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Fertility preservation for prepubertal male patients undergoing gonadotoxic therapies,
potentially depleting spermatogonial cells, is an expanding necessity, yet most of the
feasible options are still in the experimental phase. We present our experience and a
summary of current and novel possibilities regarding the different strategies to protect or
restore fertility in young male patients, before proceeding with chemotherapy or
radiotherapy for malignances or other diseases. Adult oncological patients should
always be counselled to cryopreserve the semen before starting treatment, however
this approach is not suitable for prepubertal boys, who aren’t capable to produce sperm
yet. Fortunately, since the survival rate of pediatric cancer patients has skyrocketed in the
last decade and it’s over 84%, safeguarding their future fertility is becoming a major
concern for reproductive medicine. Surgical and medical approaches to personalize
treatment or protect the gonads could be a valid first step to take. Testicular tissue
autologous grafting or xenografting, and spermatogonial stem cells (SSCs)
transplantation, are the main experimental options available, but spermatogenesis in
vitro is becoming an intriguing alternative. All of these methods feature both strong and
weak prospects. There is also relevant controversy regarding the type of testicular material
to preserve and the cryopreservation methods. Since transplanted cells are bound to
survive based on SSCs number, many ways to enrich their population in cultures have
been proposed, as well as different sites of injection inside the testis. Testicular tissue graft
has been experimented on mice, rabbits, rhesus macaques and porcine, allowing the birth
of live offspring after performing intracytoplasmic sperm injection (ICSI), however it has
never been performed on human males yet. In vitro spermatogenesis remains a mirage,
although many steps in the right direction have been performed. The manufacturing of 3D
scaffolds and artificial spermatogenetic niche, providing support to stem cells in cultures,
seems like the best way to further advance in this field.

Keywords: fertility, spermatogonial cell, gonadotoxic cancer treatment, cryopreservation, testicular tissue
transplantation, SSCs transplantation, de novo morphogenesis, In vitro spermatogenesis
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INTRODUCTION

The increasing incidence of cancer during childhood and the
rising survival rate, currently estimated around 84% after 5 years
from diagnosis (1), is leaving behind a large population of young
male patients whose fertility is at stake (2, 3). The most common
cancers in children are leukemias, lymphomas, tumors involving
the brain or CNS, bone or soft tissue sarcomas, germ cell tumors,
and embryonal tumors (4)

In adult patients, cryopreservation of seminal fluid is a safe
and proven approach to preserve fertility prior to initiating
gonadotropic treatments and should be routinely proposed by
the caregiver in consultation with a reproductive medicine
specialist (5, 6). Pre-pubertal patients are not capable yet of
producing spermatozoa; therefore, this approach is not
sustainable in their course of treatment (7, 8).

Although several valid studies have been published in recent
years regarding methods to protect or restore fertility in children,
and some practices are now likely to be ready for clinical use,
these options still remain exclusive to the experimental field.

It is estimated that about half of adult patients with an history
of pediatric malignancy will have difficulty conceiving children,
with a major impact on their quality of life (9–11).

A variety of oncological treatments could threaten testicular
function (12–16), such as surgery, chemotherapy, radiotherapy,
or combination therapy, with potential synergistic effects in
causing gonadal toxicity. In the pre-pubescent male patient,
the seminiferous tubules are populated by Spermatogonial
Stem Cells (SSCs) which, being actively proliferating, are
particularly sensitive to damage by chemotherapy or
radiotherapy (17, 18). A fraction of SSCs is not rapidly
proliferating and constitutes a reserve of stem cells. Such cells,
referred as A dark spermatogonia or State 0 SSCs, have been
widely investigated over the years and are expressed in higher
percentage in the testis of humans and non-human primates
than in rodents (22% vs 0.3%). These SSCs are less
chemosensitive, but their damage might lead to a condition of
irreversible infertility, as the pool of SSCs is no longer able to
proliferate and subsequently differentiate (19, 20).

Several chemotherapeutic agents have been associated with
risk of testicular toxicity, mainly alkylating agents (19–21),
platinum agents (22, 23) or cytarabine (21). Therapy with
cyclophosphamide or the combination of chlormethine and
procarbazine may cause alterations in spermatogenesis, and
this risk increases as the dose increases (21). Other
chemotherapies that may be implicated in spermatogenesis
damage include ifosfamide, busulfan/cyclophosphamide or
fludarabine/melphalan, used in some protocols for
Hematopoietic stem-cell transplantation (HSCT) conditioning,
although studies that evaluate the specific adverse effects for
some of them are lacking and their toxicity is only deemed as
probable (21). Risk assessment of the impact of chemotherapy on
spermatogenesis is not straightforward, as many protocols
involve the administration of several drugs together or in
combination with radiotherapy, and the patient’s age and
follow-up time are also relevant, given the potential recovery of
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spermatogenetic capacity after a period of time. Even taking all
these elements into account, individual patient variability and
genetic predisposition may play a major role in the gonadotoxic
effect of therapy (21).

