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Background: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the
underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to
exert protective effects in various neurological studies, little information is available regarding its anti-
depressant effects.
Methods: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract
(PGE) in a chronic restraint stress (CRS)-induced depression model in mice.
Results: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in
forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the
levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression
in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but
ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein
expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS
induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and Nu-
nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor,
attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of
the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways.
Conclusion: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-
induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related fac-
tor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis
mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an
alternative treatment of depression, including clinical trial evaluation.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Depression is one of the most prevalent psychiatric disorders
that can affect a person’s thoughts, behavior, feelings, and sense of
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well-being [1,2]. Patients with depression and experimental ani-
mal models display structural alterations (dendritic remodeling in
neurons) in some brain areas including the prefrontal cortex,
hippocampus, and amygdala [1,2], which may be related to
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Fig. 1. Schema for chronic restraint stress (CRS) and Panax ginseng extract (PGE)
treatment, behavioral experiments, and tissue preparation. FST, forced swimming test;
TST, tail suspension test.
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aberrations in neurotrophic factors/neurotransmitter and receptor
signaling pathways, disturbances in the hypothalamo-pituitary-
adrenocortical (HPA) axis, inflammation, immune dysfunctions,
and oxidative stress [1e3]. Currently, accumulating evidence in-
creases the possibilities of significant roles of amygdala in
depression. For example, both acute and chronic experimental
stressors cause patterns of dendritic remodeling in neurons and
neuronal hypertrophy of the amygdala [4,5]. However, physio-
logical significance of the amygdala in depression is not clearly
understood. Now, patients with depression are normally treated
with antidepressants (neurotransmitter-related medicines), such
as serotonin-norepinephrine reuptake inhibitors and selective
serotonin reuptake inhibitors (SSRIs) [6]. However, the classical
antidepressants are only beneficial in w60% of patients [7] and
often produce significant adverse effects, such as agitation, head-
ache, dizziness, anxiety, constipation, nausea, and lethargy [1].
Efficient and safe drugs to treat depression are required.

Oxidative stress plays a main negative contribution to the
neuroprogression that is observed in major depressive diseases [1e
3]. However, nuclear factor erythroid 2 related factor 2 (Nrf2), a
major regulator of the antioxidant response, plays a beneficial key
role in inflammation which is involved in depression [8]. The
deletion of Nrf2 exerts antidepressant effects and pretreatment
with the Nrf2 activator sulforaphane prevents the depression-like
phenotype induced by repeated social defeat stress [9]. Reactive
oxygen species, oxidative stress biomarkers, serve as a crucial
secondary messenger in signal transduction and significantly affect
inflammatory pathways by activating mitogen-activated protein
kinases (MAPKs) and nuclear factor kappa B (NF-kB) signaling
pathways in depression [1e3]. Therefore, significant regulators of
Nrf2, MAPKs, and NF-kB pathways might be a therapeutic tool to
treat major depressive disorder.

