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Abstract
Purpose of Review Myocardial infarction (MI) leading to heart
failure displays an important cause of death worldwide. Adequate
restoration of blood flow to prevent this transition is a crucial factor
to improve long-term morbidity and mortality. Novel regenerative
therapies have been thoroughly investigated within the past
decades.
Recent Findings Increased angiogenesis in infarcted myocardi-
um has shown beneficial effects on the prognosis ofMI; therefore,
the proangiogenic capacity of currently tested treatments is of
specific interest. Molecular imaging to visualize formation of
new blood vessels in vivo displays a promising option to monitor
proangiogenic effects of regenerative substances.
Summary Based on encouraging results in preclinical models,
molecular angiogenesis imaging has recently been applied in a
small set of patients. This article reviews recent literature on
noninvasive in vivo molecular imaging of angiogenesis after
MI as an integral part of cardiac regeneration.

Keywords Angiogenesis . Myocardial regeneration .

Molecular imaging . Integrins . Radiotracers . Myocardial
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Introduction

Heart failure following myocardial infarction (MI) still dis-
plays a major cause of death and disability worldwide [1].

Even though a wide range of therapeutic options to prevent
or delay transition to chronic heart failure (CHF) after MI are
available, its treatment is still unsatisfactory, as CHF is gener-
ally not reversible and treatment needs to be continued indef-
initely [2]. Angiogenesis, the formation of new blood vessels,
is a part of the natural healing process after MI to restore blood
flow and discard cellular debris [3]. The extent of angiogene-
sis is associated with postinfarct remodeling and has implica-
tions on prognosis in MI patients [4]. Although a variety of
approaches to stimulate myocardial angiogenesis after MI
have been explored, including gene therapy as well as the
delivery of angiogenic factors and stem cells, results have
been controversial and were partly disappointing [5–7]. In
many cases, stimulation of angiogenesis was not shown con-
vincingly and only moderate clinical improvement was dem-
onstrated. To reliably assess the therapeutic potential of
proangiogenic therapies and monitor myocardial angiogenesis
for enabling better preclinical and clinical drug development,
noninvasive methods such as molecular imaging are warrant-
ed. Molecular imaging of newly built microvessels is a prom-
ising strategy which allows direct visualization of vessel for-
mation instead of indirect measurements of efficacy. Thus, it is
an important modality for improving risk stratification and for
facilitating the development of novel therapeutic interventions
in MI patients.

Angiogenesis

Angiogenesis represents the growth of new capillaries from
preexisting vessels [8]. It is a complex process involving nu-
merous growth factors and signal cascades [9]. Although ves-
sels are generally quiescent in adults, endothelial cells (ECs)
lining the vessel walls retain their ability to respond to angio-
genic signals [8]. Proangiogenic signals such as VEGF, ANG-
2, FGFs, or chemokines released by hypoxic, inflammatory, or
tumor cells activate ECs, and they becomemotile and invasive
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[10]. Before ECs can sprout into surrounding tissue, degrada-
tion of basement membrane by matrix metalloproteases and
detachment of mural cells is necessary in order to loosen ac-
tivated ECs [8]. VEGF induces increased permeability of the
EC layer, and extravasated plasma proteins serve as a provi-
sional extracellular matrix (ECM) scaffold. Migration of ECs
into this scaffold is mediated by integrins. To allow blood
flow, those newly built vessels need to be connected with
other vessels to build branches and become mature and stable.
ECs regain their quiescent state and protease inhibitors cease
basement membrane degradation [10].

