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Abstract: Kaposi’s sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegu-
ment protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout
mutants and their subsequent functional analyses have permitted a better understanding of ORF45
and its context-specific and vital role in the KSHV lytic cycle. ORF45 is a multifaceted protein that
promotes infection at both the early and late phases of the viral life cycle. As an immediate-early
protein, ORF45 is expressed within hours of KSHV lytic reactivation and plays an essential role in
promoting the lytic cycle, using multiple mechanisms, including inhibition of the host interferon
response. As a tegument protein, ORF45 is necessary for the proper targeting of the viral capsid
for envelopment and release, affecting the late stage of the viral life cycle. A growing list of ORF45
interaction partners have been identified, with one of the most well-characterized being the asso-
ciation of ORF45 with the host extracellular-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK)
signaling cascade. In this review, we describe ORF45 expression kinetics, as well as the host and viral
interaction partners of ORF45 and the significance of these interactions in KSHV biology. Finally, we
discuss the role of ORF45 homologs in gammaherpesvirus infections.

Keywords: herpesvirus; tegument; KSHV; gammaherpesvirus; immediate-early gene; ORF45; RSK;
MAP kinase pathway; interferon

1. Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma-
herpesvirus that is the etiologic agent of Kaposi’s sarcoma [1], primary effusion lym-
phoma [2] and multicentric Castleman’s disease [3]. KSHV has a broad tropism in adherent
cell lines, where the default pathway following primary infection is the establishment of
viral latency [4]. However, lytic viral infections have been detected in select cell types,
including primary human tonsillar B cells, oral epithelial cells and lymphatic endothelial
cells [5–9]. Importantly, although the majority of KSHV-induced tumors are composed of
latently infected cells, spontaneous lytic reactivation can occur in a subset of cancer cells,
which is posited to be important for sustained tumorigenesis [10]. Lytic reactivation results
in a cascade-like expression of viral immediate-early (IE), early (E) and late (L) genes in
a highly regulated temporal manner. KSHV encodes over eighty genes, many of which
have roles in host immune evasion, that are crucial for facilitating lytic viral replication and
virus production [11,12]. One of the earliest recognized factors involved in suppression
of the host immune response against KSHV is ORF45, which was elegantly demonstrated
in 2002 by Zhu et al. [13]. As both a part of the KSHV virion and an immediate-early
gene, ORF45 plays distinct roles during several phases of the viral life cycle. Given the
integral role of ORF45 during KSHV infection and reactivation, a full understanding of
its various functions is essential to assess how ORF45 and/or ORF45-regulated pathways
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could be targeted for antiviral therapies. The objective of this review is to summarize
the many different functions of the multifunctional KSHV-encoded ORF45 protein and its
gammaherpesvirus homologues.

2. Expression of ORF45 as an Immediate-Early Gene

Like other herpesviruses, KSHV encodes four classes of genes: immediate-early, early,
late and latent genes. While the lytic program is suppressed during latency, upon reactiva-
tion, the full cascade of immediate-early, early and late genes is expressed in a regulated
temporal manner. Immediate-early genes are expressed in the absence of prior viral protein
expression, and therefore, they are defined as genes whose expression is resistant to protein
synthesis inhibitor treatment following chemically induced reactivation [14]. As the first
genes expressed in the first hours of lytic reactivation, immediate-early genes play key
roles in the viral life cycle and host immune evasion [15]. Several immediate-early genes of
KSHV were identified following reactivation of latently infected Primary Effusion Lym-
phoma cells, including the lytic switch protein ORF50, or Replication and Transcription
Activator (RTA) and ORF45 [16]. Recent genome-wide approaches also identified ORF45
to be induced within 8 h of induction in the iSLKBAC16 KSHV+ epithelial cell line and
within 4 h of induction in KSHV+ B cell lymphoma cell line BCBL1 [16,17], reinforcing the
notion that ORF45 is expressed as an immediate-early gene in the KSHV lytic cycle. In addi-
tion, transcriptomic analysis following de novo infection of peripheral blood mononuclear
cells (PBMCs), CD14+ cells and telomerase immortalized vascular endothelial (TIVE) cells,
revealed relative abundance of actively transcribed ORF45 mRNA at 4 h post-infection,
indicating its rapid accumulation in host cells following KSHV infection [18]. As detailed
below, the widely expressed lytic viral ORF45 plays a crucial role both during de novo
infection and lytic reactivation.