Leydig cells are more resistant to the toxic action of
chemotherapeutic agents and their function is generally
preserved (24). Combined treatments with alkylating agents
and pelvic radiotherapy, however, may impair their function,
bringing to a clinical condition characterized by increased LH
and decreased Testosterone (25). Pre- hematopoietic cell
transplantation conditioning protocols and treatments
including chemotherapy and irradiation are generally capable
of damaging both germ cells and Leydig cells (26, 27).

Given their known toxicity, alkylating agents are used with
caution in pediatric oncology protocols, either by attempting to
reduce the cumulative dose or by choosing drugs with a more
favorable harmful profile (28), but this is often not feasible in
cancer in advanced stages. The risk of testicular toxicity increases
when multiple alkylating agents are used together, when
treatments are prolonged, or when the patient is young (28).

Several scores such as alkylating agent dose (AAD) (29) or
cyclophosphamide equivalent dose (CED) (30) are available to
quantify exposure to alkylating agents and assess the risk of
potential adverse events, but they do not account for all drugs
currently in use. The recovery of spermatogenesis after therapy
depends on the ability of quiescent SCCs to survive and resume
differentiation, so the duration of azoospermia increases
progressively depending on the extent of damage and the
scarcity of the residual stem cell population (31).

Radiation therapy is also capable of damaging the delicate
SCCs, as the germinal epithelium is very sensitive to radiation.
Cranial radiotherapy could also damage the hypothalamic-
pituitary region and cause a form of central hypogonadism,
triggered by impaired stimulation of the testis by the lack of LH
and FSH. Even doses of 0.1 Gy can temporarily alter
spermatogenesis (32, 33), while doses greater than 6 Gy
permanently damage the subject’s spermatogenetic capacity
causing irreversible azoospermia (34). Gonadotoxic protocols
include abdomen, pelvis, and total body irradiation, total node
irradiation, and cranial radiotherapy, which can cause alterations
in the pituitary- testicle axis, leading to hypogonadotropic
hypogonadism if administered at doses above 35-40 Gy (21).
Leydig cells are more resistant to these effects, but even fractional
doses of testicular irradiation of 12 Gy can increase LH values in
pre-pubertal patients, thus suggesting a toxic effect (35). Doses
greater than 20 Gy generally require hormone replacement
therapy to achieve normal pubertal development. In the adult
male, however, the irreversibly toxic dose is greater than 30
Gy (36).

The overall gonadotoxic effect of radiation therapy is related
to total dose, irradiated volume, fractionated dose, and patient
age (37).

Green et al. (38) demonstrated that patients exposed at pre-
pubescent age to testicular radiotherapy at cumulative doses >
7.5 Gy, an AAD > 2, or treatment with procarbazine or high dose
of cyclophosphamide showed reduction in their ability to
June 2022 | Volume 13 | Article 877537
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procreate. Specifically, patients included in the study who
survived childhood cancers were half as likely to produce
offspring as their siblings (Hazard Ratio of pregnancy of 0.56
versus 0.91). Treatment doses and patterns are relevant to this
risk, as is age at the diagnosis.

Unilateral orchiectomy for the treatment of testicular tumors
can reduce the number of germ cells available, but it is not
generally associated with azoospermia. An observational study
showed that 85% of patients who underwent unilateral
orchiectomy were able to procreate during the subsequent 11-
year follow-up (13). The combination of surgical treatment,
chemotherapy and radiation therapy increases the risk of long-
term gonadotoxicity in the child.

Preserving and protecting the fertility of young cancer
patients is now a shared goal within their treatment plan, but
nevertheless many doubts still remain about which strategies
should be proposed to the patient and family, as many
approaches are still considered in the experimental and
research phase.

