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Abstract 
 
Background: Glucose homeostasis derangement is a common pathophysiology of malaria whose aetiology is still controversial. The 
Plasmodium parasite, immunological and inflammatory responses, as well as chemotherapeutics currently used cause hypoglycaemia 
in malaria. Anti-parasitic and anti-disease drugs are required to combat malaria while ameliorating the pathophysiology of the 
infection. Asiatic acid has anti-hyperglycaemic, antioxidant, pro-oxidant properties useful in glucose homeostasis but its influence in 
malaria is yet to be reported.  Here we present findings on the influence of asiatic acid on glucose metabolism in vivo using P. 
berghei-infected Sprague Dawley rats.  
Materials and Methods: Acute as well as sub-chronic studies were carried out in vivo where physicochemical properties and 
glucose homeostasis were monitored after administration of asiatic acid (10mg/kg) in both non-infected and infected animals. 
Glucose metabolism associated biochemical changes in malaria were also investigated.  
Results: In acute studies, asiatic acid improved oral glucose response while in the sub-chronic state it maintained food and water 
intake and suppressed parasitaemia. Normoglycaemic control was maintained in infected animals through insulin suppression and 
increasing glucagon secretion, in both acute and chronic studies. Asiatic acid administration curtailed lactate concentration towards 
normal.    
Conclusion: Per oral post-infection asiatic acid administration preserved drinking and eating habits, inhibited sickness behaviour 
while suppressing parasitaemia. Reciprocal relationship between insulin and glucagon concentrations was maintained influencing 
glucose homeostasis positively and inhibition of hyperlactaemia in malaria.  
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Abbreviations: ip -intraperitoneal, po -per oral, ig -intragastric, AA-Asciatic acid, OGTT-oral glucose tolerance test, OS-oxidative 
stress, ROS-reactive oxygen species, NO-nitric oxide, ONOO- - peroxynitrite, BRU-Biomedical Research Unit, SD-Sprague Dawley, 
 
Introduction 
 

Malaria is an immunological disease displaying systematic inflammatory aspects with marked cachexia (Goldring, 2004, 
Schofield, 2007). Glucose homeostasis in malaria is critical in the more vulnerable groups of pregnant women and children <5 years 
of age with highest disease associated morbidity and mortality rates (White N.J. et al., 1983, English et al., 1998). Either group has 
less immune competency, heighten or constant demand for energy supply, and tend to experience slight physiological deficits in a 
more exaggerated way (Miller et al., 2013). Hypoglycaemia, cognitive impairment, severe malaria anaemia (SMA) non-respiratory 
acidosis and renal insufficiency are recognised facets of a post malarial treatment syndrome (Mackintosh et al., 2004). Aetiology of 
malaria hypoglycaemia is multi-faceted. Anti-parasitic treatment therefore may be inadequate to avert or ameliorate malaria-induced 
glucose homeostasis derangements.  Glycolysis has also been observed to have more homeostatic effects beyond being involved in 
nucleic acid, lipid and amino acid biosynthesis in what is called the “Warburg effect” shown by increased glycolysis in the presence 
of oxygen (Warburg, 1930, Warburg, 1956; Pedersen, 2007). Glycolysis is involved in signal transduction regulating 
immunometabolic processes (Ho, 2016), histone acetyl-CoA acetylation control of early differentiation of embryonic stem cells 
(Moussaieff, 2015) and immune system function modulation through interferon-γ and IL-2 biosynthesis (Zhao, 2016). This makes 
glucose metabolism controlling agents in malaria have possible influence on the disease outcomes. 

Asiatic acid (AA), is a phytotherapeutic with antioxidant, antihyperglycaemic, antihyperlipidaemic (Ramachandran & 
Saravanan, 2014) as well as emerging antimalarial properties (Mavondo, 2016). However, there is a lack of information on AA’s 
influence on glucose homeostasis in malaria. Desirous to unravel further the metabolic effects of AA, we have investigated the 
influence of this phytomedicinal in murine malaria.  Here we report on the influence of AA on glucose homeostatic changes in 
Plasmodium berghei malaria infection in young (90-120g) male Sprague Dawley rats. 
 
Materials and Methods 
Drugs, Chemical and Accessories  
 

Asiatic acid (AA 97% purity), Giemsa stain, dimethyl sulphoxide (DMSO), chloroquine diphosphate were purchased from 
Sigma-Aldrich (St. Louis, Missouri, USA). All other chemicals and reagents were of analytical grade.  

 
Animals  
 

Male Sprague-Dawley (SD) rats weighing 90-120 g were obtained from the Biomedical Research Unit (BRU) of the 
University of KwaZulu-Natal where they were bred and housed for the entire experiment period. The animals were kept under 
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maintained laboratory conditions of constant temperature (22±1 ˚C); C02 (<5000 ppm), humidity of 55±5% and illumination (12 h 
light/dark cycle). Food, standard rat chow (Meadows Feeds, Pietermaritzburg, South Africa) and water were supplied to the animals 
ad libitum. Animals were sacrificed at specific time point up to 12 days for the non-treated infected control (IC) and up to 21 days for 
the rest of the experimental animals. Lethal anaesthetic inhalation of isofor (Safeline Pharmaceuticals, Rooderport, South Africa) in a 
gas chamber (100mg/kg) was used to sacrifice the animals. All experiments and protocols used in this study were reviewed and 
approved by the animal ethics committee of the University of KwaZulu Natal (UKZN) with ethical clearance numbers 
079/14/Animal and 013/15/Animal issued. 
 
 
Malaria Parasite  
 

Chloroquine-susceptible strain of P. berghei ANKA, was a kind donation from Professor Peter Smith (University of Cape 
Town, Division of Clinical Pharmacology, South Africa). P. berghei (105 parasitized red blood cells [pRBC’s] suspension in saline) 
was inoculated intraperitoneal (ip)  into stock animals which were sacrificed after 12 days and the infected blood was harvested, 
washed and stored at -80oC in freezing media (30% glycerol in phosphate buffer) until used.  