Panax ginseng has been prescribed as a traditional herbal
medicine for over 2,000 yr in Eastern Asia including Korea, China,
and Japan [10]. Its antidepressant, antianxiety, and cognition-
enhancing effects have been recorded by Shi-Zhen Li in Ben Cao
Gang Mu, the most comprehensive premodern herbal text that
was compiled during the Ming Dynasty in China. Traditional P.
ginseng containing formulations, such as Sho-ju-sen, Kai Xin San
aqueous extract, and Gincosan, mitigate the symptoms of
depression in humans and rodent models [11e13]. Ginsenoside
Rb1 and its metabolite compound K ameliorated depression-like
behaviors during a menopausal depressive-like state in female
mice through the 5-hydroxytryptamine 2A-receptor [14]. Ginse-
noside Rb1 ameliorated chronic stress induced depression-like
behaviors by increase of brain-derived neurotrophic factor
(BDNF) expression in the amygdala of rats [15] and ameliorated
neuroinflammation-induced depression-like behavior in rodents
by blunting the upregulation in circulating interleukin (IL)-6 levels
[16]. Ginsenoside Rb3 exerted antidepressant-like effects in
several animal models by regulating BDNF and the monoamine
neurotransmitters 5-hydroxytryptamine, dopamine, and norepi-
nephrine [17]. 20(S)-Protopanaxadiol, an intestinal metabolite of
ginseng, has antidepressant-like activity through the regulation of
neuropeptide Y expression and hypothalamic corticotrophin-
releasing factor, BDNF expression, neurofilament-L, and gluco-
corticoid receptor [18]. Based on these collective reports, P. ginseng
extract (PGE) may exert stronger antidepressive effects than a
single component, because PGE contains various active compo-
nents, such as ginsenosides, gintonin, and polysaccharides [19].
Additionally, it can exert antidepressive effects by antioxidant and
antiinflammatory activities, because PGE regulates the Nrf2,
MAPKs, and NF-kB pathways in Alzheimer’s and Parkinson’s dis-
eases [19]. However, the role and molecular mechanisms of anti-
oxidant and antiinflammatory activities of P. ginseng on
depression-like behaviors remain poorly understood. Here we
demonstrated the antidepressant effects of PGE mediated by the
upregulation of the Nrf2-heme oxygenase-1 (HO-1) pathway and
downregulation of the neuroinflammatory system (MAPKs and
NF-kB pathways) in the amygdala, using a rodent model of chronic
restraint stress (CRS)-induced depression.

2. Materials and materials

2.1. Animals and ethical approval

Adult male C57BL/6 mice (Narabiotec Co., Ltd., Seoul, Korea) 8e
10 wk of age, and 22e25 g in body weight, were housed at a con-
stant temperature of 23 � 2�C with a 12-h light-dark cycle (light on
from 08:00 AM to 08:00 PM), and food and water ad libitum. All
experimental procedures were reviewed and approved by the
Institutional Animal Care and Use Committee at Kyung Hee Uni-
versity, Seoul, Korea. In this process, proper randomization of lab-
oratory animals and handling of data were performed in a blinded
manner in accordance with recent recommendations from an Na-
tional Institutes of Health (NIH) workshop on preclinical models of
neurological diseases [20].

2.2. Experimental design and CRS procedure

For the behavioral test, the experimental group was subdivided
into the following groups (n ¼ 4e6/group): sham group
(nonstress þ saline, p.o.), CRS group (CRS þ saline, p.o.), and
CRS þ PGE group (CRS þ 75 mg/kg, 150 mg/kg, or 300 mg/kg body
weight of PGE, p.o.). For determination of serum corticosterone
level and histological and molecular biological analyses, the
experimental group was subdivided into the following groups
(n ¼ 4e6/group): sham group (nonstress þ saline, p.o.), CRS group
(CRSþ saline, p.o.), CRSþ PGE group (CRSþ 150mg/kg of PGE, p.o.),
and PGE alone group (nonstress þ 150 mg/kg of PGE, p.o.). Body
weight of each mouse was measured 1 h prior to stress induction.
Mice were subjected to CRS similar to a published procedure [21],
but with some modifications (Fig. 1). In brief, mice in the sham
group were left in their home cages in a noise-free environment,
with food and water during the restraint stress period. Mice in the
CRS and CRS þ PGE groups were exposed to restraint stress for 2 h
(from 10:00 AM to 12:00 PM) each day for 14 d. For restraint stress,
eachmousewas placed in a transparent 50mL polyethylene conical
centrifuge tube of 10 cm in length and 2.5 cm in diameter that had
many air holes to allow ventilation. After restraint stress induction,
themicewere returned to their home cages and allowed free access
to food and water for the duration of the experiment.