3. ORF45 Structure and Localization

KSHV ORF45 is a 1.7-kb gene, which encodes the 407-amino acid ORF45 protein. The
ORF45 gene is part of the orf47-orf46-orf45 gene cluster, and ORF45 is expressed from this
tricistronic mRNA [19–21]. In addition to expressing the full ORF45 protein, the alterna-
tively spliced mRNA also yields two gene products, ORF47/45-A and ORF47/45-B [22].
The ORF45 protein has been shown to localize to both the nucleus and the cytoplasm, with
the ability to shuttle between the two compartments [23]. While exogenously expressed
ORF45 is predominantly located in the cytoplasm in HeLa [24] and 293T [13] cells, ORF45
was also located in nuclear replication compartments in reactivated B-cells [25]. ORF45
possesses a nuclear localization sequence (NLS) from amino acids 297–300 and a nuclear ex-
port sequence (NES) from amino acids 284–294 [23]. NLS-defective KSHV mutants, but not
NES-defective KSHV mutants, had a decreased production of viral progeny, demonstrating
that ORF45 subcellular localization is linked to its pro-viral role [23]. Interestingly, ORF45
has an acidic domain between amino acids 90 and 115 that is characteristic of nuclear
proteins and transcriptional activators [16] suggesting that ORF45 could also function as a
transcription regulatory factor, but its potential function in a chromatin environment is still
largely unknown.

4. ORF45 as a Component of the Tegument of KSHV

Proteomic analysis of KSHV virions revealed that ORF45 is also part of the viral tegu-
ment [26,27]. The virion-associated tegument of herpesviruses is located between the viral
nucleocapsid and envelope, and its components have functional roles in virion entry, assem-
bly, egress and modulation of host signaling pathways [28–30]. ORF45 was among 24 KSHV
proteins identified via a mass spectrometry analysis of purified virions isolated from B-cell
lymphoma cells [27]. Moreover, ORF45 was among the proteins that were resistant to
trypsin digestion of purified virions only in the absence of detergent, a classical indication
that it is a tegument protein [26,27]. Recent cryo-electron microscopy studies have allowed
visualization of the gammaherpesvirus tegument as a structured organization of proteins
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which interact within the tegument layer and with capsid and envelope proteins [31]. More
recently, the composition of the KSHV virion was revisited with ultra-high resolution Qq
time-of-flight mass spectrometry, and ORF45 was confirmed as a virion-associated protein
using this method [32]. Finally, in addition to being detectable within infectious virions,
ORF45, along with several other tegument proteins, are also found at comparable levels in
KSHV virus-like vesicles (VLVs), which are produced following productive lytic infection
of cells in high number but lack the viral capsid and genome [33]. While VLVs have been
shown to modulate host differentiation signaling to promote infection, the contribution of
the individual viral factors in VLVs remains to be identified. In sum, ORF45 is one of the
earliest KSHV lytic factors present in the host cell following both de novo infection, when it
is directly delivered into the host cell as a tegument protein, and also within hours of lytic
reactivation as an immediate-early protein.

5. ORF45 Interactions with Viral Proteins

ORF45 interacts with several KSHV lytic proteins, and these interactions are func-
tionally relevant for the KSHV life cycle (Figure 1). ORF45 was shown to associate with
several capsid proteins and tegument proteins, in line with its key role as a structural
and/or functional hub of tegument organization [34]. Through mass spectrometry analy-
sis, ORF45 was shown to interact with and stabilize ORF33, a tegument protein which is
conserved among herpesviruses and which plays a role in viral particle transport through
cellular vesicles [35–37]. The stabilization of ORF33 also requires ORF45 binding to host
ubiquitin-protease USP7. Disruption of the ORF45/ORF33 interaction through mutation
of the ORF45 C-terminal ORF33-interacting residues led to a decrease in the ORF45 and
ORF33 packaged into viral particles, as well as a decrease in production of virus parti-
cles [35,38]. Additionally, ORF45 is phosphorylated by the viral protein kinase ORF36,
leading to an interaction between the two proteins that stabilizes ORF36. Importantly,
ORF36-null mutants are deficient in primary infection, emphasizing the essential pro-viral
role of ORF45 in shielding ORF36 from proteasomal degradation [39,40].
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phosphorylation of RSK by ORF36, as well as phosphorylation of ORF36 downstream targets (e.g., 
K8, Rb, JNK). 
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Figure 1. ORF45 interaction with viral proteins. (Left) ORF45 binds to viral tegument protein
ORF33 via its C-terminus and stabilizes ORF33 via interaction with host de-ubiquitinase USP7,
which prevents the ubiquitylation and proteasomal degradation of ORF33 (Right) ORF45 binds to
the KSHV serine/threonine kinase ORF36 in a complex with host p90 ribosomal s6 kinase (RSK),
which phosphorylates both viral targets at its target RxRxxS*/T* motif. This interaction promotes
subsequent phosphorylation of RSK by ORF36, as well as phosphorylation of ORF36 downstream
targets (e.g., K8, Rb, JNK).