Insufficient vessel maintenance can lead to MI [10].
Intact and functional blood vessels are essential for regen-
eration of ischemic tissues to enable immune surveillance,
supply of oxygen and nutrients to and discarding of waste
f rom the cel l s of the heal ing wound [10, 11] .
Insufficiently healed MI results in an expanded infarction
area and dilation of the heart by left ventricular (LV) re-
modeling, both resulting in heart failure [12]. However, in
some patients, recovery of blood flow after MI is not
possible. In those patients, restoration of tissue reperfu-
sion depends on myocardial angiogenesis [1]. Within the
first hours after MI, proangiogenic factors are released to
compensate ischemia with induced angiogenesis [11].
Restoration of the blood flow in the infarct border zone
is essential to alleviate infarct expansion and heart failure
[1, 13]. Moreover, the extent of angiogenesis has positive
effects on postinfarct remodeling and the prognosis of MI
patients [4]. Hence, stimulation of myocardial angiogene-
sis as a therapeutic option through administering growth
factors, stem or progenitor cells, and pharmacological
molecules has been thoroughly studied [14]. Due to the
increasing amount of research on myocardial angiogenesis
as a treatment option, molecular imaging of newly built
vessels has a significant potential impact on predicting
outcome of MI patients and guiding novel therapies.

Molecular Imaging Tools

Molecular imaging describes in vivo targeted, noninva-
sive visualization and quantification of various molecular
pathways without interfering with them [15–18].
Throughout the past decades, there has been significant
advances in molecular imaging techniques used for diag-
nostic, prognostic, as well as therapeutic purposes [18]. In
the field of cardiology, molecular imaging by magnetic
resonance imaging (MRI), ultrasound, bioluminescence
imaging, positron emission tomography (PET), and
SPECT has shown improvements of LV function, myocar-
dial perfusion, viability, scar tissue, inflammatory cells,
and indirect signs of angiogenesis, and some of these
images are able to directly detect angiogenesis [15].

Nuclear Imaging

PET imaging is a tomographic technique that detects the de-
cay of positron emitters (radiotracers), which can be attached
to small molecules for molecular recognition [17, 19]. It is
well validated to have superior sensitivity, relatively high res-
olution, and tissue penetration [1920•]. Various metabolic and
pathophysiological biomarkers have been investigated as
targets for PET imaging. The nonspecific metabolic tracer
18F (in form of 18-fluorodeoxyglucose), 18F-FDG, is the
most frequently employed PET tracer [21, 22]. Many studies
are directed toward incorporation of radiotracers with short
half-lives, such as fluorine-18 (18F), which successfully leads
to reduced patient exposure of ionizing radiation [23]. Rather
low spatial resolution is the main limiting characteristic of this
imaging technique [21].

SPECT imaging is well established and offers several ad-
vantages over PET. Camera equipment is less expensive and
more widely available as compared to PET systems [23].
SPECT imaging performance is based on using single photon
emitting radioisotopes, which are easier accessible for the in-
vestigation of a wider range of biological processes [15, 24].
Technetium-99m (99mTc) and indium-111 (111In) are frequent-
ly used radioactive probes [19]. These radiotracers emit gam-
ma rays with different energies, thus introducing the possibil-
ity of simultaneous evaluation of dual or multiple radiotracers.
Advantages of SPECT are high sensitivity and tissue penetra-
tion depth. However, SPECT imaging does not ensure high-
resolution anatomical information of cellular location.
Another disadvantage is the inability to track radioisotopes
over weeks as the signal rapidly declines [19].

MRI

In contrast to PET and SPECT, MRI offers better spatial
resolution, excellent soft tissue contrast and enables con-
comitant angiography or perfusion acquisition [21].
However, it has a lower sensitivity for detection of mo-
lecular contrast agents and application is limited in pa-
tients with devices, e.g., cardiac pacemakers or
cardioverter defibrillators, and metal implants [15, 25].
Paramagnetic contrast agents (e.g., gadolinium) targeting
integrin αvβ3 via antibodies or peptidomimetics as well as
gadolinium-based lipid nanoparticles, have been previous-
ly used to study tumor angiogenesis [26–28]. A further
advance in MR angiogenesis imaging are ultra-small
superparamagnetic particles of iron oxide (USPIO) [29].
However, USPIOs have a long blood half-life and show
nonspecific extravasation [30]. Microparticles of iron ox-
ide (MPIO) have a higher particle size, and thus a shorter
half-life, offering a better contrast to noise ratio [31].
Safety concerns of superparamagnetic iron oxide particles
exist [32].
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Ultrasound Molecular Imaging

Cardiac ultrasound is a widely used technique that has several
advantages over the previously described imaging modalities,
e.g., lack of ionizing radiation, routine accessibility, and supe-
rior spatial resolution compared to SPECT and PET [33].
Hitherto tissue perfusion assessed by ultrasound has been used
as an endpoint reflecting angiogenesis; however, an increase
in perfusion does not necessarily reflect angiogenic activity
[34]. For more detailed imaging, targeted microbubbles can be
used as contrast agents in a technique known as contrast-
enhanced ultrasound (CEU) [33]. Microbubbles that target
integrins or VEGFRs reflect angiogenesis in a more direct
manner than perfusion imaging [34, 35].

