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Abstract

RNA sequencing (RNA-seq) has become a standard procedure to investigate transcriptional changes between conditions
and is routinely used in research and clinics. While standard differential expression (DE) analysis between two conditions
has been extensively studied, and improved over the past decades, RNA-seq time course (TC) DE analysis algorithms are
still in their early stages. In this study, we compare, for the first time, existing TC RNA-seq tools on an extensive simulation
data set and validated the best performing tools on published data. Surprisingly, TC tools were outperformed by the clas-
sical pairwise comparison approach on short time series (<8 time points) in terms of overall performance and robustness to
noise, mostly because of high number of false positives, with the exception of ImpulseDE2. Overlapping of candidate lists
between tools improved this shortcoming, as the majority of false-positive, but not true-positive, candidates were unique
for each method. On longer time series, pairwise approach was less efficient on the overall performance compared with
splineTC and maSigPro, which did not identify any false-positive candidate.
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Introduction

Since its invention [1], RNA sequencing (RNA-seq) protocols
have been continuously improved. Nowadays, this technique is
used for many applications including the identification of regu-
latory elements such as enhancer RNAs or long noncoding
RNAs, biomarkers, responses to a signal, as well as to capture
and model whole biological processes by time course (TC) data
[2–6].

RNA-seq data are represented by counts for each gene,
which have been obtained by mapping short reverse transcribed
RNA fragments to a reference genome/transcriptome.
Differences between two conditions are considered significant
if the parameters used to model the gene counts do not origin-
ate from the same underlying statistical distribution. Negative

binomial (NB) distribution is the established gold standard, be-
cause of its ability to accurately model RNA-seq data with a low
number of available replicates [7]. A plethora of differential ex-
pression (DE) tools exist, varying on their assumptions on how
to model the variance of the NB distribution.

Additionally to standard differential gene expression, RNA-
seq experiments encompass a vast number of other features
such as: alternative splicing [8], detection of fusion transcripts
[9], circular RNAs [10] and gene regulatory network (GRN) mod-
eling [11]. Finally, it is expected that novel insights will be
gained by sequencing full-length transcripts [12] or creating al-
gorithms and standards for analyzing single cells’ transcrip-
tomes [13], novel transcript identification [14] as well as by
unraveling the code of RNA modifications [15].
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Whereas standard transcriptomic differential gene expres-
sion analysis tools have been benchmarked and are now inte-
grated regularly with other omics data [16], TC expression
analysis has no established standards. Specific methods are
needed to account for the temporal correlation between time
points and easier candidate gene identification. Most of the
available software perform a pairwise comparison of each time
point to the first one, or to the same time point of a second time
series/treatment [17], thereby neglecting temporal dependen-
cies and information that could increase predictive power.

In the recent years, many tools have been implemented to
characterize longitudinal data sets such as gene set [18] and
pathway analysis [19], GRN identification [20], inference of per-
turbation times [21, 22] or clustering [23]. Here, we focus our
analysis specifically on the comparison of tools developed for
TC data DE analysis. First, we generated simulated data sets to
benchmark available tools (Table 1, ‘Material and methods’ sec-
tion) for the analysis of differentially expressed gene (DEG) of
TC RNA-seq. Subsequently, we compared their performance
with standard pairwise comparison strategies. Finally, after this
assessment, we tested best performing tools on a published bio-
logical data set [33].

Material and methods
RNA-seq time course tools

Time course DE analysis tools used in this study are summar-
ized in Table 1 and have already been partially reviewed [17].
Main features of each tool are highlighted here:

AdaptiveGP (nsgp) is a Gaussian process (GP) regression method
implemented in MATLAB. This implementation models noise
variance, signal variance and length scale as nonstationary (la-
tent) functions (nonstationary Gaussian process—nsgp), which
are inferred by one of two gradient-based techniques: max-
imum a posteriori estimation or by Hamiltonian Monte Carlo
(HMC) sampling. DEG classification is performed by calculating
a Bayes factor (BF) of the ratio of marginal likelihoods (MLs) of
separated and combined data sets.

DyNB is another MATLAB implementation that uses NB distri-
bution and GP to model RNA-seq counts and their temporal cor-
relations. Normalization and variance estimation are performed

as in DESeq2, with the difference that steps are performed on
the GP instead of the discrete read counts. Markov chain Monte
Carlo (MCMC) sampling is performed to obtain an ML to classify
DEG as described before for nsgp. DyNB allows for irregular
sampling and is further able to detect delays in replicates or the
whole time series.