Current guidelines (5, 6) recommend informing the patient
and family about the potential infertility risk of planned
therapies and referring them to a reproductive medicine
specialist at the earliest possible opportunity, to help them to
evaluate the available options for preserving future
fertility (Figure 1).
PHARMACOLOGICAL APPROACHES TO
PRESERVE TESTICULAR FUNCTION

One of the hypothesized gonadoprotective strategies is the use of
molecules capable of inhibiting the pituitary secretion of LH and
FSH, the hormones that stimulate the testis to produce
testosterone and spermatozoa. Agonists or antagonists of the
Frontiers in Endocrinology | www.frontiersin.org 3
pituitary receptor of GnRH are able to block this hormonal
production, generating a state of hypogonadotropic
hypogonadism that could be exploited to protect the gonads.
However, the use of GnRH agonist or antagonist for gonado-
protective purposes during or before treatment for neoplasms
does not appear to be useful in humans, and it is not
recommended in ASCO guidelines. Such a strategy had
appeared promising following some studies in rats (39–41) in
which administration of GnRH before, during, or after therapy
with alkylating agents or radiotherapy resulted in a marked
increase in proliferating germ cells and a resumption of
spermatogenic capacity. A similar effect has not been
demonstrated in humans in several studies in which GnRH
antagonist was associated with Testosterone (42–45). A single
study (46) in which only Testosterone was administered showed
positive results, although under conditions, as in the treatment of
nephrotic syndrome and during therapy with cyclophosphamide
alone (46). Several studies in nonhuman primates have
confirmed this disappointing fact (47). However, GnRH
agonist treatment seems to have a positive effect on the success
of SCC transplantation, as proven in rats (48, 49). Testosterone
suppression induced by such treatment, however, may induce an
increased immune response (50), and this may justify the
conflicting data obtained in the same pre-transplant treatment
in nonhuman primates (47).

Some in vivo and in vitro studies in animal models have tested
the protective effect of anti-apoptotic substances, such as
sphingosine-1-phosphate (51) or immunomodulatory substances
such as AS101 (52). In mice, these compounds offer some
testicular protection against radiation or cyclophosphamide
damage, but no relevant effect has been demonstrated in
humans so far. Similar approaches have been used to test the
protective effect of L- Carnitine (53), and several antioxidant
substances, including curcumine nanocrystals (54), Moringa
oleifera (55), alpha-tocopherol-succinate (56) and ascorbic acid
FIGURE 1 | Current approaches to preserve and restore fertility in prepubertal males undergoing cancer treatment. On the left side: current clinical approaches
available before and during treatment. On the right side: experimental methods, mainly tested on animal models (including rodents, non human primates and others)
or in vitro. *Cryopreservation of testicular material is only available in selected centers during experimental protocols.
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(57), all tested on the gonads of cyclophosphamide-exposed
rodents, with encouraging results but yet to be proven in humans.

The rationale behind the use of these substances is that some
chemotherapy drugs, such as cyclophosphamide, are capable of
generating radical oxygen species (ROS) and causing cellular
apoptosis or altering DNA synthesis (51–56). Oxidative stress
can activate enzymes such as sphingomyelinases, which can
release ceramide from cell membranes and trigger cell
apoptosis, and substances such as S1P might inhibit this
specific process (51). A different detrimental effect of some
chemotherapy drugs is the fragmentation of cellular DNA,
resulting in an abnormal chromatin structure, a condition that
reduces seminal quality and is known to decrease fertility (52).
Immunomodulatory substances capable of limiting this
alteration would be very useful for their gonadoprotective
action. On the other hand, the administration of substances
with antioxidant power may be able to reduce the oxidative stress
produced by chemotherapic agents such as cyclophosphamide,
which also seems to be able to damage the structure of the blood-
testis barrier, altering the expression of Occludin proteins,
produced by Sertoli cells (53).

To understand how to pharmacologically protect the testis in
pre-pubertal children, it is thus essential to study the
mechanisms involved in cytotoxic damage and survival of the
SSCs population, as well as understanding the functioning
of the complex spermatogenetic niche (Figure 2). The ability
of germinal spermatogonial cells to ensure a continuous
population of cells that can differentiate is essential for
spermatogenic capacity (58). Several studies have investigated
the recovery capabilities of spermatogonial stem cells after
chemotherapeutic damage (59, 60). Many papers published by
Parker et al. (61, 62) have focused on the effect of glial cell line-
derived neurotrophic factor (GDNF) produced by Sertoli cells
and essential for the survival of SSCs. GDNF is a member of the
Frontiers in Endocrinology | www.frontiersin.org 4
TGF-b superfamily, and by binding to its receptor and RET/
GFRA1 on SCCs it regulates their survival and differentiation
(63, 64).

Evidence in mice suggest that GDNF expression levels
decrease with ageing, while it might increase with stem cell
depletion (65). After a treatment with low dose busulfan, GDNF
expression was found to be increased and that might be
necessary to restore the pool of SSCs and their subsequent
proliferation (65).

However, when this factor is lacking, the germline population
gradually declines, reducing its replication and increasing
downstream differentiation, down to a condition where the
tubules are populated solely by Sertoli cells (SCO) (61).
Providing GDNF stimulation again may allow for a new
expansion of the cell pool (62).