 
Experimental Design  
 

The study was divided into two viz; an acute and a sub-chronic study (lasting 21 days). Experimental animals were divided 
into 5 groups (n = 6 per group) as follows: 

Non infected absolute control [3mL/kg H2O] (AC) 
Non-infected treated control [AC+AA 10mg/kg] (NIC) 
Infected non-treated control (IC) 
Infected treated with CHQ 30mg/kg (30CHQ) 
Infected treated with AA 10mg/kg (10mg) (AA10) 

Preliminary studies using 3 concentrations of AA (5, 10, 20mg/kg) indicated that the AA10 oral administration had the most 
antimalarial efficacy hence it is the dose of choice in this study. 
 
Malaria Induction  
 

P. berghei (105 parasitized red blood cells [pRBC’s] suspension in saline) was inoculated ip and control animals received 
equivalent amount of saline.  

 
Monitoring of Parasitaemia  
 

Peripheral blood was collected using the tail prick method (Rangaraj et al., 2014). Parasitaemia % monitored after 72 hours 
(pre-patent period), every third day up to day 7 [patent period] (Changa & Stevenson, 2004), every day during treatment period of 
five days and thereafter every other day (post-treatment period) until day 21. A 15-20% parasitaemia on day 7, confirmed by May-
Grünwald-Giemsa staining under a microscope (Olympus Cooperation, Tokyo, Japan), was considered as stable state malaria. 

 
Asiatic Acid Influence on Biophysical Changes  
 

Body weights, food and water intake were monitored gravimetrically in all animals at 09h00 every third day during the pre-
treatment, treatment and post treatment periods. The effects of AA on these parameters were examined. 

 
Asiatic Acid Administration in Acute Studies (Oral Glucose Tolerance Response)  
 

With parasitaemia at 15-20% in infected animals, all animals were fasted for 16 hours and a 240-minute oral glucose 
(0.86g/kg) tolerance response (OGTR) was carried out to distinguish effects of AA and malaria on glucose homeostasis. The time-
glucose concentration course was determined to map out the influence of AA on the rate of glucose disappearance from plasma. 
Animals were sacrificed after the experiments by exposing to isofor (100 mg/kg) inhalation anaesthesia [Safeline Pharmaceuticals, 
Rooderport, South Africa]. Blood samples were collected by cardiac puncture into pre-cooled lithium heparin tubes onto melting ice, 
immediately centrifuged for 15 minutes at 959 x G in a 40C centrifuge (Eppendorf International, Hamburg, Germany) and plasma 
separated.  Plasma was stored in a Bio Ultra freezer (Snijers Scientific, Tilburg, Netherlands) at −80°C until AA influence on 
hormonal changes was assessed.   
 
Asiatic Acid Influence on Insulin and Glucagon Concentrations Post Glucose Bolus Administration  
 

Insulin concentration was determined quantitatively in plasma using the Mercodia Ultrasensitive Rat Insulin ELISA 
(Mercodia AB, Uppsala, Sweden) following the manufacturer’s instructions. The lower and upper limits of detection were 
≤3.38pmol/L and 783pmol/L, respectively. Plasma glucagon concentration was determined using Elabscience Rat GC (Glucagon) 
ELISA kit Catalog No: E-EL-R0425 (Elabscience Biotechnology Co. Ltd, WuHan, P.R.C.) as per the manufacturer’s instructions. 
Same methods were used in the sub-chronic studies. 
 
Sub-chronic Studies   
 

Post-infection po AA administration’s influence on glucose metabolism and murine-malaria in SD rats was carried out in 
animals housed individually in Makrolon polycarbonate metabolic cages (Techniplast, Labotec, South Africa), with food and water 
availed ad libitum, at the Biomedical Resource Unit, University of KwaZulu Natal over a 3-week period. Chloroquine (CHQ) control 
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(30mg/kg) was dissolved in distilled water and administered as for AA. AA was dissolved in DMSO (0.5mL) and diluted with 
distilled water to give a stock solution of 10mg/kg. AA (10mg/kg) was administered once daily po (at 09h00) for five days. CHQ 
(30mg/kg) was administered twice daily (09h00 hours and 17h00 hours) according to posology developed in our laboratory.  A ball-
tipped, 18-gauge gavage needle (Kyron Laboratories (Pty) LTD, Benrose, South Africa) attached to a 1 ml syringe was used. 
Animals were sacrificed at day 8, 12 and 21. The IC animals were sacrificed at day 12 for ethical reasons. 

 
 
Plasma and Tissue Sample Harvesting  
 

Influence of AA on glucose homeostasis, hormonal, immunology and inflammatory changes as well as other biochemical 
parameters were determined in either plasma or organ tissues. Animal sacrifice and plasma collection was as described in the acute 
studies (5.2.4). The liver, kidney, muscle and heart were removed, snap frozen in liquid nitrogen and stored together with the plasma 
in a Bio Ultra freezer (Snijers Scientific, Tilburg, Netherlands) at −80°C until use.  

 
Influence of Asiatic Acid on Glucose Utilization in Sub-Chronic Conditions  
 

The effects of AA on blood glucose homeostasis in malaria were evaluated by measuring blood glucose every other day 
during pre-patent, daily during patent/treatment and every three days post treatment periods in all the animal groups using blood 
glucose testing strips (Lifescan, Zug, Switzerland).   

 
Influence of Asiatic Acid on Tissue Glycogen Storage  
 

Influence of AA10 on glycogen storage capacity in liver, muscle and kidney were compared amongst AA treated infected 
animals and controls according to the method by Seifter (Seifter et al., 1949), with some modifications.  

 
Influence of Asiatic Acid on Plasma Lactate Concentration  
 

The influence of futile glucose homeostasis was indicated by levels of lactate in plasma which were estimated using 
CobasR Accutrend Plus using Accutrend BM-Lactate strips (Roche Diagnostics GmbH, Mannheim, Germany).  