EBSeqHMM is an extension of the EBSeq R package. It applies an
empirical Bayes autoregressive hidden Markov model (AR-HMM)
to identify dynamic genes in two steps. First, parameters are
estimated using a negative binomial (NB) model, and then in a
second step categorize genes at each time point by a Markov-
switching autoregressive model and classify genes into expres-
sion paths (upregulated/downregulated or constant for each
time point). The package comprises visualization and clustering
methods and further allows the analysis to be performed at the
isoform level. EBSeqHMM requires a minimum of 3 time points.

edgeR/DESeq2 (pairwise) are established R packages for DE ana-
lysis. While having different methods for estimating the disper-
sion, both tools are based on a NB model and are considered as
gold standards in the DE analysis field [34]. While traditional
comparison does not consider TC analysis, complex designs
and combination of pairwise comparisons allow naı̈ve investi-
gation of TC data. Generalized linear models (GLM) as well as a
likelihood ratio test with a full and reduced formula in edgeR
and DESeq, respectively, were used as gold standard for DEG.

FunPat is an R package allowing DE analysis by comparing the
enclosed area between two expression profiles. P-values are as-
signed by testing the bounded area for significance against a
null hypothesis area that is computed by sampling from a best
fit distribution (gamma, log-normal or Weibull), which has been
created using the mean/variance of the supplied replicates.
Additional features included are the functional annotation and
extraction of genes, which share annotation and temporal
patterns.

ImpulseDE2 is an R package that performs DE analysis of single
or case/control TC data in a three-step workflow. First, param-
eters are estimated, and second, data are fitted against a con-
stant, an optional sigmoid and an impulse model. The impulse
model denots the divergence between samples of the transition
from a steady state to an intermediate state and back to a

Table 1. Properties of available TC analysis tools

Method Normalization method Model DEG test Uneven
sampling
allowed

Isoforms Clustering Time Citation

DyNB Variance estimationþ
scaling factors on GP

NBaþGPb MLc BY MCMCd Yes No No Days [24]

EBSeq-HMM Median/quantile Beta NBþAR-HMMe EBf Yes Yes Yes Minutes [25]
FunPat – c/logNorm/Weibull Bounded Area No No Yes Seconds [26]
ImpulseDE2 – NBþimpulse model LLRg Yes No No Minutes [27]
lmms – lmmsh LLR Yes No Yes Minutes [28]
Next maSigPro – NBþPRi LLR No No Yes Minutes [29]
nsgp – Nonstationary/stati GP ML by gradj/

HMC-NUTSk

No No No Days [30]

splineTC – Spline regression Moderate F-statistic No No No Seconds [31]
timeSeq Via edgeR NBMMl Kullback–Leibler

distance ratio
Yes Exon

level
No Days [32]

aNB model, bGP, cML, dMCMC, eAR-HMM, fempirical Bayesian method, glog likelihood ratio, hlinear mixed model splines, ipolynomial regression, jgradient descent,
kHastings-Monte-Carlo no U-turn sampling, lnegative binomial mixed model. If a tool has several normalization methods, the standard method is underlined.
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steady state. Third, DE is assessed by a log likelihood ratio test.
ImpulseDE2 also offers the possibility to consider batch effect
factors in the model fitting process.

lmms is an R package modeling time series data via serial fitting
of linear mixed model whose goodness of fit is assessed by an
analysis of variance (ANOVA) log likelihood ratio test.
Differential expression is assessed either over time, between
groups or a combination of both. Model fits are tested against a
null hypothesis with the extended linear model parameters set
to zero and compared using an ANOVA log likelihood ratio test.
lmms further offers functions for quality control, filtering and
clustering.

Next maSigPro is an update of the maSigPro R package, enabling
users to analyze RNA-seq count data by adding GLMs. MaSigPro
models count data with a NB distribution to subsequently per-
form polynomial regression and a log likelihood ratio test to fit
genes and detect DE, respectively. The regression is performed
in two steps, first selecting non-flat expression profiles, and se-
cond, finding the best model by goodness of fit according to a
user specified cutoff.

splineTimeR (splineTC) is an R package, which fits natural cubic
splines (functions defined by piecewise polynomials) between
time points and subsequently applies empirical Bayes moderate
F-statistics on the coefficients of the spline regression model be-
tween two groups. The package offers downstream features,
such as visualization, pathway enrichment and gene associ-
ation network reconstruction functions.

TimeSeq is accounting for read counts using a NB mixed effect
model and a bivariate function of time and treatment that are
fitted by a penalized maximum likelihood. P-values of signifi-
cant genes are computed via the Kullback–Leibler distance ratio
and permutation of time point labels. TimeSeq further differen-
tiates between parallel and nonparallel expression profile (con-
trol and treatment) DEGs and offers gene set testing for
nonparallel DEGs. TimeSeq requires at least one replicate for
the first time point.

Detailed formulas used for data modeling and DE testing of
each tool are supplied in Supplementary File S1.

