endothelin-1 treatment. Phospho-
mimetic mice had attenuated cardiac hypertrophy, improved
function, and extended lifespan in response to pressure overload,
with opposing findings yielded in phospho-null mice (Ranek
et al., 2019). This phosphosite on TSC2 is unique in that there
only appears to be mTORC1 regulation in the presence of a
pathological co-stimulus, thereby not altering the physiological
homeostatic role of mTORC1 (Manning, 2019). Considering
the issues with chronic, broad mTORC1 inhibition, utilizing a
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pharmacological approach with a PKG stimulator represents a
unique advantage.

THERAPEUTIC STRATEGIES TO TARGET
PROTEOTOXICITY VIA PKG

Currently, there are no approved therapeutic strategies to
enhance PQC. However, interest has increased as more and
more studies implicate exacerbated disease pathogenesis with
proteotoxicity, and the evidence in pre-clinical models that
PQC enhancement strategies elicit cardioprotection. PKG is
an attractive therapeutic target for multiple reasons: (1) PKG
modulators have been used in clinic for decades, (2) PKG
activators/stimulators boast an excellent safety profile and are
well tolerated, and (3) there are many proteins available to
interrogate the PKG pathway (Kokkonen-Simon et al., 2018;
Dunkerly-Eyring and Kass, 2019; Pinilla-Vera et al., 2019).
The first PKG activators were used in the 1800 s in the
form of inhaled organic nitrates to treat angina pectoris
(Kots et al., 2009; Daiber and Munzel, 2015). It would be
roughly 100 years before it was discovered that these work
by releasing NO and enhancing cGMP levels (Schlossmann
and Schinner, 2012). Therapeutic strategies available to activate
the PKG pathway either aim to promote cGMP synthesis
(e.g., GC-1 stimulators and activators) or to inhibit cGMP
degradation (e.g., PDE5 inhibitors), or both. The GC-1
stimulator, Riociguat, is approved for the treatment of pulmonary
arterial hypertension (PAH) as well as inoperable chronic
thromboembolic pulmonary hypertension. GC-1 stimulators are
being tested in heart failure, diabetic nephropathy, systemic
sclerosis, as well as sickle cell disease and central nervous
system disease (Xiao et al., 2019). The GC-1 stimulator,
vericiguat, was tested in clinical trials for both heart failure with
a reduced ejection fraction (HFrEF) [SOCRATES-REDUCED
NCT01951625 (Gheorghiade et al., 2015) and VICTORIA
NCT02861534 (Armstrong et al., 2018)] and in HFpEF
(SOCRATES-PRESERVE NCT01951638) (Filippatos et al., 2017;
Pieske et al., 2017). Sacubitril/valsartan (entresto) that combines
a neprilysin inhibitor with an angiotensin receptor blocker is
increasingly popular as a heart failure therapy, as demonstrated
in the PARADIGM-HF (NCT01035255) trial (McMurray et al.,
2014; Fala, 2015). The ability of neprilysin inhibitors to increase
the levels of natriuretic peptides make PKG a potential target
of sacubitril/valsartan (Yan et al., 2003; Riddell and Vader,
2017). Indeed, a 2019 study determined that sacubitril/valsartan
decreased cardiac fibrosis in a mouse cardiac hypertrophy
model and protected cardiac fibroblasts from myofibroblast
transition via PKG-dependent inhibition of RhoA activation
(Burke et al., 2019).

These trials did not specifically implicate impairment
in proteostasis; however, existing data from human heart
tissue suggest that proteostasis is impaired in a disease
specific manner. Understanding the PQC systems that are
perturbed in different diseases will allow for selective therapeutic
targeting. Polyubiquitinated proteins are increased in failing
hearts in early as well as late stage disease, suggesting that

accumulation of polyubiquitinated proteins occurs before the
development of decompensated heart failure (Day, 2013).
A histological study from human failing hearts due to
idiopathic dilated cardiomyopathy (DCM) noted colocalization
of ubiquitin with monodansylcadaverine, a specific marker
for autophagic vacuoles, suggesting a link between ubiquitin
conjugate accumulation and autophagy (Kostin et al., 2003).
Patients with ischemic cardiomyopathy (ICM) and DCM show
differential UPS activity patterns. Human ICM heart tissue
exhibits reduced trypsin-like proteasomal activity compared to
DCM, while both chymotrypsin- and caspase-like proteasomal
activities were reduced in DCM and ICM hearts compared
to non-failing controls (Spanig et al., 2019). HCM is also
characterized by a reduction in chymotrypsin- and caspase-
like activities compared to control hearts (Predmore et al.,
2010). Failing human hearts exhibit reduced proteasome
activity compared to donor controls, which is thought to
be related to reduced docking of the 19S proteasome to
the 20S proteasome and decreased phosphorylation of Rpt6
(Day, 2013), a potential target of PKG (Ranek et al., 2013).
Right ventricular heart disease has not been focused on in
clinical trials regarding proteostasis despite emerging data of
its important role (Rajagopalan et al., 2013; Drews, 2014;
Drews and Taegtmeyer, 2014). Hence, new insights into
the regulation of proteostasis via PKG signaling in these
diseases might help select the correct patient cohort for
successful therapy.