 
Statistical Analysis  
 

Data are presented as the means ± standard error of mean (SEM). Overall statistical comparisons between the control 
means and experimental groups were performed with GraphPad Prism Software version 5.00, (GraphPad Prism Software, San Diego, 
California, USA), using one-way analysis of variance (ANOVA), followed by Tukey-Kramer post hoc multiple comparison test. A 
value of p < 0.05 was considered significant. 
 
Results 
Parasitaemia Monitoring  
 

Compared to IC and CHQ, AA10 administration had significantly lower %parasitaemia (, ≠ p<0.05. Table 1) at relevant 
time points. Compared to both IC and CHQ, AA (10mg/kg) had a lower peak %parasitaemia (, ≠ p<0.05. Table 1) AA10 
suppressed parasitaemia to undetectable levels compared to CHQ (ψ p<0.05. Table 1) Compared to IC, CHQ had lower 
%parasitaemia during patent/ treatment period (ψ p<0.05. Table 1) 
 

Table 1: Comparison of %parasitaemia changes over time (21 days). NIC-non infected treated control, IC- infected control; CHQ-
chloroquine treated infected control. Values are presented as means ± SEM, (n=6 per group). , ≠ p<0.05 compared to IC and CHQ, 

respectively. ψ p<0.05 CHQ compared to IC 
 

Protocol Experimental 
Groups 

%Parasitaemia per time point 
Pre-patent 
 

Patent/ treatment period Post-treatment 
Day 7 Day 9 Day 12 Day 15 Day 21 

Post-infection 
AA 
administratio
n 

IC 3.7±0.21 13.68 
±0.98 

33.43 
±1.07 

56.52 
±3.20 

N/A 
 

N/A 
 

30CHQ 2.7±0.41 18.68 
±1.89ψ 

42.08 
±1.325 ψ 

37.37 
±4.36ψ 

23.38 
±1.32 

1.14 
±1.21 

AA10 
 

3.2±0.90 13.47 
±0.95≠ 

21.13 
±2.031≠ 

26.67 
±2.91≠ 

3.71 
±0.12≠ 

0.00 
±0.00≠ 

 
Food and Water Intake  
 

A10 administration significantly preserved food and water intake as compared to the IC, and CHQ (, ≠ p<0.05, 
respectively. Figure 1) Compared to the AC and NIC, CHQ treated animals had significantly lower food and water intake (ψ, γ 
p<0.05, respectively). IC had significantly lower intake compared to AC and NIC (δ, χ p<0.05, respectively. Figure 1) Compared to 
the NIC, AC had higher food and water intake (β p<0.05. Figure 1) 
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Figure 1: Comparison of food and water intake as influenced by AA10. NIC-non infected treated control, IC- infected control; CHQ-
chloroquine treated infected control. Values are represented as means ± SEM. α,, ≠ p<0.05 compared to the NIC, IC and CHQ, 
respectively. ψ p<0.05 CHQ compared to IC. γ p<0.05 CHQ compared to the NIC. χ p<0.05 IC compared to NIC. δ p<0.05 IC 
compared to AC. β p<0.05 AC compared to NIC. 
 
Influence of AA on Glucose under Acute Conditions (OGTR)  
 

OGTR as influenced by AA10 administration was compared to the NIC, IC and 30 CHQ groups in Figure 2. AA10 
administration significantly improved OGTR compared to IC and CHQ (, ≠ p<0.05, respectively. Figure 2) At the 15 minute time 
point, AA10 ablated glucose spike compared to both IC and CHQ (, ≠ p<0.05, respectively. Figure 2) Compared to NIC, the IC 
and CHQ groups had significantly poor OGTR (γ, ψ p<0.05, respectively).  
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Figure 2: Oral glucose test response curve for AA10 compared to controls. NIC-non infected treated control, IC- infected control; 
CHQ-chloroquine treated infected control. Values are presented as means ± SEM, (n=6 per group). , ≠ p<0.05 compared to IC and 
CHQ, respectively. ψ p<0.05 CHQ compared to IC. γ p<0.05 IC compared to NIC. 
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Asiatic Acid Influence on Insulin and Glucagon Concentrations Post Bolus Administration  
 
Insulin and glucagon concentration changes in OGTR as influenced by AA10 administration was compared to controls in 

Table 2. AA10 significantly increased glucagon and lowered insulin compared to IC and CHQ (, ≠ p<0.05, respectively). NIC had 
significantly lower insulin and higher glucagon compared to IC and CHQ (γ, χ p<0.05, respectively). 
 
Table 2: Influence of AA (10mg/kg) on acute insulin and glucagon secretion compared to controls. NIC-non infected treated control, 
IC- infected control; CHQ-chloroquine treated infected control. Values are presented as means ± SEM, (n=6 per group). , ≠ p<0.05 

compared to IC and CHQ, respectively. γ, χ p<0.05 NIC compared to CHQ and IC. 
 

Hormone Parameter Concertation after 20 hour fast 
Insulin (pmol/L) NIC 8.12±10.76 

IC 225.38±5.72 χ 
30 CHQ  258.53±11.78γ 
AA10 8.93±3.87≠ 

Glucagon (pmol/L) NIC 628±32.66 
IC 98±6.98χ 
30CHQ 76±3.87γ 
AA10 498.76±7.12≠ 

 
Influence of AA on Glucose Utilization in Sub-Chronic Conditions  
 

Administration of AA10 significantly preserved blood glucose compared to IC and CHQ (, p<0.05, respectively. Figure 
3) at days 7-12 and CHQ (≠ p<0.05 Figure 3) at days 7-18). IC displayed lower glucose compared to NIC (χ p<0.05 Figure 3).  CHQ 
administration lowered glucose levels compared to NIC (γ p<0.05 Figure 3) but increased it compared to IC (ψ p<0.05 Figure 3) at 
days 7-12. CHQ treatment glucose lowering continued post treatment compared to NIC at day 18 
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Figure 3: A comparison of the influence of AA on blood glucose concentration in sub-chronic studies over time. NIC-non infected 
treated control, IC- infected control; CHQ-chloroquine treated infected control.  Values are represented as means ± SEM. α,, ≠ 
p<0.05 compared to the NIC, IC and CHQ, respectively. ψ p<0.05 CHQ compared to IC. γ p<0.05 CHQ compared to the NIC. χ 
p<0.05 IC compared to NIC. 
 