Bioluminescence Imaging

Bioluminescence imaging (BLI) represents an indirect cell
labeling method particularly used in small animal models
[36]. It is greatly valued for its high sensitivity, ease of use,
and low cost of instrumentation, but BLI has low spatial res-
olution and restricted penetration depth, and quantification
accuracy is very poor [37, 38]. Most frequently used reporter
genes are firefly luciferase (Luc) and herpes simplex virus
thymidine kinase (HSV-tk), used for tracking cells with angio-
genic capacity [39].

Multimodal Imaging

Advances in molecular imaging, along with identifying draw-
backs, have led to the development of multimodal (hybrid)
imaging systems such as PET/MR, SPECT/computed tomog-
raphy (CT), and PET/CT [18]. Hybrid molecular imaging is
the focus of many preclinical and clinical studies as it enables
simultaneous collection of anatomical and functional informa-
tion [40, 41].

The addition of CT to SPECT has permitted attenuation
correction and better evaluation of SPECT myocardial perfu-
sion [42]. SPECT/CT has proven to be relevant in the charac-
terization of coronary artery calcium, which is a useful method
to predict cardiovascular events rate [43, 44]. Even though
SPECT/CT has been widely used in cardiology and informa-
tion gained with this modality are highly valued, exposure of
patients to radiation is a major concern [45] and reduction of
radiation is the main goal of present studies in nuclear cardi-
ology [46].

PET/CT is a hybrid technology that combines functional
molecular imaging modalities with precise anatomical infor-
mation [47]. This hybrid modality is successful in overcoming
low spatial resolution. Many studies indicate that it results in
better identification of diseases, and guide management and
treatment of patients with stable and unstable coronary artery
disease compared to PET imaging alone [48].

Molecular Imaging of Myocardial Angiogenesis

Within the past decade, direct noninvasive evaluation of an-
giogenesis by molecular imaging has been investigated exten-
sively. With the rapid development of antiangiogenic thera-
pies (e.g., in cancer research) and particularly imaging tech-
niques, tumor angiogenesis has been the focus of attention
lately [49]. Although interest has recently increasingly been
directed on molecular imaging of myocardial angiogenesis
after MI (e.g., to monitor effects of regenerative therapies), it
is still rather in its fledgling stage. Table 1 provides a summary
of novel studies on molecular imaging of angiogenesis.

Angiogenesis as a multistep process, orchestrated by a
wide range of growth factors, growth factor receptors, cell
types, adhesion molecules, integrins, and signaling pathways,
all of which offer a multitude of imaging targets. In general,
three ways to image myocardial angiogenesis exist: (1) non-
EC targets, (2) EC targets, and (3) extracellular matrix proteins
and matrix proteases [58]. In particular, integrin αvβ3 has
emerged as an interesting target.

Integrins

Integrins are structurally and functionally diverse families of
cell adhesion molecules, which regulate cell-cell and cell-
ECM interactions and in addition mediate signals for cell
growth, proliferation, migration, or apoptosis [59]. They con-
nect the ECM with the cytoskeleton (i.e., the microfilaments)
inside the cell and transmit signals of the surrounding into the
cell by mediating the downstream consequences of cell adhe-
sion. Therefore, integrins play an important role in cell signal-
ing and can have a relation to cell growth, cell division, cell
survival, differentiation, and apoptosis [60]. Several members
of the integrin family are overexpressed on ECs under hypox-
ia [61]. The two main integrins αvβ3 and α5β1 facilitate sev-
eral mechanisms during angiogenesis in tissue ischemia. In
particular, they mediate adhesion to ECM and other cells to
initiate building of new capillaries by allowing ECs to bind to
provisional ECM scaffold proteins. Furthermore, theymediate
interaction of ECs and vascular smoothmuscle cells, stimulate
vessel growth, and promote vessel maturation [10, 61]. ECM
proteins such as fibronectin interact with integrins via the Arg-
Gly-Asp (RGD) sequence motif [61]. Multivalent binding is
mediated through extracellular integrin clusters, and thus, di-
meric and multimeric RGD sequences with improved binding
affinity have been developed and are frequently used for
integrin imaging.