One of the potential ways in which chemotherapeutic agents
might reduce GDNF expression is through DNA methylation,
the main epigenetic mechanism capable of affecting male
fertility. Several agents, including cisplatin (66) and
doxurubicin (67) have been proven to induce important
epigenetic modifications to cellular DNA. Methylation of some
sequences called CpG islands, rich in dinucleotides composed of
Cytosine and Guanine, is able to block access to transcription
factors and reduce the expression of some genes (68, 69). This
would make the employ of some demethylating agents
promising, such as eicosapentaenoic acid (EPA) which is able
to activate several enzymes that can counteract cytosine
methylation, promoting the re-expression of silenced genes (69).

Our group has studied the effect of cisplatin, doxurubicin, and
4-Hydroperoxycyclophosphamide, chemotherapeutics known to
be gonadotoxic, in vitro on pre-pubescent porcine Sertoli cells
(70), a model known to be adequate for toxicity study (71). Drug
exposure resulted in reduced expression of the GDNF gene and
protein, as well as reduced expression of AMH and Inhibin B,
FIGURE 2 | Known gonadotoxic damage of cancer treatments and potential pharmacological approaches. On the left side: the major effects with which various
chemotherapeutic agents could impair testicular function. On the right side: potential pharmacological approaches that have been tested so far, with more or less
promising results in protecting the male gonad.
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which are markers of function in pre-pubertal Sertoli cells. In
cultures treated with high dose of cisplatin and EPA, there was a
recovery of GDNF, AMH and Inhibin B expression, showing a
protective effect on the male gonad. Treatment with cisplatin and
d 5-aza-2’-deoxy- cytidine, a known demethylating agent used in
several chemotherapy protocols, allowed to obtain similar
results, supporting the hypothesis of the ability of EPA to
protect against epigenetic alterations of DNA and opening the
future to further studies to evaluate the effect of this substance on
the human pre-pubescent testis.

Despite promising evidence in animal models, guidelines do
not currently include the use of protective substances during
cancer therapy in children (5, 6).
SURGICAL APPROACHES TO PRESERVE
TESTICULAR FUNCTION

Pediatric testicular tumors are rare nosological entities, the most
common being germ cell tumors, but they can occur bilaterally
and synchronous or metachronous in up to 5% of cases (72). In
such cases, a treatment with enucleation of the neoplasm (73, 74)
instead of a total bilateral orchidectomy can be considered, if the
tumor is of a small size and it is confined to the testis. Careful
follow-up is necessary, as there is a risk of recurrence after
enucleation of about 5%. The same approach is possible with
Leydig cell tumors, in which the risk of recurrence after
conservative treatment appears low (75).

There are several clinical cases reported in the literature, the
first dating back to more than 30 years (76), in which a testicular
transposition was performed to protect the residual gonad from
adjuvant radiotherapy treatment. The healthy testis was
transposed at the inguinal (77), abdominal (78) or leg region
(79) and then repositioned in the scrotum at the end of therapy.
It is interesting to note that in one clinical case report (80), the
testis was able to resume spermatogenesis during the following
months after post-traumatic repositioning in a subcutaneous
pocket at tight level.

In cases of scrotal neoplasia in which extensive excision of
skin and muscle layers is necessary, displacement of the testis in
the contralateral hemiscrotum has been attempted to preserve its
function (81). However, such approaches should be considered
experimental and are not currently recommended in guidelines
until further investigation (5, 6).
CRYOPRESERVATION: TESTICULAR
TISSUE OR CELL SUSPENSION

Young peripubertal patients might be able to produce
spermatozoa and a semen sample can be obtained as early as
12 years old (82). Once spermatogenesis is initiated, seminal
parameters are comparable to those of adult patients (83, 84). In
younger patients, in whom the sperm production has not started
yet or who for whatever reason are unable to produce seminal
Frontiers in Endocrinology | www.frontiersin.org 5
fluid, only experimental approaches are available, such as
preservation of testicular tissue obtained by biopsy or
orchiectomy, when required for the treatment course of the
clinical condition.

The experience of several centers both in Europe (85) and in
the USA (86) is remarkable with respect to the possibility of
cryopreserving pre-pubescent testicular tissue for use in
approaches aimed at restoring fertility in the future. Proposed
freezing protocols are numerous (86–92), including fast or slow
freezing and the use of various cryoprotectants. Most centers
employ slow freezing combined with the use of Dimethylsulfoxide
(DMSO) to protect cells from damage (88, 93) while other facilities
use DMSO and sucrose, DMSO and human serum albumin or
DMSO & ethylene glycol (93). Some studies have alternatively
tested vitrification, a protocol of ultrarapid freezing associated with
different concentrations of cryo-protective substances, with the
aim of preventing the formation of ice crystals (94).