6. Role of ORF45 in the Viral Life Cycle

Given the kinetics of ORF45 expression, it is positioned to exert a crucial role in several
phases of the KSHV life cycle. Multiple studies have employed mutagenesis of the ORF45
protein in order to further dissect these roles (Table 1).
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Table 1. Previously characterized ORF45 mutants/motif.

ORF45 Mutant/Motif Function Reference

S41A/S162A IKKε and TBK1 phosphorylation sites [41]
F66A ERK/RSK binding and activation [42]

A144G/V146G SIAH-1 binding site [34]
E223A(G224E)/S226A USP7 binding site [35,43]

237IVDL240/328VIII331 mutant SIM1 and SIM2 binding [44]

V284A/L285A; I289A/L291A ORF45 restricted to the nucleus
(NES mutant) [23]

K297R ORF45 restricted to the cytoplasm
(NLS mutant) [23]

K297R, K99R, (297–300)4A Targeting capsid to lipid rafts [45]
∆300-332 hNLRP1 binding site [46]

W403A/W405A ORF33 binding site [38]

In addition, the engineering of mutant KSHV viruses via bacterial artificial chromo-
some (BAC)-based recombination enabled studies of ORF45’s role in the viral life cycle in
the context of KSHV de novo infection and reactivation [47,48]. Originally, an ORF45-null
virus was created using a KSHV BAC36 clone, and in this system ORF45 deletion did
not have an effect on lytic viral gene expression following viral reactivation or de novo
infection of 293T cells [49]. However, ORF45 deletion in the more recently engineered
KSHV BAC16 clone, which is less prone to unintended homologous recombination, did
affect a subset of late viral gene expression following reactivation of latently infected iSLK
cells [42]. In both studies, the ORF45-deficient virus produced fewer progeny viruses, and
the virions that were produced were less infectious than those produced by wild-type
KSHV [42,49]. These findings suggest that ORF45 is required not only for effective primary
infection, but also during the later stages of virus packaging and release from the host cell.
Indeed, ORF45 has been shown to interact with several host factors implicated in viral
egress. Following capsid packaging and tegumentation, ORF45 mediates the assembly
of the capsid-tegument complex onto the cargo-binding KIF3A subunit of motor protein
kinesin-2 [50]. Disruption of this interaction or disruption of microtubules inhibits the
release of virion particles, highlighting the role of ORF45 in viral particle trafficking to the
cell periphery and release from the host cell (Figure 2A). Further, ORF45 promotes virion
release through its interaction with lipid rafts, which is critical for the release of infectious
virions [45]. Importantly, mono-ubiquitylation of ORF45 is necessary for association with
lipid rafts and the trans-Golgi network, a pre-requisite to final viral envelopment and
release [45]. However, the association of ORF45 with lipid rafts can be disrupted by host
RAB11 family-interacting protein 5 (RAB11FIP5), which targets ORF45 for lysosomal degra-
dation via endosomal trafficking [51]. Overexpression of RAB11FIP5 inhibits the release
of infectious virions, highlighting the role of ORF45 as a key mediator of viral egress [51]
(Figure 2B). Finally, ORF45 was also shown to associate with host SIAH-family proteins
through a yeast two-hybrid screen [52]. The SIAH family of E3 ubiquitin ligases possess an
N-terminal RING domain to direct the degradation of host substrates [53,54]. Expression
of SIAH-1 with ORF45 leads to the degradation of ORF45 [52] (Figure 2C). The regulation
of the expression of the essential lytic cycle-promoting protein ORF45 by RAB11FIP5 and
SIAH-1 therefore presents a key avenue for targeting ORF45 levels antiviral therapeutics.
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the KIF3A subunit of kinesin-2, which mediates the association of the viral capsid-tegument complex
with microtubules, promoting viral egress. (B) ORF45, which is mono-ubiquitylated at lysine 297,
mediates association of the viral capsid-tegument complex with lipid rafts targeted to the trans-
Golgi network for eventual viral envelopment and egress. Host RAB11 family-interacting protein
RAB11FIP5 interferes with ORF45 targeting to lipid rafts by interacting with ORF45 and promoting
its lysosomal degradation, thereby inhibiting the endosomal trafficking of viral particles. (C) The
SIAH-1 E3 ubiquitin ligase interacts with ORF45 leading to ORF45 ubiquitylation and degradation.