Integrin αvβ3

Integrin αvβ3-mediated imaging is currently the most fre-
quently applied method to visualize angiogenesis in vivo. Its
expression is low in normal tissue, but it becomes highly
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expressed in activated ECs during angiogenesis in the infarct-
ed myocardium [61, 62]. However, studies in αv- and β3-
deficient mice suggest that both integrins are not essentially
required for angiogenesis and their absence can be compen-
sated by upregulation of VEGFR-2 expression [63–65].
Additionally, integrin αvβ3 does not seem to be restricted to
ECs but is also expressed on macrophages so that results in
angiogenesis imaging targeting integrin αvβ3 need to be treat-
ed with caution [66].

For integrin αvβ3 molecular imaging, cyclic RGD dimers
with polyethylene glycol spacers radiolabeled with 18F [67,
68], 68Ga [69, 70], 64Cu [71], 76Br [72], and 89Zr [73] for PET
imaging and 99mTc [74, 75] and 111In [76] for SPECT imaging
were used in several disease entities. Within the past years, the
use of these and other tracer probes that had been investigated
predominantly in tumor angiogenesis has been translated to
angiogenesis imaging after MI for evaluating proangiogenic
effects of regenerative therapies. In a previous study, 18F-
galacto-RGD injected in a rat MI model predicted improved
healing [77]. The usage of this tracer, however, might be lim-
ited as the production of 18F-galacto-RGD is complex and
time-consuming. 68Ga tracers, on the other hand, are easy to
handle and fast in production. 68Ga-NODAGA-RGD and
68Ga-TRAP-(RGD)3 have been previously tested for angio-
genesis imaging in tumor models [78, 79]. Both 68Ga-RGD
tracers were compared to 18F-galacto-RGD in postinfarct

myocardial angiogenesis, and uptake was similar in all three
groups (Fig. 1), indicating that 68Ga-RGD tracers may repre-
sent a more easily clinically translatable alternative [50].
Another 68Ga-labeled tracer, a 68Ga-NOTA-RGD
peptidomimetic, was used for angiogenesis imaging in a rat
MI model. 68Ga-NOTA-RGD uptake was increased in regions
of reduced myocardial perfusion and correlated with immu-
nohistochemical staining of CD31 and β3 integrin (Fig. 2)
[51].

Lately, 18F-Alfatide II (18F-AlF-NOTA-PRGD2) has been
developed as a new promising PET tracer. Taking advantage
of the preformation of an aluminum-fluoride complex with
consequent attachment of the RGD peptide, time for prepara-
tion was significantly reduced and HPLC purification was
avoided, while receiving radiochemical purity of over 97 %
[80]. The 18F-Alfatide II tracer was used to characterize an-
giogenesis in a rat MI model after treatment with vascular
endothelial growth factor (VEGF) gene and/or bone marrow
mesenchymal stem cells (BMSCs). In this study, 18F-Alfatide
II provided a strong contrast between infarcted and
noninfarcted myocardium and uptake was significantly higher
in rats treated with VEGF and BMSCs (Fig. 3). Increased
uptake of 18F-Alfatide II correlated with the area of 99mTc-
MIBI uptake defect [20•].