This approach appears promising, but further studies are
needed to verify its actual superiority. It is also possible to choose
to freeze a testicular cell suspension, which would reduce some
complications due to the freezing of a macroscopic tissue sample,
such as creating an uneven cellular cooling rate. This procedure
would not allow to preserve the spermatogenetic niche in its
entirety (95, 96) and has also been studied in humans less
intensively (97). Freezing cells rather than tissue fragments will
make it impossible to employ some techniques, such as testicular
graft transplantation or tissue culture, whereas a cryopreserved
tissue fragment could undergo further enzymatic digestion to
obtain SSCs and other testicular cells (98). It is essential to
improve the freezing protocol, trying to reduce the generation of
alterations in thawed sperm quality (99).

A questionnaire proposed to 24 facilities by the European
Society for Human Reproduction and Embryology (ESHRE) in
2012 reported that several centers in Europe offered this
possibility and have already involved 260 young patients (85).
A subsequent survey in 2019 (86) brought the number of patients
involved up to 1033, more than a 4-fold increase. Numerous
hospital facilities in the US (86) are currently able to cryopreserve
testicular tissue, and the current goal is to create networks with a
well-defined common protocol to offer this possibility to as many
patients as possible. It is also important to note that
approximately one third of the patients enrolled had already
started cycles of gonadotoxic chemotherapy, which can
potentially compromise the quality of the preserved tissue.

Current guidelines (5, 6) recommend that cryopreservation of
testicular tissue be performed only during approved clinical trials
or experimental protocols.
FERTILITY RESTORATION EMPLOYING
TESTICULAR TISSUE

Testicular Tissue Transplantation
One of the potential options to restore fertility in a patient
undergoing gonadotoxic therapies is the transplantation of
June 2022 | Volume 13 | Article 877537
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previously frozen testicular tissue. This option has been under
investigation for several years and numerous studies have been
published on animals, the majority of which have tested
testicular tissue xenograft into adult immunodeficient nude
mice. Xenotransplantation of pre-pubescent human testicular
tissue into laboratory animals is not a technique that is expected
to be employed to restore fertility in patients undergoing
gonadotoxic therapies, due to the high risk of zoonosis
transmission (100), nevertheless it is useful to study the
mechanisms of transplantation and the survival of
spermatogonial cells after it has been performed. Moreover,
this technique could be in the future exploited to exclude the
presence of neoplastic cells contamination in the testicular tissue,
in preparation for a future autograft in the patient (101)

Data is available regarding xenotransplantation of tissue
obtained from goats, pigs, mice (102), horses (103), cats (104),
cattle (105), rhesus monkeys (106), dogs (107), hamsters (108),
and rabbits (109). In all these species, once the transplanted
tissue was recovered from mice and analyzed, complete donor
spermatogenesis was demonstrated, and in some of these
experiments (109–113) live and healthy progeny has
been obtained.

Despite the undoubtedly promising results, several
questions remain to be clarified. Studies that have performed
xenografts of pre-pubertal human testicular tissue (92, 100,
114) have not shown appearance of complete spermatogenesis
yet. There could be several obstacles, including placement of the
transplant in an ectopic or orthotopic location. Early attempts
at xenotransplantation, both from human and animal donors,
were almost all placed in the ectopic site, but transplantation
placed in the testicular site has been shown to have a higher
probability of survival and maturation, probably on account of
the different local temperature (114, 115). In contrast, whether
the tissue is fresh or thawed from previous cryopreservation
does not seem to make a difference (116, 117).

Xenograft experiments from pre-pubescent human donors
have, however, demonstrated prolonged (up to 9 months)
survival of SSCs and Sertoli cells, and obtained secondary
spermatocytes (114) or spermatid- like cells (92).

Nevertheless, the survival of spermatogonial cells in transplants
is not high (117) and it seems to be closely related to the future of
tissue vascularization, which must proceed with capillary
formation that is supplied by host vessels (118), since the graft is
transplanted without any vascular anastomoses. To improve tissue
survival, several approaches with pro-angiogenic,anti-apoptotic
and anti-oxidant molecules have been attempted. The use of
recombinant FSH (119) and Testosterone (120) has not shown
encouraging results on testicular graft survival.