7. ORF45-Mediated Sustained Activation of RSK

The most studied role of ORF45 to date is its interaction with the host mitogen-
activated protein kinase (MAPK) pathway. The MAPK signaling cascade responds to
external stimuli to induce internal responses, including cellular proliferation and survival,
through sequential phosphorylation of downstream pathways, including the extracellular
signal-regulated kinase (ERK) pathway. Both DNA and RNA viruses have been shown to
hijack the MAPK-ERK signaling pathway to promote the viral life cycle (reviewed in [55]).
KSHV was also demonstrated to rapidly activate the ERK pathway following infection,
and inhibition of the ERK pathway blunts viral infection [56]. One of the downstream
targets of the ERK pathway is the family of p90 ribosomal s6 kinases (RSK 1–4), which
have diverse cellular functions, including the regulation of transcription, translation, cell
survival and the cell cycle [57,58]. In a hallmark study by Dr. Fanxiu Zhu and colleagues,
ORF45 was shown to interact with RSK1 and RSK2, leading to phosphorylation of both
RSK1/RSK2 and ORF45 itself. Strikingly, activation of both RSK and ERK was diminished
following primary infection or reactivation with ORF45-null virus [25]. A later proteomics
study, which mapped the KSHV protein interactome using mass spectrometry analysis, also
identified ORF45 as an interaction partner of three members of the RSK family and mitogen-
activated protein kinases 1 and 3 (MAPK1, MAPK3) [59]. Interestingly, several pathogen
proteins, including KSHV ORF45, Yersinia YopM protein and Theiler’s virus L protein, use
a similar peptide motif to interact with RSKs, suggesting a process of convergent evolution
of RSK-interacting proteins [60]. The mechanism by which ORF45 sustains activation of
the ERK/RSK pathway is through the exploitation of kinase docking systems to bind
to the RSK N-terminus. The binding of ORF45 to RSK stabilizes the interaction of ERK
and RSK, creating a ternary complex that protects both proteins from dephosphorylation,
maintaining them in an activated state [61,62]. Specifically, ORF45 uses a key phenylalanine
residue at amino acid 66 to bind to RSK, and consequently, the exchange of this amino
acid with alanine (F66A mutation) abolishes RSK binding [42]. Infection of cells with
KSHV ORF45-F66A mutants leads to a reduced expression of late lytic genes, as well as a
decrease in infectious virion production, highlighting the crucial role of ORF45-mediated
RSK activation in the KSHV lytic cycle [42]. Consequently, the ORF45-RSK interaction has
been explored as a therapeutic target. A short peptide, derived from ORF45 amino acids 56
to 76, which harbors the F66A mutation, has been shown to compete with ORF45 for RSK
binding, inhibiting ORF45-driven RSK activation during lytic reactivation [63].
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Several groups have explored the mechanism by which ORF45-mediated activation of
RSK activates the KSHV lytic cycle. One of the known targets of RSK is eukaryotic transla-
tion initiation factor 4B (eIF4B), an important element of the translation initiation complex,
which associates with eIF4A and eIF3 to promote ribosomal association with mRNA [64]. A
screen of RSK targets revealed that ORF45 expression induced phosphorylation of eIF4B by
RSK, enhancing the activity of host translational machinery, and subsequently contributing
to the translation of KSHV lytic genes [65]. Recently, it has been shown that RSK1 targeting
of eIF4B is dependent on RSK1 SUMOylation, a post-translational modification that affects
RSK1 substrate specificity and its ability to promote the KSHV life cycle [66]. In fact, RSK1
SUMOylation is driven by ORF45, which acts as a SUMO E3 ligase through two SUMO-
interacting motifs that are distinct from the domain required for RSK1 phosphorylation [44].
Importantly, the SUMO E3 ligase activity of ORF45 was shown to be critical in KSHV lytic
replication [44,66].