Influence of AA Administration on Liver Glycogen Storage 
 

Glycogen concentration, as influenced by AA10, was compared amongst animal groups in Figure 6. Administration of AA 
significantly increased glycogen in liver as compared to the IC, and CHQ (, ≠ p<0.05, respectively). Compared to the AC and NIC, 
CHQ treated animals had lower glycogen levels (ψ, γ p<o.o5, respectively). IC had significantly lower glycogen compared to AC 
and NIC (δ, χ p<0.05, respectively).  
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Figure 4: A comparison of liver glycogen concentration as influenced by AA 10mg/kg administration. NIC-non infected treated 
control, IC- infected control; CHQ-chloroquine treated infected control. Values are represented as means ± SEM. α,, ≠ p<0.05 
compared to the NIC, IC and CHQ, respectively. ψ p<0.05 CHQ compared to IC. γ p<0.05 CHQ compared to the NIC. χ p<0.05 IC 
compared to NIC. δ p<0.05 IC compared to AC. 
 
Influence of AA Administration on Muscle Glycogen Storage  
 

Glycogen concentration, as influenced by AA10, was compared to controls in figure 5. Administration of AA10 
significantly increased glycogen when compared to the IC, and CHQ (, ≠ p<0.05, respectively). Compared to the AC and NIC, 
CHQ treated animals had lower glycogen levels (ψ, γ p<0.05, respectively). IC had significantly lower glycogen compared to AC 
and NIC (δ, χ p<0.05, respectively). 
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Figure 5: AA (10mg/kg) influence on muscle glycogen compared to other animal groups. NIC-non infected treated control, IC- 
infected control; CHQ-chloroquine treated infected control. Values are represented as means ± SEM. α,, ≠ p<0.05 compared to the 
NIC, IC and CHQ, respectively. ψ p<0.05 CHQ compared to IC. γ p<0.05 CHQ compared to the NIC. χ p<0.05 IC compared to NIC. 
δ p<0.05 IC compared to AC. 
 
Plasma Lactate Production  
 

A comparison of the influence AA10 had on lactate production to controls was made in Figure 6. AA10 administration 
significantly lowered blood lactate concentration compared to the IC and 30CHQ (, ≠ p<0.05, respectively). IC had higher blood 
lactate concentrations than NIC and CHQ (χ, ψ p<0.05, respectively). CHQ displayed higher blood lactate concentrations than NIC 
(γ p<0.05).      
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Figure 6: Influence of AA10 administration on lactate concentration changes compared to controls. NIC-non infected treated control, 
IC- infected control; CHQ-chloroquine treated infected control. Concentrations are presented as means ±SEM (n = per group). , ≠ 
p<0.05 compared to the IC and CHQ, respectively. ψ p<0.05 CHQ compared to IC. γ p<0.05 CHQ compared to the NIC. χ p<0.05 
IC compared to NIC. 
 
Plasma Insulin Levels  
 

Relationships of AA10 administration to insulin secretion were compared to various animals groups in Figure 7, displaying 
significantly lowered values compared to AC, NIC, IC and CHQ (μ, α,, ≠ p<0.05, respectively). AC had significantly higher basal 
insulin levels compared to NIC (β p<0.05), although below reference interval (RR). NIC insulin was significantly lower than IC (χ 
p<0.05). Compared to the NIC and IC, CHQ treatment had significantly higher (γ p<0.05) and lower (ψ p<0.05) values, respectively.  
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Figure 7: AA10 influence on insulin levels in comparison to the AC (absolute control), NIC, IC and 30 CHQ. NIC-non infected 
treated control, IC- infected control; CHQ-chloroquine treated infected control. Concentrations are presented as means ±SEM (n = 
per group). μ, α,, ≠ p<0.05 compared to the AC, NIC, IC and CHQ, respectively. ψ p<0.05 CHQ compared to IC. γ p<0.05 CHQ 
compared to the NIC. χ p<0.05 NIC compared to IC. β p<0.05 NIC compared to AC. δ p<0.05 IC compared to AC. 
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Glucagon Concentrations 
 

Relationships of changes of glucagon concentrations over time as influenced by AA10 were compared to controls in Figure 
8. AA10 administration had significantly higher concentrations compared to AC, NIC, IC and CHQ treatment (μ, α,, ≠ p<0.05, 
respectively).  Glucagon concentrations were higher in animals treated with CHQ compared to NIC and IC groups (γ, ψ p<0.05, 
respectively). IC group glucagon concentrations were significantly higher than NIC (χ p<0.05).   

8 12 21

-100

-50

0

50

100

150

200

AC NIC IC AA 1030CHQ

Time
(Days)

Patent/Treatment

Infection








 




















G
lu

ca
go

n 
(p

m
ol

/L
)

 
Figure 8: Influence of AA10 on glucagon (GLN) concentration changes over time in malaria.  AC-absolute control, NIC-non 
infected treated control, IC- infected control; CHQ-chloroquine treated infected control. Concentrations are presented as means 
±SEM (n = per group). μ, α,, ≠ p<0.05 compared to the AC, NIC, IC and CHQ, respectively. ψ p<0.05 CHQ compared to IC. γ 
p<0.05 CHQ compared to the NIC. χ p<0.05 NIC compared to IC. 
 