2.3. Preparation of PGE

Dried roots of P. ginsengMeyer were purchased from a local farm
in Yeonpung-myeon, Goesan-gun, Chungcheongbuk-do, Korea.
Specimens were taxonomically identified by a Korean medicinal
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doctor (S.W.L.) at the National Institute of Horticultural and Herbal
Science, Rural Development Administration, Eumseong, Korea. A
voucher specimen (HPR-207) was deposited at the herbarium of
Herbal Crop Research Institute (Eumsung, Korea). Water-based PGE
was prepared because most traditional Oriental herbal materials
are decocted with boiling water and since ginsenosides are more
soluble in water than in organic solvents. The dried and crushed
P. ginseng (200 g) was cut into small pieces and incubated in 3.0 L
distilled water using a reflux extraction system. The aqueous
extract was filtered, concentrated, lyophilized, and stored at �80�C
until use. The final yield of dried P. ginseng was 18.3% (wt/wt).

2.4. Administration of PGE, celecoxib, and Nu-nitro-L-arginine
methyl ester hydrochloride

PGEwas dissolved in normal saline and orally administrated at a
dose of 75 mg/kg, 150 mg/kg, or 300 mg/kg in a constant volume
(100 mL) once daily from 30 min prior to stress exposure. Saline and
PGE (150 mg/kg) were administrated at the same volume to the
sham and PGE alone group, respectively. The selective
cyclooxygenase-2 (COX-2) inhibitor celecoxib (Tokyo Chemical In-
dustry Co., Ltd., Tokyo, Japan) and the selective inducible nitric
oxide synthase (iNOS) inhibitor Nu-nitro-L-arginine methyl ester
hydrochloride (L-NAME; Sigma-Aldrich, St. Louis, MO, USA) were
dissolved in 1% Tween 80/phosphate buffered saline and 0.9% sa-
line, respectively, and intraperitonelly administrated once daily at a
dose of 10 mg/kg and 20 mg/kg in a constant volume (100 mL)
30 min prior to stress exposure. The same volumes of phosphate
buffered saline, celecoxib, and L-NAME were administered to the
sham, celecoxib, and L-NAME alone groups, respectively.

2.5. Forced swimming test

Some 24 h after the last restraint stress induction, a forced
swimming test (FST) was done as previously described [21] with
some modifications. Briefly, mice (n ¼ 4e6/group) were placed in a
Plexiglas cylinder (15 cm in diameter� 25 cm in height) containing
water at 23e24�C to a depth of 14 cm. Mice were individually
placed in the cylinder for 6 min. Immobility time was quantified
during the last 4 min. Eachmousewas judged to be immobile when
it ceased struggling and remained floating motionless in the water,
making only those movements necessary to keep its head above
water. At the end of a test, the wet animal was placed in a holding
cage with normal bedding that was covered by an absorbent paper
towel.

2.6. Tail suspension test

Some 24 h after the last restraint stress induction, a tail sus-
pension test (TST) was performed according to previously
described, with some modifications [21]. Briefly, mice (n ¼ 4e6/
group) were suspended individually 50 cm above the floor by ad-
hesive tape placed approximately 1 cm from the tip of the tail for
6 min. Cumulative immobility time was quantified during the last
4 min. Immobility was defined as the absence of limb or body
movements, except for those caused by respiration when the mice
hung passively and were completely motionless. During the test,
mice were separated from each other to prevent possible visual and
acoustical associations.

2.7. Enzyme-linked immunosorbent assay

Whole blood from each group (n ¼ 4e6/group) was collected
from the beating heart under ethyl ether anesthesia 24 h after the
last restraint stress induction. Blood samples were kept at room
temperature for 1 h and centrifuged at 700 g for 10 min. The serum
(supernatant fraction) was transferred into a new tube for subse-
quent assays. The serum level of corticosterone and adrenocorti-
cotropic hormone (ACTH) wasmeasured with commercial enzyme-
linked immunosorbent assay kits according to the manufacturer’s
instructions (Enzo Life Sciences, Farmingdale, NY, USA). To exclude
the potential impact of diurnal rhythm on mouse hormone levels,
blood samples were collected in the same time window of 12:00
AMe01:00 PM.