In addition to its contribution to translational control, ORF45 also drives transcriptional
activation of HIV-1 long-terminal repeats (LTRs) and can act synergistically with the HIV
Tat protein [67]. ORF45 mediates this LTR activation through RSK2 signaling, which
leads to increased RNA polymerase II occupancy in the HIV-1 LTRs [68]. Interestingly,
expression of gammaherpesvirus ORF45 homologs failed to activate HIV LTRs, indicating
a unique role for KSHV ORF45 in HIV reactivation upon KSHV infection. Moreover,
ORF45-sustained activation of ERK/RSK can also activate expression of KSHV late viral
genes by promoting c-Fos accumulation in KSHV-infected cells [69]. Sustained MAPK
activation leads to phosphorylation of c-Fos, a part of the AP1 family of transcription
factors, and drives expression of a subset of c-Fos-dependent lytic genes [69,70]. Finally,
ORF45-mediated activation of RSK leads to inhibitory phosphorylation of tuberous sclerosis
complex (TSC), an upstream inhibitor of mTORC1 signaling, a phenomenon that is observed
in lymphatic endothelial cells but not in blood endothelial cells [8]. These findings are
clinically relevant given the observation that treating patients with mTORC inhibitors can
lead to the regression of KS lesions [71,72]. Given the broad implications of sustained
MAPK activation, ORF45 plays an essential role in modulation of host response through its
RSK-activating function to support productive KSHV infection.

8. Regulation of Cellular p53 Signaling

As a tegument protein with immediate access to the host cellular environment after in-
fection, ORF45 not only plays an essential role in host immune evasion, but also in evading
the host DNA damage response. ORF45 was recently identified among a high-throughput
screen of viral protein interactions with p53 [73]. Specifically, ORF45 inhibits the activity
of host antitumor protein p53, which has been previously characterized during the KSHV
latent phase but has not been described during lytic reactivation [74–77]. Following activa-
tion by an external stimulus, such as a double-stranded DNA break, p53 is phosphorylated
and released from its negative regulators, the E3-ubuitin ligases murine double minute 2
(MDM2) and murine double minute X (MDMX) and is then bound and stabilized by the
ubiquitin specific protease 7 (USP7) to act as a transcription factor for downstream targets
(reviewed in [78]). ORF45 uses two mechanisms to interfere with p53 signaling. First,
ORF45 interacts with the p53 de-ubiquitinating enzyme USP7, which leads to increased
p53 ubiquitination and degradation [43]. Second, ORF45 directly binds p53 and directs
p53 localization to the cytoplasm, preventing a p53-mediated response in the nucleus [43].
While p53 mutations are rarely detected in KSHV malignancies, the dysregulation of p53
function by ORF45 could blunt host protective responses against cellular transformation.
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9. Evasion of Host Defenses

The first described role of ORF45 during KSHV infection was its contribution to eva-
sion of the host immune response through the inhibition of type I interferon (IFN-α/β)
activity. Through a yeast two-hybrid screen, ORF45 was found to bind cellular interferon
regulatory factor 7 (IRF7) [13]. IRF7 is one of the crucial transcription factors that is neces-
sary for the induction of IFN-α expression, which requires the phosphorylation and nuclear
translocation of IRF7 [79,80]. ORF45 was initially shown to physically associate with IRF7
and block virus-induced phosphorylation of IRF-7, a critical step in the type I interferon
response [13]. Further, while infection with wild-type KSHV does not trigger a cellular
antiviral state, infection with an ORF45-knockout KSHV does activate the host antiviral
response, as indicated by lower susceptibility to other viral infections, as well as increased
interferon-stimulated gene (ISG) expression [81]. Two models have been proposed to
describe the mechanism of ORF45-mediated IRF7 inhibition. First, ORF45 interacts with a
predicted auto-inhibitory domain of IRF7, keeping IRF7 in a closed conformation that hides
key residues for IRF7 activity, including the DNA-binding domain and phosphorylation
sites [82]. Second, ORF45 competes directly with IRF7 as an alternative substrate for IKKε
and TBK1, the upstream kinases of IRF7, as ORF45 is efficiently phosphorylated by these
kinases on Ser41 and Ser162 [41]. ORF45 mutants in which one or both serine residues were
replaced with alanine (ORF45-S41A, ORF45-162A, ORF45-S41/162A) were not efficiently
phosphorylated by IKKε and TBK1. While complementation with wild type ORF45 lead to
a dose-dependent decrease in IRF7 reporter (IFN-α1) activation following reactivation of
ORF45-deficient iSLK-BAC16-stop45 cells, complementation with the ORF45-S41/162A
mutant had a lesser inhibitory effect, indicating the role of Ser41/Ser162 phosphorylation
in ORF45 inhibition of IRF7 activity [41]. Of note, ORF45 knockout KSHV has been used
so far to study ORF45-mediated inhibition of IRF7 in infected cells. Additional KSHV
mutagenesis studies could be employed to further dissect the impact of ORF45 on type I
interferon production, as well as the general role of ORF45 in immune evasion in various
cell types.