In another study in a rat MI model, the angiogenic potential
of 3D HUVEC/cbMSC aggregates was assessed by 68Ga-

Table 1 A summary of novel studies in molecular imaging of angiogenesis

Radiotracer Modality Target Therapy Species Disease

Myocardial

Preclinial 68Ga-NODAGA-RGD
68Ga-TRAP(RGD)3
18F-galacto-RGD [50]

PET αvβ3 integrin None Rat MI

68Ga-NOTA-RGD
peptidomimetic [51]

PET αvβ3 integrin None Rat MI

18F-Alfatide II [20•] PET αvβ3 integrin VEGF, BMSC Rat MI
68Ga-RGD [52•] PET αvβ3 integrin Dissociated HUVECs/cbMSCs

or 3D HUVEC/cbMSC
aggregates

Rat MI

11In-DTPA-cNGR [53] SPECT CD13 None Mouse MI
64Cu-NOTA-TRC105 [54] PET CD105 None Rat MI

[11C]ATV-1[9] PET VEGFR-2,
Tie-2,
PDGFα

None Rat MI

Clinical 68Ga-PRGD2 [55••] PET αvβ3 integrin None Human MI

Hind limb

Preclinical αv targeted
microbubbles [34]

Ultrasound αv integrins HIF-1α
mutants

Mouse Ischemic
hind limb

Tumor

c(RGDyK)-MPIO [56•] MRI αvβ3 integrin None Mouse Melanoma,
colon carcinoma

68Ga-aquibeprin [57••] PET α5β1 integrin None Mouse melanoma
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RGD. Injection of 3D HUVEC/cbMSC aggregates resulted in
locally increased 68Ga-RGD uptake suggesting increased an-
giogenesis and reduction in defect size [52•]. Using SPECT
tracers, an increased uptake of 99mTc-labeled RGD peptides
(99mTc-RAFT-RGD and 99mTc-NC100692), similar to data
of respective 18F-PET tracers, was found in infarcted myocar-
dium tissue and the border zone of infarction, indicating in-
creased integrin αvβ3 expression (Fig. 4) [52•, 81, 82].

Recently, a 68Ga-labeled cyclic RGD dimer with a PEG
spacer (68Ga-PRGD2) was studied for the first time in a small
set of patients post-MI. 68Ga-PRGD2 uptake was found in 20
of 23 patients around the ischemic regions. Increased uptake
was found 1week afterMI and remained high until 2.5months
after MI. 68Ga-PRGD2 uptake correlated with size and sever-
ity of the infarction (Fig. 5). Three patients who did not show
any 68Ga-PRGD2 uptake were identified with a very recent
MI and events dated back 1–2 years. Nevertheless, 68Ga-
PRGD2 uptake showed a patchy pattern, which may be attrib-
utable to an uptake not only by angiogenic ECs but also inter-
stitial myofibroblasts contributing to myocardial remodeling
[55••]. Although the application of integrin αvβ3 imaging has
been previously translated into clinical trials to assess tumor
angiogenesis [83], only a single clinical trial imaging angio-
genesis after MI has been conducted so far, with two studies
currently recruiting (NCT01813045, NCT01542073).

Even though recent work in integrin αvβ3 imaging with
PET or SPECT registered substantial improvements, this
method is still afflicted with several limitations. Recently, a
cyclic RGD moiety conjugated to MPIO (c(RGDyK)-MPIO)
for MR angiogenesis visualization in a colorectal carcinoma
and melanoma mouse model was studied. c(RGDyK)-MPIO
specifically binds to integrin αvβ3 expressing vessels, while
unbound particles are rapidly cleared from circulation.
Specific binding was verified by ex vivo immunolabeling
[56•]. Further optimization of MR-based angiogenesis imag-
ing tracers may enable integrated molecular and anatomical
imaging.

CEU imaging with targeted microbubbles displays another
radiation-free molecular imaging technique. Microbubbles
binding to integrin αvβ3 and other angiogenesis specific tar-
gets have been extensively applied for studying angiogenesis
and the response to antiangiogenic therapies in several tumor
entities [35, 84–86]. However, only limited data exist regard-
ing cardiovascular diseases and treatments [87]. Xie et al. in-
vestigated the effect of HIF-1α mutant on angiogenesis in a
mouse ischemic hind limb model; CEU imaging using αv-
integrin-coated microbubbles has been applied to visualize
angiogenesis. Video intensity obtained by αv imaging posi-
tively correlated with ultrasound perfusion imaging data, in-
dicating that CEU imaging may also provide quantitative data