 
Discussion 
 

Glucose metabolic disturbance is an intricate balance between supply, transportation, utilization or storage which the 
malaria parasite exploit successfully to systematically weaken the body defence systems while optimising its own survival 
(Olszewski et al., 2009), with poor prognosis in children under five years (English et al., 1998, Agbenya et al., 2000) and  in pregnant 
women (Croft, 2000). Hypoglycaemia has a prevalence of approximately 10% in both adults and paediatric patients (White N.J. et 
al., 1983) and up to 25% in children (Osier et al., 2003). There are a number of systems that deplete plasma glucose in malaria which 
can be targets for AA intervention. We report here the influence of AA10 on glucose utilization in an acute study and over a period 
of 21 days in P. berghei-infected Sprague Dawley rats. All animal groups which were inoculated with P. berghei murine malaria 
parasite developed severe malaria (SM) by Day 7 (patent malaria period) at which period treatment was effectuated. Parasitaemia 
percentages were extreme in non-treated animals with a perceptible difference in suppression of the parasite in the AA10 orally 
administered groups which may be attributable to the influence of AA. Moreover, AA10 surpassed the efficacy of 30CHQ oral 
treatment (Table 1) although a single dose of AA10 was administered compared to the double dose of CHQ, daily. 

Concomitant with % parasitaemia changes was a significant disparity in food and water intake between AA10 administered 
animals and IC groups. Animals that were administered with oral AA10 displayed a positive preservation of food and water intake at 
all relevant time periods during the study which correlated well with AC and contrasted with the IC and 30CHQ treated groups 
(Figure 1). There seems to be a causal relationship between parasite infection and food and water intake together with %weight gain 
(results not shown) seeing that, compared to the AA10, the IC group posted more averse outcomes in the experiments.  

Malaria, like other chronic diseases, is associated with reduced food and water intake in what is termed the sickness 
behaviour (Hart, 1988).The natural response to infection or injury is for the animal to down-regulate normal activities (including 
eating and drinking), reorganize its resources to overcome the infection and re-establish homeostatic functions (Clark et al., 2008). 
However, when the insult perpetuates, the associated somnolence becomes a liability to the animal with energy depletion and 
anorexia leading to cachexia (Clark & Vissel, 2014). The resulting malnutrition and inanition accelerated a wasting diathesis as we 
have observed in the IC group despite ad libitum provision of food and water. The loss of appetite in sickness behaviour is driven by 
tumour necrosis factor-α (TNF-α). TNF-α secretion is an intrinsic mechanism to create a hostile environment for the pathogen 
(Grimble, 1992) which becomes aberrant in malaria due to unregulated immune response. However, AA10 administration preserved 
the social habit of eating and drinking showing possible inhibition of TNF-α and inflammation or the nuclear factor-kβ (NF-Kβ) 
suppression which directs inflammatory responses (Huang et al., 2011).  

In the acute study, AA10 improved oral glucose tolerance response [OGTR] (Figure 2). Administration of AA ablated the 
rise in glucose at the 15 minute time point while the there was a sharp rise in glucose in both the IC and CHQ treated groups. This 
could be the result of the inflammatory cytokines (TNF-α)-induced insulin resistance that occurs in diabetes mellitus (Fernµndez-
Real & Ricart, 1999) as well as in malaria (Acquah et al., 2014). The anti-inflammatory effect of AA has been reported as well as its 
capacity to potentiate insulin (Ramachandran & Saravanan, 2013, Ramachandran & Saravanan, 2014) resulting in a faster uptake of 
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glucose without inducing hypoglycaemia. Insulin levels were observed to be lower in AA10 administered animals as well as in the 
NIC as compared to either the IC or the 30CHQ treated groups showing the suppressive effect of low glucose levels (Table 2). 
Terminal glucagon concentration, on the other hand, was elevated in the AA10 group as well as the NIC showing how the animals 
did not experience severe hypoglycaemia even after a 20 hour fast. The same hormone levels were, however, suppressed in the IC 
and the 30CHQ treated animals during the acute studies. This scenario seemed to occur in acute circumstance of low glucose 
concentration during fasting than in the sub-chronic studies.  

In the sub-chronic study there was an inflection in the glucose-time course which corresponded with the rise in 
parasitaemia in the AA10 administered animals. But there was a steep decline in glucose concentration showing a terminal 
hypoglycaemic trend that is typical of the malaria parasite effect on glucose homeostasis. 30CHQ treatment showed a contraction of 
glucose-time curve during the patent/treatment phase of the study. Chloroquine (Cansu & Korkmaz, 2008) and quinine (Elbadawi et 
al., 2011) have been shown to have hypoglycaemic effects due to their insulin memetic effect (English et al., 1998)  which persisted 
well after treatment had ceased and parasitaemia resolved (English et al., 1998). We have also shown in our laboratory that CHQ had 
a glucose lowering effect in Sprague Dawley rats in malaria with a concomitant rise in insulin (Musabayane et al., 2010) which was 
ameliorated by transdermal delivery of CHQ (Murambiwa et al., 2013). The hyperinsulinemia of malaria was clearly enunciated by 
our finding in the IC group which displayed a steep rise in insulin (Figure 7) correlating well with the changes in %parasitaemia 
(Table 1). Indeed, this collateral rise in insulin predetermined suppression of glucagon (Figure 8) which invariably decreased plasma 
glucose in the group.  

Malaria causes hyperinsulinemia as a result of increasing insulin resistance created by inflammation which disturbs glucose 
homeostasis. However, we observed correction of this trend when AA10 was administered. To maintain glucose concentration in 
malaria, glucagon was elevated in the AA10 administered animals in comparison with both the AC and NIC. The presence of AA 
and absence of malaria potentiated insulin activity such that a low concentration of glucose was maintained in the NIC compared to 
the AC during the fed state of the experiments. Indeed, AA has been reported to increase glycolysis enzymes in streptozotocin-
induced diabetes while inhibiting gluconeogenesis and glycogenolysis (Ramachandran & Saravanan, 2013) facets that will have 
preserved food and water intake until the animal recovered from malaria. Rationally, in an increased in vivo glucose oxidation that is 
accompanied by either inaccessible stored energy sources (AA effect) or depleted stores (malaria effect), the animal will seek to 
replenish the energy deficit by foraging. The food and water intake which was preserved in our AA10 administered animals but not 
observed in the IC may be attributed to AA influencing these biophysical activities fostered by parasitaemia eradication.  The 
antimalarial, anti-inflammatory, antioxidant and anti-hyperglycaemia influence of AA may have given the animals time to recover 
from toxic effects of parasitaemia and re-establish homeostasis.  