2.8. Immunohistochemistry and Western blot analysis

Some 24 h after the last restraint stress induction, mice (n ¼ 4e
6/group) were perfusedwith 4% paraformaldehyde and brains were
coronally cut into 30 mm thick sections with a crystat (Leica In-
struments, Nussloch, Germany). Immunohistochemical analysis
was accomplished as described previously [22,23]. In brief, free-
floating sections were reacted with either rabbit anti-c-Fos
(1:2000; Oncogene Research Products, San Diego, CA, USA) or
rabbit anti-ionized calcium-binding adapter molecule 1 (Iba-1;
1:2,000; WAKO, Osaka, Japan) as primary antibodies, followed by
biotinylated rabbit IgG antibody (1:200; Vector Laboratories, Bur-
lingame, CA, USA), and visualized using an ABC Elite kit (Vector
Laboratories).

2.9. Western blot analysis

The amygdalas from each group (n ¼ 4e6/group) were imme-
diately removed 24 h after the last restraint stress induction.
Western blot analysis was performed as previously described [24].
Briefly, each amygdala was homogenized in lysis buffer, separated
by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE), and the resolved proteins were transferred to poly-
vinylidene fluoride membranes (Bio-Rad, Hercules, CA, USA). Blots
were incubated with mouse anti-c-Fos (1:2000; EMD Millipore
Corp., Billerica, MA, USA), mouse anti-COX-2 (1:2000; BD Bio-
sciences, San Jose, CA, USA), rabbit anti-iNOS (1:1000; Sigma-
Aldrich), rabbit anti-Nrf2 (1:1000; Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, USA), or mouse anti-HO-1 (1:1000; Enzo Life Sci-
ences) followed by horseradish peroxidase-conjugated secondary
antibody, and specific signals were visualized using chem-
iluminescence (Amersham Pharmacia Biotech, Piscataway, NJ,
USA). Western blot images were quantified using Image J analysis
software (JAVA image processing program, NIH, Bethesda, MD,
USA).

2.10. Reverse transcription-polymerase chain reaction analysis

Some 24 h after the last restraint stress induction, the amygdala
from each group (n ¼ 4e6/group) were harvested and total RNA
was extracted using TRIsure reagent according to the manufac-
turer’s instructions (Bioline, London, UK) as previously described
[24]. The primer sets used were 50-GAT GCC GCA AAC ATG TCT ATG
A -30 and 50-TAA TAC TGT CAC ACA CGC TCA GCT C-30 for BDNF, 50-
TGC TTA CCT GGG TTA TGC TTC TG-30 and 50-CCG AGG TGC TCC TAA
AAC CA-30 for CD11b, 50-CGAGTCCCTAGAGCGGCAAATG-30 and 50-
CGGATCTGGAGGTTGGAGAAAGTC-30 for glial fibrillary acidic pro-
tein (GFAP), 50-TTG TGG CTG TGG AGA AGC TGT-30 and 50-AAC GTC
ACA CAC CAG CAG GTT-30 for IL-1ß, 50-CAG TAT CAG AAC CGC ATT
GCC-30 and 50-GAG CAA GTC CGT GTT CAA GGA-30 for COX-2, 50-
GGC AAA CCC AAG GTC TAG GTT-30 and 50-TCG CTC AAG TTC AGC
TTG GT-30 for iNOS, and 50-AGG TCA TCC CAG AGC TGA ACG-30 and
50-CAC CCT GTT GCT GTA GCC GTA T-30 for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Expression levels of each
gene were normalized to that of GAPDH.
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2.11. Statistical analyses

Statistical analyses were performed by using the SPSS 21.0
package (SPSS Inc., Chicago, IL, USA) for Windows. Two-sample
comparisons were carried out using the Student t test and multi-
ple comparisons were made using one-way analysis of variance
with Tukey post hoc test. All data are presented as mean� standard
error and statistical difference was accepted at the 5% level unless
otherwise indicated.