Furthermore, ORF45 has been recently characterized as an activator of the human
NOD-like receptor-containing pyrin domain-1 (hNLRP1) inflammasome, which is accom-
plished through its disruption of NLRP1 auto-inhibition through binding to the Linker-1 re-
gion [46]. Inflammasome activation leads to the production of pro-inflammatory cytokines,
which is also a characteristic feature of KS lesions, further highlighting an important role of
ORF45 in fine-tuning the host immune response to viral infection in a highly context specific
manner. Moreover, KSHV ORF45 expression was also sufficient to trigger inflammasome
activation in cells transfected with rhesus or saimiri NLRP1, but not murine NLRP1, in
which the Linker1 region is less conserved compared to the primate NLRP1, indicating a
key evolutionarily conserved role for ORF45-mediated inflammasome activation in humans
and non-human primates [46]. Further studies could evaluate the role of KSHV ORF45
homologs in NLRP1 binding and inflammasome activation. In sum, as highlighted in
Figure 3, ORF45 has a broad-reaching effect on host signaling pathways.
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binding of USP7, allowing p53 translocation to the nucleus and activation of downstream targets. 
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questration of p53, which prevents p53 activation of its downstream transcriptional targets. (D) The 
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Figure 3. ORF45 interactions with host signaling pathways. (A) ORF45 sustains activation of
the extracellular regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) MAP kinase pathway by
binding to the ERK/RSK complex and preventing their dephosphorylation. ORF45 also acts as
a SUMO ligase and SUMOylates RSK to promote its kinase activity, which is essential for the
phosphorylation of translation initiation complex factor eIF4B. RSK activity is also responsible for
activation and nuclear accumulation of the c-Fos transcription factor, as well as recruitment of RNA
polymerase II to promoters. RSK-mediated phosphorylation of the mTORC1 inhibitor, the tuberous
sclerosis complex subunit TSC2, releases TSC2 inhibition to promote mTORC1 signaling during
lytic infection. (B) ORF45 inhibits interferon regulator factor 7 (IRF7) activation and subsequent
interferon stimulated gene expression by serving as an alternative phosphorylation substrate for
upstream kinases TBK1 and IKKε (C) In the absence of external stimuli, p53 signaling is inhibited
by E3 ubiquitin ligases MDM2/MDMX, which are stabilized by de-ubiquitinase USP7. Upon an
appropriate external stimulus (e.g., DNA damage), p53 is released from MDM2/MDMX inhibition
and stabilized by the binding of USP7, allowing p53 translocation to the nucleus and activation of
downstream targets. ORF45 inhibits p53 signaling through (i) interaction and sequestration of p53
de-ubiquitinase USP7, which leads to p53 ubiquitylation and degradation and (ii) direct interaction
and cytoplasmic sequestration of p53, which prevents p53 activation of its downstream transcriptional
targets. (D) The hNLRP1 inflammasome is inhibited in steady state through interaction of auto-
inhibitory domains in the Linker 1 region and the UPA component of the FIIND domain. ORF45
interaction with the Linker1 domain prevents this auto-inhibition leading to hNLRP1 C-terminal
cleavage and inflammasome activation.

10. ORF45 Homologs

The ORF45 protein is unique to the gammaherpesvirus family, with no homologs in
alpha- or betaherpesviruses. ORF45 homologs in other gammaherpesviruses, including
murine herpesvirus 68 (MHV68), Epstein Barr virus (EBV) and Rhesus monkey rhadi-
novirus (RRV) have been characterized, and are described below (Table 2).
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Table 2. Summary of ORF45 homologs.