Fig. 1 In vivo PET/CT images of
rat MI. Representative transaxial
sections show hypoperfused
myocardium area (13N) and
corresponding RGD uptake
(68Ga, % ID/g). The focal uptake
is seen in infarct (yellow
arrowheads) and the operation
scar (white arrows), as verified by
CT scan (reprinted from [50]
under the terms of the Creative
Commons Attribution License
2.0)

Fig. 2 Macrosections and
microsections of rat hearts. […] d,
e Representative immunostaining
for CD61 (d) and CD31 (e) from
the border region of infarcted
heart at low magnification (×10,
calibration bar 50 μm) (reprinted
from [51] with permission from
Springer/European Journal of
Nuclear Medicine)
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Fig. 3 […] b In vivo PET images of 18F-Alfatide II and representative
SPECT myocardial short axis slice images using 99mTc-MIBI at
different times after myocardial infarction. Infarcted myocardium
showed obvious 99mTc-MIBI uptake defect in the anterior and lateral

wall of left ventricle (arrows), which matched the focal RGD peptide
tracer uptake region (triangle). c The infarct area/remote area ratio of
18F-Alfatide II uptake as measured by PET (reprinted from [20•] with
permission from Springer)

Fig. 4 Multimodality
noninvasive imaging by SPECT
and PET, showing myocardial
perfusion and angiogenesis,
respectively. a SPECT and PET
images in polar-map format,
showing perfusion defects and
angiogenesis of infarcted hearts
that were treated with saline,
dissociated cells, or cell
aggregates. […] (reprinted from
[52•] with permission from
Elsevier)

27 Page 6 of 11 Curr Cardiovasc Imaging Rep (2016) 9: 27



on angiogenesis. This suggests that αv-integrin imaging via
ultrasound can be a reliable method to visualize angiogenesis
in vivo [34]. Moreover, ultrasound is not only limited to im-
aging angiogenesis to monitor cardiac regeneration but offers
therapeutic options. Microbubbles loaded with therapeutic
agents can be dissolved by high acoustic pressures after accu-
mulation at the region of interest, thus enabling targeted drug
delivery. Additionally, it is hypothesized that a combination of
targeted imaging and drug release via microbubbles is possi-
ble [33, 88, 89].

Integrin α5β1

Integrin α5β1 expression is suggested to be completely re-
stricted to ECs as deletion of the β1 chain leads to full inhibi-
tion of angiogenesis [90]. Analogous to integrinαvβ3, expres-
sion of integrin α5β1 is low in quiescent ECs and upregulated
in angiogenic ECs [91, 92]. These results suggest that integrin
α5β1 could be a more reliable biomarker for angiogenesis
compared to αvβ3. To assess integrin α5β1 imaging in tumor
angiogenesis, Notni et al. developed 68Ga-aquibeprin (a
pseudopeptide targeting integrin α5β1) and compared it to
68Ga-avebetrin (targeting integrin αvβ3). In vitro data showed
high affinity for integrin α5β1, and no decrease in specificity
compared to a previously used 68Ga-labeled monomer selec-
tively targeting integrin α5β1 was detected. In vivo data
showed a higher tumor-to-organ ratio of 68Ga-aquibeprin and
suggest it to be sufficiently stable. Immunohistochemical
stainings further propose integrin α5β1 as a more EC specific
marker [57••].

Other targets for molecular imaging

CD13

CD13 is a membrane-bound aminopeptidase, which is upreg-
ulated on activated ECs [93]. It is considered an important
regulator of EC morphogenesis during angiogenesis [94].
The cyclic tripeptide Asn-Gly-Arg (cNGR) binds to CD13
on activated ECs in infarcted myocardium, but not to CD13-
positive macrophages in hypoxic myocardium [53, 95].
Comparative studies with RGD and NGR of tumor angiogen-
esis revealed a threefold higher target homing ratio for NGR
[96]. A recent study investigated CD13-targeted angiogenesis
imaging in a mouse model of MI with 111In-DTPA-cNGR by
SPECT. Increased uptake of 111In-DTPA-cNGR at day 7 after
MI correlated with areas of decreased 99mTc-sestamibi [53].