Although the PKG pathway has long been a focus to treat
cardiac disease, only recently has the stimulation of PKG
been suggested as a new therapeutic strategy to treat cardiac
proteinopathies (Figure 2). HFpEF is a lethal syndrome for
which there are no evidence-based therapies, characterized
by an imbalance in NO levels and low myocardial cGMP
and PKG activity (Rainer and Kass, 2016; Schiattarella et al.,
2019). A novel murine HFpEF model required metabolic stress
accompanied by L-NAME, an NO synthase inhibitor, hence
PKG inhibitor, to present some HFpEF symptoms (Schiattarella
et al., 2019). These findings suggest that decreased PKG
activity facilitates the development and pathogenesis of HFpEF.
PDE5 inhibition reduced ER stress in isoproterenol-treated
rats and pressure-overloaded mice (Rainer and Kass, 2016)
and could successfully treat a desmin-related proteinopathy of
the murine heart (Ranek et al., 2013). Xuejun Wang’s group
reported that inhibiting PDE1, which hydrolyzes both cAMP
and cGMP, increases 26S proteasome activity in a CryABR120G-
based proteinopathy of the murine heart (Zhang et al., 2019).
Treatment with PDE1 inhibitor IC86430 increased proteasome
phosphorylation, reduced misfolded CryAB protein in the
murine heart, attenuated HFpEF-like phenotype, and ultimately
improved survival (Zhang et al., 2019). These studies further
support the notion that activating PKG could be beneficial in
HFpEF therapy, at least in part by enhancing PQC. Inhibitors
of mTORC1 potently increase autophagic flux, attenuate cardiac
hypertrophy, and enhance function; however, chronic use leads
to cardiac dilation and failure along with immunosuppression
and metabolic disturbances (Benjamin et al., 2011; Zeng
et al., 2013). These deleterious side effects can be avoided by
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FIGURE 2 | An overview of PKG regulation of cardiomyocyte protein quality control and therapeutic interventions to stimulate PKG activity. PKG is thought to be
divided into two primary pools: the membrane and cytosolic pools. Natriuretic peptides binding to the natriuretic peptide receptor activate guanylate cyclase to
produce cGMP and ultimately stimulate the membrane pool of PKG. Nitric oxide, produced by nitric oxide synthase, activates guanylate cyclase-1 to produce
cGMP, culminating in the activation of the cytosolic PKG pool. Once activated, PKG can increase the activity of the proteasome or phosphorylation of TSC2 to inhibit
mTORC1 and enhance autophagic flux. PKG stimulation of the proteasome or autophagy restores cardiomyocyte proteostasis during cardiac stress. AR,
adrenoreceptor; GC-1, soluble guanylate cyclase 1; GC-A, guanylyl cyclase-A (receptor); GMP, cyclic guanylyl monophosphate; ER, endoplasmatic reticulum;
mTORC1, mammalian target of rapamycin complex 1; NOS, nitric oxide synthase; NP, natriuretic peptide; NPR, NP receptor; PDE, phosphodiesterase; PKG, protein
kinase G; PQC, protein quality control; TSC2, tuberin/tuberous sclerosis complex 2.

stimulating PKG to inhibit mTORC1, hence might present a
better tool than mTOR inhibitors (Manning, 2019; Ranek et al.,
2019). Collectively these studies demonstrate that (1) PKG is
vital to maintain proteostasis basally, (2) many therapeutic
targets (NO, NPs, PDEs) are available to stimulate PKG,
and (3) PKG activators/stimulators could be the first therapy
that enhances PQC, is cardioprotective, and does so without
deleterious side effects.

CONCLUSION

Our knowledge of the protein kinases that regulate
cardiomyocyte PQC has vastly expanded. The discovery of

new targets to pursue, pharmacological strategies to test, and
increased understanding of the regulatory mechanisms are
pivotal to translating successful experimental studies into
efficacious clinical therapies. Several crucial hurdles remain. The
first being the safety of a therapy, as agents may increase PQC
but as a compensatory mechanism for damage induced by the
therapy. Second issue is having druggable targets for therapeutic
interventions. The third hurdle is to match the appropriate
disease state to the PQC deficiency to the microdomain in which
the kinase and PQC system reside. PKG activators/stimulators
are safe and well tolerated and many are already in clinical
use. Further research to gain a precise understanding of the
microdomains these compounds work in and PQC machinery
they associate with will identify the conditions and patient
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subsets that will likely benefit from specific PKG
modulation. The final hurdle is the need for a blood
biomarker capable of detecting impaired proteostasis in
the heart, which to the best of our knowledge has
not been verified. This would be essential to detect
patients that might benefit from strategies to improve
cardiomyocyte PQC and to monitor potential success of
the therapy.
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