Protein Length
(aa)

Expression
Kinetics

Conserved
Motif Known Functions

KSHV
ORF45 407 Tegument,

immediate-early
N terminus
C terminus

ERK/RSK activation, ORF33 binding,
production of viral progeny, IRF7

inhibition, inflammasome activation,
SUMO E3 ligase

MHV 68
ORF45 217 Tegument,

early/late
N terminus
C terminus

ORF33 binding, production of viral
progeny

RRV
ORF45 353 Tegument, early N terminus

C terminus

ERK/RSK activation, ORF33 binding,
production of viral progeny, SUMO

E3 ligase

EBV
BKRF4 206 Tegument,

early/late
N terminus
C terminus

BGLF2 (ORF33) binding, production
of viral progeny, inhibition of host

DNA damage response

10.1. MHV68 ORF45

Murine herpesvirus-68 (MHV68) is a murine virus related to KSHV and EBV. Studies
of MHV68 can utilize the murine small animal, which is a powerful model system for
gammaherpesvirus research. The ORF45 protein of MHV68 contains 206 amino acids and
shares 33% sequence identity with KSHV ORF45 [83] and is present in both the cytoplasm
and the nucleus following MHV68 infection [84]. The expression kinetics of MHV68 ORF45
differs from KSHV ORF45, as its expression is sensitive to cycloheximide treatment and
slightly sensitive to phosphonoacetic acid treatment, inhibitors of protein synthesis and
DNA replication, respectively, indicating that MHV68 ORF45 is an early-late protein and,
unlike KSHV ORF45, MHV68 ORF45 requires viral protein translation in order to be
expressed [85,86]. However, MHV68 is similar to KSHV ORF45 in that it is also part of the
viral tegument [87,88], packaged into the virion in the outer tegument layer [89]. KSHV
ORF45 has been shown to interact with another KSHV tegument protein, ORF33, which
is important for the production of infectious virions [35,38]. Similarly, infection of cells
with ORF33 knockout MHV68 leads to a deficiency of packaging of ORF45 into the mature
virion, indicating a conserved interaction between tegument proteins ORF45 and ORF33 in
MHV68 virion maturation [37].

Like KSHV ORF45, MHV68 ORF45 has a crucial role in the viral life cycle, and silencing
ORF45 via RNA interference decreased viral protein expression and the production of viral
progeny in infected cells [85]. Infection of baby hamster kidney (BHK)-21 cells with
ORF45-knockout MHV68, which has a defect in both virion-associated ORF45 and newly
synthesized ORF45, leads to a decrease in expression of late viral proteins and a decrease
in DNA replication, which can be rescued by complementation with MHV68 ORF45 and
partially rescued with KSHV ORF45 [90]. Similar to KSHV infection, the lack of newly
synthesized ORF45 leads to a decrease in viral replication but not a decrease in late gene
expression after one round of viral replication [84]. Specifically, the absence of MHV68
ORF45 affected virion maturation and envelopment, indicating that newly synthesized
ORF45 is required for viral particle formation [84]. Furthermore, in contrast to KSHV
ORF45, the role of MHV68 ORF45 in ERK/RSK activation is still largely unclear, which
requires further investigation.

10.2. RRV ORF45

RRV is a nonhuman primate gammaherpesvirus that is closely related to KSHV and
replicates to produce a high titer virus in vitro [91–93]. Analysis of RRV virion-associated
proteins by mass spectrometry revealed that RRV ORF45 is also a putative tegument
protein [94,95]. Like many DNA and RNA viruses, it has been shown that infection of
rhesus fibroblasts with RRV leads to ERK activation [96]. Interestingly, while activated
ERK2 is selectively packaged in the RRV virion tegument, knockdown of ERK1 was shown
to promote viral infection, indicating distinct roles for ERK1 and ERK2 in the viral life
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cycle [96]. Like its KSHV homolog, expression of RRV ORF45 leads to sustained activation
of the ERK/RSK pathway in rhesus fibroblasts and interacts with activated ERK2 and RSK
to form a trimeric complex, which translocates to the nucleus [97]. The sustained activation
of the ERK pathway may be partially responsible for the productive primary infections that
are established following RRV de novo infections.