Bovine testicular tissue treated with vascular endothelial
growth factor (VEGF) at the time of implantation in mice (121)
was heavier at recovery than the untreated control and showed a
higher percentage of seminiferous tubules containing
differentiated cells. Since the early approaches, numerous
experiments have begun to treat the tissue with VEGF, whether
in the context of autografts in mice (122), bovine tissue xenografts
(123), and even pre-pubescent human testis xenografts (124).
Frontiers in Endocrinology | www.frontiersin.org 6
On the pre-pubescent human testis, in vitro pretreatment
with VEGF appears to increase vascularization and survival of
SSCs and seminiferous tubule integrity (124). Subsequent
experiments (122) on autograft in mice tested the combined
effect of VEGF and platelet-derived growth (PDGF)
nanoparticles, showing that the combination of the two factors
appears to further improve vascularization. The use of necrosis
inhibitor substances also seems promising (125).

Autotransplantation, the method more desirably applicable to
pre-pubertal patients undergoing gonadotropic therapies, has been
tested on nonhuman primates (111, 126, 127). These studies
demonstrated on marmosets (126) better survival of transplants
at the orthopedic site, which achieved complete spermatogenesis,
probably because of reduced scrotal temperature compared with
other body regions, and better results of tissues taken from pre-
pubertal animals compared with adults, perhaps because of greater
resistance to hypoxia. A study in rhesus monkeys (127)
showed the achievement of complete spermatogenesis after
orthotopic autotransplantation of testicular tissue, subjected to
cryopreservation for a period longer than two years. A
subsequent study in rhesus monkeys (111) showed complete
spermatogenesis obtained from autologous transplants of
testicular tissue placed subcutaneously either in the scrotum or
behind the back, cryopreserved or fresh. Spermatozoa were also
shown to fertilize oocytes, and via ICSI viable and healthy offspring
were generated.

In a study of autotransplantation of testicular tissue in mice
(128), alginate-encapsulated tissue with or without the addition
of VEGF nanoparticles also appeared to improve spermatogonial
recovery post-transplantation.

It should be emphasized that testicular tissue transplantation
is not able to restore fertility in the recipient in the absence of
medically assisted procreation, since it has not been proven that
the graft is able to create anastomoses with the seminal tract, thus
leading to ejaculation of spermatozoa with seminal fluid and
fertilization during natural sexual intercourse. As today, these
methods appear to be entirely experimental and have not yet
been tested on human patients, either pre-pubescent or adult.

Spermatogenesis In Vitro From
Testicular Tissue
Achieving spermatogenesis in vitro from testicular tissue would
allow to avoid the risks related to other methods, in particular the
transmission of zoonosis via xenografts (100) and the possible
neoplastic contamination of tissues obtained from cancer
patients (101, 129–132). This approach has been studied for
many years (133, 134), but it is still experimental, and the current
goal is to optimize culture systems in order to further progress in
this direction (135).

In mouse, in vitro spermatogenesis has been obtained from
testicular tissue cultures (135–137) and these spermatozoa were
found to be able of fertilizing embryos and producing healthy
offspring. Sato et al’s (137) experiments developed a culture
system called “in vitro transplantation” (IVT), in which SSCs
from one donor are injected into the empty seminiferous tubules
of another animal, and the result is incubated in a culture system.
June 2022 | Volume 13 | Article 877537
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In other studies (138) the air- liquid interphase method has been
used, obtaining competent spermatozoa capable of generating
healthy and fertile offspring, even exploiting previously
cryopreserved tissue. The quality of spermatozoa obtained with
such cultures has been evaluated (139), showing that the majority
of them are characterized by normal haplody, non-fragmented
DNA and condensed chromatin.

Full in vitro spermatogenesis was reached even in bovine
(140) and rat (141) testicular tissue culture

Obtaining human spermatozoa in vitro has proven more
challenging. Numerous attempts have been made to
understand the best culture conditions of testicular fragments
(142), investigating proper temperature, serum, and wheter
gonadotropin stimulation is necessary.

So far, postmeiotic haploid cells have been obtained from
pre-pubescent human testicular tissue fragments, both in
organotypic culture (143) and exploiting a 3D culture
system (144). One study (145) obtained haploid spermatids
from SSCs obtained from testes of cryptorchid patients
cultured in 2D systems enriched with arachidonic acid
and stem cell factor (SCF). Such spermatids were able to
fertilize murine oocytes by Microinjection of round
spermatids (ROSI).