3. Results

3.1. Antidepressant effect of PGE in a mouse CRS model

Since chronic exposure to stress alters body weight gain [25], we
evaluated whether PGE had beneficial effects in the normal gain of
body weight in mice during CRS induction. As shown in Fig. 2A and
B, CRS significantly decreased normal increase of body weight for 14
d compared with the sham group, while administration of PGE
(150 mg/kg) mitigated the significant CRS-mediated reduction of
body weight. PGE at doses of 75 mg/kg and 300 mg/kg did not
significantly influence reduction of the body weight by CRS. FST and
TST have long been used to screen antidepressants, because these
models cause a state of lower “mood” in animals that may be a
component of clinical depression in humans [26]. Here, the anti-
depressant effects of PGE administration were evaluated in the FST
and TST in mice. In the FST, CRS produced significantly increased
immobility time (113.6 � 11.2 seconds) compared with the sham
group (29.9� 5.8 seconds), while administration of PGE significantly
decreased immobility time (54.7 � 12.1, 50.3 � 9.1, and 49.6 � 9.2
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tion of PGE at a dose of 150 mg/kg body weight produced the best
antidepressant effect in the CRS model. Thus, this dose was used for
the subsequent histopathological and cellular analyses.

3.2. Effect of PGE on BDNF level in the amygdala
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polymerase chain reaction. Exposure to CRS significantly decreased
amygdaloid BDNF mRNA level as compared to the sham group.
However, daily administration of 150 mg/kg PGE significantly
inhibited the decrease in the mRNA level of BDNF in the amygdala of
CRS-induced mice as compared to the sham group. PGE itself was
not significantly different from the sham group (Fig. 3A).
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(CRS) vs. sham or PGE alone group; *p < 0.05, **p < 0.01 CRS þ PGE vs. CRS group. ANOVA, analysis of variance; CEL, celecoxib; FST, forced swimming test; L-NAME, Nu-nitro-L-
arginine methyl ester hydrochloride; RT-PCR, reverse transcription-polymerase chain reaction; TST, tail suspension test.
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(Fig. 3B) and immunohistochemistry (Fig. 3CeF). Increased
expression of c-Fos was observed in the amygdala following CRS.
Interestingly, administration of 150 mg/kg PGE significantly
inhibited the CRS-mediated increase in c-Fos protein expression
compared with the CRS group by Western blot analysis (Fig. 3B),
which corresponded to the change in c-Fos activation revealed by
immunohistochemistry (Fig. 3CeF).

3.4. Effect of PGE on activation of microglia and inflammatory
mediators in amygdala

The traditional culprits of depression (glucocorticoids, biogenic
amines, BDNF) affect glia (microglia and astrocyte) functioning,
whereas antidepressant treatments (SSRIs, electroshocks, deep
brain stimulation) recover glia function [30]. The effect on the
change in glia in amygdala was investigated. The mRNA expression
of CD11b (a microglia marker) was significantly upregulated in
amygdala from the CRS group, compared to the sham group. How-
ever, the increase in mRNA expression of CD11bwas blocked by PGE
administration, compared to the CRS group (Fig. 3G). In agreement
with this result, Iba-1 (a microglia marker) immunopositive micro-
glia was slightly activated in the amygdala, while the activation was
inhibited by administration with PGE (Fig. 3IeL). However, signifi-
cant changes in mRNA expression and immunohistochemical
expression of glial fibrillary acidic protein were not detected by CRS
and PGE treatment, compared to the sham group (Fig. 3H, MeP).
Normally, activation of microglia can release inflammatory media-
tors [30]. Thus, the effect of PGE on several representative inflam-
matory mediators was evaluated. The mRNA and protein levels of
COX-2 and iNOS were increased in the CRS group compared with
the sham group. These increased expressions were significantly
inhibited by PGE treatment (Fig. 4AeD). The results suggested that
inhibition of COX-2 and iNOS expressions may have beneficial ef-
fects in CRS-induced depression. Therefore, we investigated
whether treatment with celecoxib or L-NAME for 14 d could
attenuate depression-like behaviors after CRS (Fig. 4E and F). In the
FST, administration of celecoxib and L-NAME significantly decreased
immobility time (97.7 � 6.6 s and 59.8 � 9.1 s for 10 mg/kg and
20 mg/kg celecoxib, respectively, and 95.8 � 13.1 s and 76.3 � 8.6 s
for 10 mg/kg and 20 mg/kg L-NAME, respectively) compared with
the stress group (155.3� 9.4 s) (Fig. 4E). In the TST, administration of
celecoxib and L-NAME significantly reduced immobility
(107.8 � 14.4 s and 95.8 � 10.2 s for 10 mg/kg and 20 mg/kg cele-
coxib, respectively, and 86.7 � 9.9 s for 20 mg/kg L-NAME)
comparedwith the stress group (160.5� 3.6 s) (Fig. 4F). Celecoxib or
L-NAME alone did not affect the level of normal behavior.