CD105

CD105 (endoglin) is a transmembrane protein that is solely
expressed on activated ECs [97]. Several PET probes based on
TRC105, a monoclonal antibody that binds to CD105 with
high avidity, have been tested for tumor angiogenesis imaging
[98, 99]. 64Cu-NOTA-TRC105 was recently tested to assess
angiogenesis in a rat MI model via PET. Tracer uptake was
increased in infarcted myocardium. Expression of CD105 was
confirmed by immunofluorescence. However, 64Cu-NOTA-
TRC105 exhibits a long half-life and its intense background
signal acted as a confounder [54].

Fig. 5 Comparison of a patient with slight myocardial infarction (MI)
and a patient with severe MI.Upper row: In a 58-year-old man at the fifth
day after the event, a small apical region with decreased 99mTc-MIBI
perfusion (a, arrow) and 18F-FDG metabolism (b, arrow) showed mild
68Ga-PRGD2 accumulation (c, arrow), with a pSUVof 0.62. Lower row:

In a 45-year-old woman on the seventh day after the event, an apical
defect on 99mTc-MIBI perfusion images (d, arrow) and 18F-FDG
metabolism images (e, arrow) corresponded with moderate 68Ga-
PRGD2 uptake (F, arrows), with a pSUVof 2.02 (reprinted from [55••]
with permission from Theranostics)
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VEGF

VEGF is commonly considered as the most potent mediator of
angiogenesis. Consequently, VEGF and its receptors (VEGFRs)
are frequently used for angiogenesis imaging. Due to splice var-
iants, several isoforms of VEGF-A exist, of which some are
proangiogenic and other antiangiogenic [100]. Monoclonal hu-
man anti-VEGF labeled with 123I and 124I have been employed
for PET/SPECT imaging [101]. In a rat model of myocardial
infarction, recombinant radiolabeled VEGF (64Cu-DOTA-
VEGF121) was used for PET imaging of VEGFRs. An increased
radiotracer uptake was reported in a period of up to 2 weeks after
induction of MI [101].

Several tyrosine kinases are upregulated in heart tissue under-
go ing ang iogene s i s and r emode l i ng a f t e r MI .
Immunohistochemical analyses of MI samples revealed in-
creased levels of VEGFR-2, Tie-2, and PDGFα suggesting its
use as an angiogenesis marker in non-invasive molecular imag-
ing. ATV-1 can act as an inhibitor of those kinases. PET imaging
with [11C]ATV-1 was assessed in a rat model of MI. Standard
uptake values of [11C]ATV-1 correlated with immunohistochem-
ical staining of VEGFR-2, Tie-2, and PDGFα [9].

Conclusions

Even though proangiogenic therapies have so far largely failed
as an effective treatment of MI, targeting angiogenesis after
MI to mitigate heart failure is still considered a promising
strategy. In order to assess the success of such therapeutic
interventions in the clinic or in preclinical development, reli-
able and sensitive noninvasive imaging modalities are needed.
Molecular imaging of angiogenesis via PET, SPECT, MRI,
and CEU has been investigated intensively within the past
decade. A variety of tracers have been translated from tumor
angiogenesis models to MI models, and promising results
were achieved. These methods offer the unique opportunity
to study in vivo molecular mechanisms characterizing myo-
cardial healing after infarction and to evaluate angiogenic ef-
fects of regenerative treatments. Combination of high sensi-
tivity PET and SPECTwith high-resolution X-ray CT images
allows better identification and quantification of tracer uptake
within the region of interest. Multimodal imaging with highly
specific tracers yields reliable and detailed data of cardiac
angiogenesis in small and large animal models and also in
humans. Because PET and SPECT imaging use ionizing radi-
ation, these imaging modalities might also expose patients to a
risk of growing neoplastic lesions. For clinical applications,
further research is warranted to develop radiotracers with a
reasonable level of ionizing radiation or even replacing PET
and SPECTwith MRI or CEU while still featuring high affin-
ity for visualizing growing blood vessels. Continuing devel-
opment of noninvasive imaging modalities for future clinical

applications may enable improved patient risk stratification
and pave the way for personalized therapy.
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