Recreating the complex microenvironment of the
spermatogenic niche seems to be essential to achieve progress
(135, 146) so there has been a clear shift towards 3D culture
systems over the old 2D systems. Also, the potential of the
culture to generate an intact and functioning blood-testicular
barrier (147) seems to be relevant, as occurs in vivo
during puberty.
FERTILITY RESTORATION EMPLOYING
CELL SUSPENSION

SSCS Transplantation
Different approaches exploiting testicular cell suspension are
under study. A promising one is SSCs autotransplantation. This
mechanism has been described since 1994 in mice (148) and
over the years has been the subject of numerous studies on
different experimental animals, also it appears to be the only
one potentially able to restore fertility without the need to
employ medically assisted procreation. The ability to colonize
seminiferous tubules, as well as the possibility to initiate
spermatogenesis, is related to the amount of SSCs
transplanted (149). Furthermore, it has been estimated that
only 10% of transplanted spermatogonial stem cells are able to
form colonies (149). Such cells are rare, representing
approximately 1 in 3500 cells in the adult mouse testis (150),
and the amount of testicular tissue that can be harvested in the
pre-pubescent would not be sufficient to provide an adequate
number of cells.

For this reason, several methods have been developed to
generate efficient culture systems of SSCs, amplifying their
number in vitro before transplantation, and this approach has
Frontiers in Endocrinology | www.frontiersin.org 7
been initially studied in mice (151). The collected testicular tissue
undergoes enzymatic digestion in several steps according to well-
defined protocols (152, 153) and great attention has been paid to
find a method that allows to efficiently isolate SCCs as soon as
this stage (154).

A further complication is the difficulty in identifying SSCs,
based on the markers they express and the proteins they produce
(155, 156) since a large proportion of them are also expressed by
testicular somatic cells and differentiating them appears complex
(157). The ability to characterize these cells, purify and amplify
them is essential for successful colonization of the seminiferous
tubules in the recipient. Stage- specific embryonic antigen-4
(SSEA-4) (158) is one of the many promising markers of this
cell population. However, in recent studies, this marker has
shown reduced expression in quiescent State 0 cells, making
SSEA-4 less suitable for the isolation of SSCs. The search for the
most appropriate marker remains ongoing (159).

Many potential growth factors to achieve adequate
proliferation of these cells have been extensively evaluated
(160–163), including proposed leukemia inhibitory factor
(LIF), epidermal growth factor (EGF), basic fibroblast growth
factor (bFGF), Insulin like grow factor 1 (IGF-1), Colony
stimulating factor 1 (CSF-1) and the importance of GDNF,
and the possible addition of its soluble receptor alpha-1 in
culture has been demonstrated (160). The required growth
factors appear to be identical in rats and mice (164) and
therefore some kind of conservation between species has
been hypothesized.

In vitro proliferation of SSCs obtained from different animals,
including mice and rats (151, 164, 165) porcine (166), cattle
(167) and tree shrew (168), has been achieved. The same
approach has allowed in vitro proliferation of human SSCs,
taken from testicular tissue obtained from pre-pubertal
patients during orchidopexy (169), for cryopreservation in
cancer patients (170) or from adult patients undergoing
orchiectomy (171), from patients with obstructive or non-
obstructive azoospermia (172) or from deceased organ
donors (158).

Using subcultures, human adult SSCs were cultured and
propagated up to 28 weeks and their numbers increased more
than 18,000-fold (171). The proliferation capacity of SSCs from
pre-pubertal patients seems to be even higher (169).
Nevertheless, the long-term fate of SSCs cultures seems
unclear. Several promising studies have been carried out to
elucidate the best culture conditions, but many of them have
not characterized SSCs with suitable surface markers, nor
defined the ideal conditions for promoting the development of
cells at different stages of maturation. More recent work has been
able to identify the full gene expression of SSCs and to assess the
molecular pathways activated in their proliferation. This
approach appears useful for better understanding their
development and improve our culture system (173).

Cancer patients, especially those with hematological diseases,
may harbor neoplastic infiltrates in the testicle, as shown in pre-
treatment biopsies of children with Acute Lymphocytic
Leukemia (174). Such neoplastic cells if transplanted can give
June 2022 | Volume 13 | Article 87753
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rise to new neoplasms (101, 129–132) so it is essential to ensure
purification of the SSCs sample. It has been proven that in rats it
is enough to transplant in the testis only 20 leukemic cells, mixed
with germ cells, to initiate a relapse of the disease (175).

The most studied mechanics so far are culture systems (176),
Fluorescence-activated cell sorting (FACS) (129, 130, 132), and
Magnetic-activated cell sorting (MACS) (131, 177) but their
evaluation has shown conflicting and sometimes not sufficient
results to ensure the safety of the method, making further
studies necessary.