3.5. Effect of PGE on Nrf2 pathway in the amygdala

Since the Nrf2 pathway may regulate BDNF expression involved
in pathophysiology and treatment of major depressive disorders
[31], we further investigated whether PGE might exert
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antidepressant effects by regulating the antioxidant system. As
shown in Fig. 5, the protein expression of Nrf2 was markedly
enhanced 1.85-fold (76.6 � 11.1%) in the amygdala compared to the
sham group (38.6 � 5.4%), whereas the increased expression was
further increased (1.45-fold; 104.5 � 7.0%) by PGE (150 mg/kg)
administration, compared to the CRS group (Fig. 5A). The protein
expression of HO-1, as one of the representative products of the
Nrf2 pathway, was increased 2.0-fold (68.4� 3.3%) in the amygdala
of the CRS group, compared to the sham group (33.5 � 5.2%),
whereas the elevated protein expression was further increased
(1.45-fold; 99.4 � 6.3%) in the PGE-administrated group, compared
to the CRS group (Fig. 5B). PGE itself was not significantly different
from the sham group (Fig. 5A and B). Collectively, the results
indicate that administration with PGE activates the Nrf2 pathway,
leading to upregulation of HO-1 in the amygdala, which contributes
to its antioxidant activity in mice.

4. Discussion

There is a growing need to develop effective and safe antide-
pressant medications. This study explored the utility of PGE as a
potential antidepressant. Administration of PGE for 14 d amelio-
rated the depressive-like state (immobility time) in FST and TST,
and inhibited the increase of serum corticosterone and ACTH level
after CRS induction. These specific effects were associated with
enhancement in Nrf2 pathway and antiinflammatory activity in the
amygdala. Our findings suggest that PGE might be a potential an-
tidepressant through further study.

4.1. PGE has antidepressant effects in behavioral tests

Chronic stress is one of critical risk factors for mental illnesses
such as major depressive diseases and anxiety [32]. The chronic
stress-treated animals can evoke behavioral and psychiatric
changes similar to clinical depression, such as deficit in locomotor
activity, increased immobility, decreased sucrose consumption, and
a decrease in responsiveness to rewarding stimuli [32]. Antide-
pressant medicines can recover these symptoms [12,14,17,18,33,34].
In the present study, PGE decreased immobility time during FSTand
TST in the CRS-induced depression model. These findings were also
in agreement with previous studies using resveratrol, ginseng total
saponin, and ginsenoside Rb3 [13,17,34]. The results suggest that
PGE may exert antidepressant efficacy for CRS-induced depression.
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heme oxygenase-1 (HO-1) and GAPDH is determined by Image J analysis software. The GAP
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4.2. Antidepressant properties of PGE are involved in the regulation
of HPA axis activity

The most important neuroendocrine dysfunction in depression
is HPA axis hyperactivity [35,36]. Activation of the HPA axis stim-
ulates the secretion of corticotropin releasing hormone and argi-
nine vasopressin from the hypothalamic paraventricular nucleus,
which in turn stimulates the secretion of ACTH from the pituitary,
finally leading to the secretion of glucocorticoids (cortisol in pri-
mates and corticosterone in rodents) from the adrenal glands.
Therefore, ACTH and glucocorticoids are used clinically as diag-
nostic agents in HPA axis function [35,36]. Although serum con-
centrations of ACTH and glucocorticoids are increased during
chronic stress, their increases are blocked by antidepressants and
antidepressant-like materials [35,36]. Here, we observed that PGE
inhibits the increase in serum concentrations of ACTH and gluco-
corticoids in the CRS-induced depression model. The positive effect
could be supported by the fact that ginseng total saponin and
ginsenoside Rc inhibit the immobilization stress-induced increase
in plasma corticosterone levels by blocking ACTH action in the
adrenal gland [37]. The results indicate that antidepressant
efficacy of PGE may be related with regulation of the HPA axis
mechanism.