Glucagon has a catabolic role on glycogen adjacent to the anabolic insulin action that tightly regulates blood glucose 
concentration (Schulman et al., 1957). We observed that liver glycogen stores were significantly higher in in the AA10, the NIC and 
the AC groups compared to either the IC and the CHQ controls (Figure 4). The glycogen levels correlated well with the glucagon 
activities in the relevant groups, being high where glycogen was low and being low where glycogen was high. This reciprocity was 
also evident in muscle glycogen concentrations showing that glucose homeostasis critically depended on the presence of AA10. 
However, it is now known that glucagon receptors are expressed in many tissues other than the liver showing extra influence of the 
hormone outside of glucose metabolism. One of these mechanisms is the involvement of glucagon in satiety initiation (Salter, 1960). 
We observed that animals in the well-fed disease-free groups (NIC, AC) had suppressed glucagon concentration and increased 
glycogen levels in either the liver or the muscles. The opposite was seen in the IC group where anorexia was apparent by reduced 
feeds and cachexic tendencies as shown by low muscle and liver glycogen concentrations.  

Glucagon-induced hypophagia is regulated in the hypothalamus (Heppner et al., 2010) but only at low doses such that the 
high levels we saw in the acute studies (Table 1) and the sub-chronic studies may have initiated glucose mobilization regulating 
energy balance through thermogenesis and oxygen consumption (Davidson et al., 1957) by stimulation of brown adipose tissue 
(BAT) (Billington et al., 1991). In other normal conditions, this will have had a favourable effect on the animals’ wellbeing, but in 
malaria the disease process was promoted instead. Low insulin concentration is necessary for the pharmacological effects of 
glucagon as the hyperinsulinemia we saw in the IC group would invariably blunt glucagon thermogenic effects (Calles-Escandon, 
1994). Administration of AA resulted in increased glucose utilization and may, therefore, utilize the glucagon-induced glucose 
mobilization consequently quenching thermogenesis. Thermogenesis and febrile response are, on the other hand, cardinal features of 
malaria which could be orchestrated by either glucagon or malaria glycosylphosphatidylinositol (GPI)-induced TNF-α secretion and 
other cytokines by acting on the hypothalamus in severe malaria (Schofield & Hackett, 1993).  GPI moieties have pleiotropic effects 
in malaria one of which is insulin memetic action which regulates glucose utilization by adipocytes and causing profound 
hypoglycaemia (Schofield & Hackett, 1993, Krishnegowda et al., 2005).  

Overall, the administration of AA10 may have had an influence on the insulin-glucagon axis through amelioration of the 
debilitating effects of malaria by suppression parasitaemia and inhibiting the subsequent sequelae of malaria or may have abated 
malaria inflammatory effects of malaria and emasculating the disease in the process. Either way, AA10 administration positively 
influenced glucose homeostasis as compared to infected non-treated or CHQ-treated animals. 

Glucose utilization in malaria readily becomes dysregulated early in the disease course driven by over expression of 
glucose transporter-1 (GLUT-1) in virtually all the cells, which depletes plasma glucose autonomous of insulin activity. The over 
expression of GLUT-1 in the muscle is instituted through the influence of GPI on TNF-α increased secretion and subsequent over 
expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) synthesis (Balon & Nadler, 1996, Bedard et al., 1997). 
While we did not investigate GPI interaction with AA or AA with GLUT-1 receptors, this may formulate gaps for future studies. 
Furthermore, the high concentrations of glycogen in the liver and the muscle may also point to an upregulations of GLUT 2 and 
GLUT 4 influenced by AA administration which may need to be investigated. 

Plasma hyperlactataemia (Figure 6) observed in the IC group is evidence of increased energy demands of stress in the host 
or in the parasite or both and not necessarily hypoxia as lungs have been shown to produce increased amounts on lactate in disease 
(Opdam & Bellomo, 2000).  Higher %parasitaemia was associated with higher levels of lactate production. Infection with malaria 
results in increased glucose production by approximately 50% (Davis et al., 1993) but also an expedited non-insulin mediated 
glucose disposal  in glycolysis has been reported (Binh et al., 1997). This may mean possibly gluconeogenesis upregulation at the 
same time when glycolysis is increased. Therefore, the possibility that the intermediary molecule feeding both systems could be 
lactate is plausible.  In sepsis,  a condition that has many similarities with malaria infection, hyperlactaemia has been reported as an 
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independent predictor of mortality (Garcia-Alvarez et al., 2014). We have also observed that administration of AA10 preserved the 
concentration of lactate at lower concentration close to those of the NIC showing that possibly the phytochemical is also able to 
inhibit futile glycolysis either through its antioxidant or anti-inflammatory activity and also gluconeogenesis. The preservation of 
glycogen in the AA10 administered animals may have been as a result of lactate conversion to the glucose storage unit or the high 
glycogen stores may have inhibited hyperlactaemia development, both facets may be attributable to the influence of AA 
administration on glucose homeostasis. 
 
 
Conclusion 
 

We have shown the novelty of AA administration in malaria influencing both acute and sub-chronic glucose homeostasis, 
the preservation of food and water intake and modulating hormonal glucose handling. Insulin and glucagon preserved their reciprocal 
relationship which is usually dysregulated in malaria and other forms of malaria treatments showing the anti-disease aspect of AA. 
The preservation of glucose in malaria is a novel finding for a phytochemical that has be known to be anti-hyperglycaemic in 
diabetes mellitus.  