The first approach for SSCs transplantation was characterized
by multiple microinjections into the seminiferous tubules of the
recipient mouse (148), a procedure that required open surgery
with exteriorization of the testis and reflection of the vaginal
tunica. Afterwards, different approaches were tried on dissected
mouse, bovine, monkey and human testes (178), attempting
injection of SSCs into the efferent duct or into rete testis
network under ultrasound guidance, the latter method being the
most promising. Some studies on human testis obtained from
cadavers have tested injections of contrast agent (179) or murine
SSCs (180, 181) to study the best possible operating conditions,
showing that a single injection into rete testis network seems to be
effective (179) and that it is necessary to find the right filling
pressure, perhaps using an infusion pump, to adequately fill the
tubules and reduce fluid leaking into the testicular interstitium
(180, 181).

Allografting of SSCs has been tested in sheep (182), goats
(183), and nonhuman primates (47, 184), generating healthy live
offspring. Only one human clinical trial is reported (185), in
which some adult patients who had cryopreserved SSCs prior to
chemo-radiotherapy treatment underwent transplantation of
such cells with intra-testicular injections. Unfortunately, there
are no reports on subsequent follow-up and their seminal
parameters (186).

The main doubts to be dispelled, concern the safety of these
protocols and the absence of major alterations in the progeny. In
mouse SSCs allografts, first and second-generation offspring
appear to develop with comparable weight and height to
controls and do not appear to show differences in methylation
patterns of maternal, paternal, or non-imprinted genes (187).
However, seminal parameters after transplantation were worse
than controls, with reduced sperm concentration and motility
(188). A subsequent study on a similar murine allograft showed
no notable genetic alterations in either spermatozoa or progeny
(189), such as chromosome number alterations, deletions,
or amplifications.

in vitro Spermatogenesis From SSCS and
From De Novo Testicular Morphogenesis
Cryopreserved or fresh SSCs suspension could also be used to try
to achieve in vitro-spermatogenesis, in specific culture systems. A
type of approach is developing culture systems in which injecting
SSCs, exploiting different types of matrixes, such as soft agar or
methylcellulose (190) or microfuidic system (191) that allowed to
obtain functioning spermatozoa in some studies.

The construction of testicular organoids (192) seems
promising to create the right supportive environment for the
Frontiers in Endocrinology | www.frontiersin.org 8
development of SSCs. A wide variety of proposals is available,
including models relying on extracellular matrix (ECM) (193) or
ECM- free (194), the use of microwells (195) or 3D printing with
particular bio-inks (196). A scaffold-based and scaffold-free
approach has also been applied to generate human testis
organoids (197) and this strategy opens the way to new
future prospectives.

A different method that has been studied, is performing,
under the back skin of immunodeficient mice, a graft of
testicular cell suspension containing other cells besides SSCs,
including Sertoli cells, Leydig cells and peritubular myoid cells, in
a definite proportion (198). Such a cell mix seems to be able to
organize into a testis-like structure, via a complex process that
has been named de novo testicular morphogenesis, generating a
spermatogenic niche and recovering steroidogenic capacity, up
to complete spermatogenesis (198). This approach has been
studied utilizing cells obtained from rodents (199, 200)
zebrafish (201), sheep (202) and cattle (203), as well as from
pigs (198, 204). Some of these studies have included the cell
suspension in matrices as scaffolds to support their growth (205,
206). Seminiferous tubule formation has also been noted after
cell suspension grafting inside the testis of rhesus monkeys (207)
with resumption of donor spermatogenesis.

This possibility seems to be very interesting to study the
interactions between different testicular cell types and to better
understand the mechanisms of gonadal development (203, 205).
CONCLUSION: FUTURE CHALLENGES
AND PROMISING METHODS

During the last years we have witnessed a swift progress in
studies regarding potential approaches to preserve and restore
male fertility, but few of these methods are currently clinically
applicable in the prepubertal oncological patient. Current clinical
guidelines and approaches involve prompt counseling with a
reproductive medicine specialist, reduction of gonadotoxicity of
the chosen therapy when possible, and potential participation in
experimental protocols where offered.

Cryopreservation of testicular tissue or cell suspension is
offered in the context of experimental protocols in several
centers around the world, which have developed shared
methods and a considerable experience on this field, however
there is still no certainty about which are the best methods and
the potential damage to sperm quality. Cryopreserved
testicular material, either tissue fragment or cell suspension,
has shown in several experimental animals the ability to re-
initiate spermatogenesis and even to generate healthy living
offspring, but there is not yet sufficient evidence in humans.
Out-of-body approaches, such as in vitro spermatogenesis,
are promising but early in their development. We believe
that there is a need to pursue these approaches, while
continuing to evaluate the potential efficacy of numerous
chemicals and pharmacological substances that could help to
protect the delicate prepubescent testis from the insult of
oncological therapies.
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