4.3. Antidepressant properties of PGE are involved in inhibition of
microglial activation and expression of inflammatory mediators

Activation of microglia, caused by either short-term stress or by
chronic unpredictable stress, can lead to depression and associated
impairments in neuroplasticity and neurogenesis [38]. Long-term
treatment with antidepressants like fluoxetine and imipramine
prevents microglial activation in vivo, as well as the depressive-like
behavioral alterations induced by chronic unpredictable stress
[39,40]. Microglial activation might be critical in depressive disor-
ders. In the present study, the microglia displayed slightly activated
morphology in the amygdala after CRS induction, while treatment
with PGE for 14 d ameliorated the microglial activation corre-
sponding to the decrease in immobilization time in FST and TST
(Fig. 2). The results indicate that PGE may exert an antidepressive
effect that is associated with the inhibition of microglial activation.
Normally, activated microglia may release neurotoxic (cytokines/
chemokines, COX-2, and iNOS) or neurotrophic mediators (BDNF
and nerve growth factor), which can be toxic or detrimental in
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neurological lesions [39,40]. Thus, controlling microglial activation
and inflammation may be an attractive therapeutic strategy for the
treatment of neuropsychological diseases including depression
[39,40]. Nonsteroidal antiinflammatory drugs showed anti-
depressive effects, as add-ons to conventional antidepressants. A
meta-analysis of 14 randomized clinical trials (10 with nonsteroidal
antiinflammatory drugs, 1 with an IL-12/IL-23 blocker, and 2 with
TNF-ɑ/inhibitors) revealed that antiinflammatory drugs produced a
significant reduction in depressive symptoms [41]. Selective COX-2
inhibitors, such as celecoxib (selective COX-2 inhibitor), display
antidepressive efficacy, while nonselective COX-2 inhibitors like
aspirin do not [42]. In agreement with these reports, here, PGE
inhibited decrease in mRNA expression of BDNF and increase in
protein activation of COX-2 and iNOS in the amygdala after CRS
induction. Interestingly, treatment with celecoxib and L-NAME
attenuated depression-like behaviors during FST and TST after CRS
induction. The results corresponded with the inhibition of micro-
glial activation and reduction of depression-like behaviors. Taken
together, these results suggest that PGE may decrease depressive
symptoms induced by CRS by inhibiting microglial activation and
inflammation in the amygdala.