The link between AA and glucose homeostasis may be in that the phytochemical potentiates the activity of glycolytic 
enzymes creating a demand for glucose. This energy source deficit cannot be satisfied by glycogenolysis which was suppressed as 
shown by liver and muscle stores leaving exogenous food source as the only alternative for energy metabolism, initiating foraging 
habits. Lactate metabolism was normalised showing efficient lactate utilization through oxidation or gluconeogenesis. The satiation 
drive by glucagon was suppressed in the treated animals requiring higher concentrations for the same effect. The findings suggest 
that AA may be an antimalarial which preserves glucose homeostasis and therefore, may be an anti-disease phytotherapeutic with 
both anti-parasitic and anti-infection properties. 

 
 

Acknowledgements  
 

Our gratitude knows bounds to the veritable influence and knowledge Professor Cephas Tagumirwa Musabayane continues 
to have, even in death, on this work. We are highly indebted to Professor Fanie R Van Heerden for her insightful contributions to the 
conception and embankment of this project. Our thanks go to the Discipline of Physiology Endocrinology Group. Mr. M. Luvuno is 
highly appreciated for the tremendous contributions in animal and laboratory experiments. 

 
Conflict of Interests: The authors declare no conflict of in interest in this work.   
 
 
References 
 

1.  Acquah, S., Boampong, J. N., Eghan Jnr, B. A. and Eriksson, M. (2014). Evidence of Insulin Resistance in Adult 
Uncomplicated Malaria: Result of a Two-Year Prospective Study. Malaria. Res. Treat. 2014: 8 pages. 

2. Agbenya, T. Angus, B. J., Bedu, A. G., Baffoe, B. B., Guyton, T., Stacpoole, P. W. and Krishna, S. (2000). Glucose and 
lactate kinetics in children with severe malaria. J. Clin. Endo. Metab. 85: 1569-1576. 

3. Balon, T. W. and Nadler, J. L. (1996). Nitric oxide mediates skeletal glucose transport. Am. J. Physiol. 33: E1058-E1064. 
4. Bedard, S., Marcotte, B., and Marette, A. (1997). Cytokines modulate glucose transport in skeletal muscle by inducing the 

expression of inducible nitric oxide synthase. Biochem. J. 325: 487-493. 
5. Billington, C. J., Briggs, J. E., Link, J. G. and Levine, A. S. (1991). Glucagon in physiological concentrations stimulates 

brown fat thermogenesis in vivo. Am. J. Physiol. 261: R501-R507. 
6. Binh, T. Q., Davis, T. M. E., Johnston, W., Thu, L. T. A., Boston, R., Danh, P. T. and Anh, T. K. (1997). Glucose 

metabolism in severe malaria: Minimal model analysis of the intravenous glucose tolerance test incorporating a stable 
glucose label. Metab. Clin. Exp. 46: 1435-1440. 

7. Calles-Escandon, J. (1994). Insulin dissociates hepatic glucose cycling and glucagoninduced thermogenesis in man. 
Metabolism 43: 1000-1005. 

8. Cansu, D. and Korkmaz, C. (2008). Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for 
RA. Rheumatology (Oxford) 47: 378-379. 

9. Changa, K.-H. and Stevenson, M. M. (2004). Malarial anaemia: mechanisms and implications of insufficient erythropoiesis 
during blood-stage malaria. Internat. J. Parasitol. 34: 1501–1516. 

10. Clark, I. A., Budd, A. C. and Alleva, L. M. (2008). Sickness behaviour pushed too far-the basis of the syndrome seen in 
severe protozoal, bacterial and viral diseases and post-trauma. Malar. J. 7: 208. 

11. Clark, I. A., and Vissel, B. (2014). Inflammation-sleep interface in brain disease: TNF, insulin, orexin. JNI 11: 51. 
12. Croft, A. (2000) Malaria affects children and pregnant women most. BMJ. 321: 1288. 
13. Davidson, I. W., Salter, J. M. and Best, C. H. (1957). Calorigenic action of glucagon. Nature. 180: 1124. 
14. Davis, T. M., Looareesuwan, S., Pukritayakamee, S., Levy, J. C., Nagachinta, B. and N.J., W. (1993) Glucose turnover in 

severe falciparum malaria. Metabolism. 42: 334-340. 
15. Elbadawi, N. E. E., Mohamed, M. I., Dawod, O. Y., Ali, K. E., Daoud, O. H., Ali, E. M., Ahmed, E. G. E. and Mohamed, 

A. E. (2011). Effect of quinine therapy on plasma glucose and plasma insulin levels in pregnant women infected with 
Plasmodium falciparum malaria in Gezira state. East Mediterrenean Health J. 17: 697-700. 

16. English, M., Wale, S., Binns, G., Mwangi, I., Sauerwein, H. and Marsh, K. (1998). Hypoglycaemia on and after 
admissionin Kenyan children with severe malaria. Q. J. Med. 91: 191-197.   

17. Fernµndez-Real, J. M. and Ricart, W. (1999). Insulin resistance and inflammation in an evolutionary perspective: the 
contribution of cytokine genotype/phenotype to thriftiness. Diabetologia. 42: 1367-1374. 



Mavondo Afr J Tradit Complement Altern Med. (2016) 13(5):91-101 
doi:10.21010/ajtcam.v13i5.13 

101 
 

18. Garcia-Alvarez, M., Marik, P. and Bellomo, R. (2014). Sepsis-associated hyperlactatemia. Critical Care. 18: 503. 
19. Goldring, J. P. (2004). Evaluation of immunotherapy to reverse sequestration in the treatment of severe Plasmodium 

falciparum malaria. Immunol. Cell Biol. 82: 447-452. 
20. Grimble, R. (1992). Dietary manipulation of the inflammatory response. Proc. Nutri. Soc. 51: 285-294. 
21. Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12: 23-137. 
22. Heppner, K. M., Habegger, K. M., Day, J., Pfluger, P. T., Perez-Tilve, D., Ward, B., Gelfanov, V., Woods, S. C., 

DiMarchi, R. and Tschöp, M. (2010) Glucagon regulation of energy metabolism. Physiology Behavior. 100: 545-548. 
23. Huang, S.-S., Chiu, C.-S., Chen, H.-J., Hou, W.-C., Sheu, M.-J., Lin, Y.-C., Shie, P.-H. and Huang, G.-J. (2011). 