10.3. EBV BKRF4

Epstein Barr Virus (EBV) is a human oncovirus of the gammaherpesvirus family. EBV
infections have been linked to multiple different cancers, such as Burkitt’s lymphoma,
Hodgkin’s disease and nasopharyngeal carcinomas (Reviewed in [98,99]). The EBV protein
BKRF4 is the homolog of KSHV ORF45, sharing a conserved region at the C-terminal
amino acids, but otherwise with minimal sequence identity to KSHV ORF45 [100]. An-
tibodies towards BKRF4 have been detected in patients with nasopharyngeal carcinoma
and have been suggested to have prognostic value [101]. Additionally, BKRF4 expression
was detected in oral hairy leukoplakia lesions, an AIDS-associated lesion, which is also
a biological site of replicating EBV [102]. Recently, BKRF4 was also identified in gastric
carcinoma samples, indicating that it may be linked to oncogenesis [103]. However, the
functional role of EBV BKRF4 has been less explored than its homolog in KSHV. BKRF4 has
been identified as a tegument protein, similar to KSHV ORF45, but unlike KSHV ORF45 it
is not an immediate early gene product. Instead, BKRF4 demonstrates early to late gene
expression kinetics during lytic reactivation, with variable sensitivity to treatment with an
inhibitor of viral DNA replication, phosphonoacetic acid [100,104].

While BKRF4 has been less studied as compared to KSHV ORF45, viral mutagenesis
studies have revealed its role during lytic reactivation. Construction of a BKRF4 knockout
virus revealed that the BKRF4-deficient virus had a comparable level of lytic viral gene
expression, compared to wild-type virus following reactivation, but there was a clear
reduction in viral progeny [100], a pattern which was also observed with ORF45 knockout
KSHV [49]. Interestingly, the role of BKRF4 in infectious virion production is, in part,
influenced by its C-terminal association with KSHV ORF33 homolog, BGLF2, a region
which is similar to the ORF33 region known to interact with KSHV ORF45 [35,38,100].
BKRF4 localizes in the nuclear and perinuclear regions of cells but is excluded in a few
small nuclear foci [100,105]. Additionally, BKRF4 has been shown to co-localize with other
lytic proteins in the nucleus, including BGLF2 and BOLF1, a tegument protein and the
homolog of KSHV ORF63 [106]. As a tegument protein, BKRF4 can play an immediate
role in host immune evasion following primary infection. While BKRF4 has not been
shown to inhibit IRF7, as has been shown for KSHV ORF45, the interference with the
host DNA damage response suggests an alternative mechanism by which BKRF4 combats
the host response. BKRF4 has been shown to inhibit the host DNA damage response by
binding directly to histones and preventing histone ubiquitination at double-stranded
DNA breaks by host ubiquitin ligase RNF168 [103]. In contrast to KSHV ORF45, which
sustains activation of the RSK-signaling cascade, BKRF4 has not been shown to activate the
MAP kinase pathway following infection. However, BKRF4 interacting partner, BGLF2,
a homolog of KSHV ORF45, has been shown to play a role in activating the AP-1 family
of transcription factors to promote EBV primary infection [107,108]. Given the limited
conserved homology between BKRF4 and KSHV ORF45, further studies are required for
identifying novel roles for tegument protein BKRF4 in EBV infection.

11. Conclusions

KSHV ORF45 plays a multifaceted but essential role in KSHV pathogenesis. As both a
tegument protein and an immediate-early gene, ORF45 can contribute to both the initial
phase of primary infections by promoting viral immune evasion, and also during the late
stages of viral egress, by interacting with host motor proteins and cell membrane lipid
rafts. Importantly, the ORF45-mediated sustained activation of the ERK/RSK pathway can
lead to the activation of several host targets, many of which are likely to be highly context-



Viruses 2022, 14, 2010 11 of 15

specific and yet to be identified. While the contribution of KSHV ORF45 to virus production
is well-studied, future research is needed to identify the cell type-specific functions of the
ORF45 family of proteins encoded by gammaherpesviruses. Better understanding the
role of ORF45 can also facilitate development of novel antiviral therapies. Additionally,
the importance of KSHV ORF45 to the viral life cycle underscores that the contribution
of tegument proteins cannot be understated. As the structure and function of the KSHV
tegument continues to be unveiled, future work is needed to explore the key host-pathogen
interactions facilitated by viral factors delivered directly into the host cell during infections,
which are also capable of rapid global host reprogramming.
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