4.4. Antidepressant properties of PGE are involved in inhibition of
oxidative stress

Oxidative stress may be one of the major pathogenesis of
depressive diseases. Major redox-sensitive transcription factor Nrf2
is one of potential target for the treatment of major depressive
disorders [3]. Various antioxidants, such as catechin, curcumin, and
sulforaphane, have a potential as future antidepressants [22,43].
Nrf2 activators have antidepressant-like effects in animal models of
anxiety/depression [44]. Prozac (fluoxetine), an antidepressant
belonging to the SSRI class of drugs, can reverse the expression of
genes involved in oxidative stress in neurons and astrocytes in the
dentate gyrus of the hippocampus from a rodent model of anxiety/
depression by the chronic mild stress paradigm [45]. Nrf2 knockout
mice recover depressive-like behaviors (by an increase in the
immobility time in the TST and by a decrease in the grooming time
in the splash test) associated with the reduction of the levels of
dopamine and serotonin in the prefrontal cortex [46]. Furthermore,
induction of Nrf2 by sulforaphane, in an inflammatory model of
depression elicited by lipopolysaccharide, produced
antidepressant-like effects [46]. These reports indicate that the
antioxidant may involve neuroprotection against the neurotoxic
effects by depressions. Our findings indicate that, in a rodent model
of CRS-induced depression, the expression level of Nrf2 proteinwas
significantly increased in the amygdala and the enhanced levels
were more increased by PGE administration, correspondence with
the change of protein expression of HO-1 (a representative cyto-
protective protein). Interestingly, a subchronic antiinflammatory
treatment (rofecoxib daily for 7 d) reversed the depressive-like
behavior in Nrf-2 knock-out mice [46]. In addition, ginsenoside
Rg1, ginsenoside Rh3, and ginsenoside R1 (notoginsenoside iso-
lated from Panax notoginseng) increased Nrf2 nuclear translocation
potential in cultured neurons [47,48]. Notoginsenoside R1 or pro-
topanaxtriol extracted from P. ginseng induced the expression of
Phase II antioxidant enzymes, such as HO-1, NADPH quinone oxi-
dase 1, and gamma-glutamylcysteine synthetase after 3-
nitropropionic acid induced damage or in PC12 cells [48,49].
Taken together, our findings suggest that PGE reverses the CRS-
induced depression-like phenotype in mice through a mechanism
involving activation of Nrf2 signaling in the amygdala. Interestingly,
in our study, PE did not induce significant enhancement of Nrf1 and
HO-1 in sham mice. The result can be explained as follows.
Although under physiological conditions, low levels of nuclear Nrf2
are sufficient for the maintenance of cellular homeostasis, and
constitutive hyperactivity of Nrf2 is associated with tumorigenesis
[50]. Sulforaphane as an inducer of Nrf2 [22] and PGE in the present
study did not increase Nrf2 activation in normal mice. Therefore,
we suggest that the basal level of Nrf2may be regulated tomaintain
cellular homeostasis. Further studies are needed to explore this
suggestion.
4.5. Antidepressant properties of PGE involve enhanced BDNF
expression

BDNF is a neurotrophic factor involved in the pathophysiology
and treatment of major depressive disorders and is a critical
regulator between inflammation/oxidative stress and depression
[51]. Serum BDNF activity is decreased in the depressive status and
increased under the actions of antidepressant drugs [52]. Inter-
estingly, BDNF expression level was decreased in the cortex and
hippocampus of Nrf2 knockout mice [46] and chronic fluoxetine
treatment increased BDNF protein levels in the cortex and hippo-
campus of corticosterone-treated Nrf2 knockout mice. Ginsenoside
Rg1 or ginseng total saponins upregulated the BDNF signaling
pathway in the hippocampus during the chronic mild stress or
corticosterone-induced depression [15,53]. However, little is
known about the influence of PGE on BDNF in the amygdala. Here,
we demonstrate that PGE reversed decreased BDNF expression in
the amygdala after CRS induction. Interestingly, a link between
Nrf2/HO-1 and BDNF was confirmed in a recent study showing that
the antiapoptotic effects of HO-1 in the ischemic animal brain are
mediated through upregulation of the BDNF-TrkB-PI3K/Akt
signaling pathway [54]. Taken together, our findings suggest that
PGE may reverse CRS-induced depression by enhancing BDNF
expression through the upregulation of Nrf2 signaling.
5. Conclusions

This study demonstrates the antidepressant-like effects and
mechanisms of PGE in a CRS-induced depression model in mice.
Administration of PGE for 14 d blocked the increase in serum
concentration of ACTH and corticosterone, upregulated Nrf2 and
HO-1 activities, and inhibited inflammatory activity (COX-2 and
iNOS) in the amygdala after CRS treatment, which resulted in
enhanced BDNF activity and finally, normalized depression-like
behaviors. These findings suggest that PGE has antidepressant ac-
tivity in CRS-induced depression by virtue of antioxidant and
antiinflammatory activities through positive regulation of the HPA
axis mechanism. Further studies are required to determine if
further cellular mechanism of PGE on antioxidation and antiin-
flammation increases the efficacy of antidepressants and whether
ginseng’s components are a useful tool for a future antidepressant.
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