Antinociceptive Activities and the Mechanisms of Anti-Inflammation of Asiatic Acid in Mice. Evid-Based Complemen. 
Altern. Med. 2011: 10 pages. 

24. Krishnegowda, G., Hajjar, A. M., Zhu, J., Douglass, E. J., Uematsu, S., Akira, S., Woods, A. S. and Gowda, D. C. (2005). 
Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: 
cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. 
Chem. 280: 8606-8616. 

25. Mackintosh, C. L., Beeson, J. G. and Marsh, K. (2004) Clinical features and pathogenesis of severemalaria. Trends in 
Parasitol. 20: 597-603. 

26. Mavondo, G.A., Mkhwanazi, B.N. and Mabandla, M.V. (2016). Pre‑infection administration of asiatic acid retards 
parasitaemia induction in Plasmodium berghei murine malaria infected Sprague‑Dawley rats. Malar. J. 15:226.  

27. Miller, L. H., Ackerman, H. C., Su, X.-z. and Wellems, T. E. (2013). Malaria biology and disease pathogenesis: insights 
for new treatments. Nature Med. 19: 156-167. 

28. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M6, 
Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D11, 
Nahmias Y. 2015).  Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of 
embryonic stem cells. 
Cell Metab. 21: 392-402 

29. Murambiwa, P., Tufts, M., Mukaratirwa, S., van Heerden, F. R. and Musabayane, C. T. (2013). Evaluation of efficacy of 
transdermal delivery of chloroquine on Plasmodium berghei-infected male Sprague-Dawley rats and effects on blood 
glucose and renal electrolyte handling. Endocrine Abstracts.  13: P203. 

30. Musabayane, C. T., Murambirwa, P., Joosab, N., Masola, B. and Mukaratirwa, S. (2010). The effects of chloroquine on 
blood glucose and plasma insulin concentrations in male Sprague Dawley rats. Soc. Endocrinol. 21: 139. 

31. Olszewski, K. L., Morrisey, J. M., Wilinski, D., Burns, J. M., Vaidya, A. B., Rabinowitz, J. D. and Llinas, M. (2009). Host-
Parasite Interactions Revealed by Plasmodium falciparum Metabolomics. Cell Host Microbe. 5: 191-199. 

32. Opdam, H. and Bellomo, R. (2000). Oxygen consumprion and lactate release by the lung after cardiopulmonary bypass and 
during septic shock. Crit. Care Resusc. 2: 181-187. 

33. Osier, F. H., Berkley, J. A., Ross, A., Sanderson, F., Mohammed, S. and Newton, C. R. (2003). Abnormal blood glucose 
concentrations on admission to a rural Kenya district hospital: prevalence and outcome. Arch. Dis. Child. 88: 621-625. 

34. Pedersen, P.L. (2007). Warburg, me and Hexokinase 2: Multiple discovoeris of key molecular evevents underlying of 
cancers' most common phenotypes, the "Warbug Effect", i.e., elevated gylcolysis in the presence of oxygen. J. Bioenerg. 
Biomembr. 39: 211-222. 

35. Ramachandran, V. and Saravanan, R. (2013). Efficacy of asiatic acid, a pentacyclic triterpene on attenuating the key 
enzymes activities of carbohydrate metabolism in streptozotocininduced diabetic rats. Phytomedicine. 20: 230-236. 

36. Ramachandran, V. and Saravanan, R. (2014). Antidiabetic and antihyperlipidemic activity of asiatic acid in diabetic rats, 
role of HMG CoA: in vivo and in silico approaches. Phytomedicine. 21: 225-232. 

37. Rangaraj, N., Vaghasiya, K., Jaiswal, S., Sharma, A., Shukla, M. and Lalb, J. ( 2014). Do Blood Sampling Sites Affect 
Pharmacokinetics? Chemist Biol. Interface. 4: 176-191. 

38. Salter, J. M. (1960). Metabolic effects of glucagon in the Wistar rat. Am. J. Clin. Nutr. 8: 535-539. 
39. Schofield, L. (2007). Rational approaches to developing an anti-disease vaccine against malaria. Microbes Infect. 9: 784-

791. 
40. Schofield, L. and Hackett, F. (1993). Signal Transduction in Host Cells by a Glycosylphosphatidyllnositol Toxin of 

Malaria Parasites. J. Exp. Med. 177: 145-153. 
41. Schulman, J. L., Carleton, J. L., Whitney, G. and Whitehorn, J. C. (1957). Effect of glucagon on food intake and body 

weight in man. J. Appl. Physiol. 11: 419-421. 
42. Seifter, S., Dayton, S., Novic, B. and Muntwyler, E. (1949). The estimationof glycogen with the athrone reagent. 

Federation Proc. 8: 249. 
43. Warburg, O. (1930). The metabolism of tumours. London. Constable Co. LTD,1930 
44. Warburg, O. (1956). Science. 124: 269-270. 
45. White N.J., Warrell, D. A., Chanthanavich, P., Looareesuwan, S., Warrell, M. J. and Krishna, S. (1983). Severe 

hypoglycaemia and hyperinsulinaemia in falciparum malaria. N. Engl. J. Med. 309: 61-62. 
46. Ende Zhao, Tomasz Maj, Ilona Kryczek, Wei Li, Ke Wu, Lili Zhao, Shuang Wei, Joel Crespo, Shanshan Wan, Linda 

Vatan, Wojciech Szeliga, Irene Shao, Yin Wang, Yan Liu, Sooryanarayana Varambally, Arul M Chinnaiyan, Theodore H 
Welling, Victor Marquez, Jan Kotarski, Hongbo Wang, Zehua Wang, Yi Zhang, Rebecca Liu, Guobin Wang & Weiping 
Zou (2016). Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. 
Nature Immunol. 17: 95-103. 

 
 