Data simulation

To simulate a realistic data set with biological characteristics, a
mean/dispersion index was extracted from expression data sets
comprising 41 immortalized B-cell samples [35]. Processed sam-
ples were obtained from the ReCount project [36]. Next, we ran-
domly sampled 30 000 genes from the mean index, and created
for each gene a new NB distribution using corresponding disper-
sion parameters. The NB distribution was subsequently used to
sample time points and replicates on a gene-specific basis. To
prevent abnormal expression distributions between replicates,
read counts were drawn repeatedly from the NB distribution ac-
cording to n¼min(500, mean/4) times and averaged to resemble
biological replicates. Libraries were adjusted by multiplying
with the corresponding library size factor or time pattern vec-
tors. The subsequent expression table was subsampled for
20 000 genes and nonexpressed genes were removed, resulting
in a final number of 18 503 expressed genes (all count tables are
supplied online). For data sets with >4 time points, the increase
in time points was seen as increase in the sampling rate to keep
the possible expression patterns compact. Therefore, a spline
was fitted to the existing expression pattern using lmmspline
and predicts functions of the lmms R package, of which new

mean values at the desired time points were sampled. In a se-
cond step, replicates were sampled from the initial mean/dis-
persion dictionary as described before.

Processing of biological data

For the biological data set, we used TC RNA-seq data from a re-
cent publication by Kiselev and colleagues [33]. Raw reads of
data set (GSE69822) were downloaded from the GEO database
[37], quality controlled using fastQC [38], mapped to the ensem-
ble GRCh38.83 genome annotation using the STAR aligner [39]
and quantified with featureCounts [38].

Computational resources

All software was run on a MacBook Pro 2.4 Ghz Intel Core i7 with
16 GB of RAM. To accelerate Matlab tools and the timeSeq R
package, data sets were split into 100 or 10 subsets for the
Matlab and R implementations, respectively. Each subset was
run on a single node of the ETH cluster with 16 cores and 16 GB
of RAM.

Parameters

Differential expression analysis for all tools was performed using
a P-value of 0.01 (if applicable). Additional filtering approaches
and variation of parameters are noted in Supplementary Table S6.

Results

The study designed comprises a standard layout of a control
and treatment TC. The standard parameters were selected ac-
cording to realistic biological conditions and contain 4 time
points and three biological replicates per time point (Figure 1A).
To simulate DE, only the treatment samples were modified, and
the control was considered to be constant (having a baseline
biological variation). In total, 24 pattern categories were simu-
lated, each spanning either 2 or 3 consecutive time points
(Supplementary Table S1). Categories consisted of 50 genes
each, summing up to 1200 DEGs with randomly sampled ex-
pression levels (see ‘Material and methods’ section). Thereby,
each pattern mainly contained weakly expressed and only few
highly expressed genes (Figure 1B), as it is the case in a biolo-
gical data set [40]. While in various biological scenarios often
the control TC changes over time as well, we again choose the
simplest case to limit the extent of the study. To characterize
the selected TC tools, several scenarios were tested, assessing
the behavior of the tools on different library sizes, number of
replicates or number of time points (Figure 1C).

Regular pairwise comparison outperformed most TC
tools

Results of each method were evaluated using a stringent P-
value cutoff of 0.01 and summarized by standard classification
terms (Table 2). While all methods were highly accurate, half of
the methods suffered from a low sensitivity (correctly identify-
ing DEGs). Consequently, these methods had high false discov-
ery rates (FDRs) and low precision as reflected by the overall
measure of the F1 score (combined score of precision and sensi-
tivity) (Table 2). In more detail, EBSeqHMM [25] identified more
false positives (FPs) than true positives (TPs). MaSigPro [29] and
timeSeq [32] identified the majority of all candidates, but suf-
fered from a high number of FPs. As both DyNB [24] and nsgp
[30] only report a BF, we selected genes with the top 1200
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absolute log BFs. This is equivalent to the total number of DEGs
and should not arbitrarily increase FPs. Nevertheless, both
DyNB and nsgp did not properly control their FDR. FunPat [26]
identified only a fraction of TPs correctly, resulting in a low F1
score, though its FDR was outstanding, as it did not produce a
single FP. The pairwise comparison by edgeR [41], ImpulseDE2
[27] and splineTC [31] identified almost the exact number of
DEGs. The same was true for lmms [28], with exception that the
aforementioned tools were able to keep their FDR <10%. The
performance of all tools is illustrated in Figure 2 with receiver
operating curve (ROC) (Figure 2A), true-positive rate (TPR)/FDR
(Figure 2B) plots and by the calculated area under the curve
(AUC) for different FDR thresholds of the ROC (Figure 2C).

Identification of late and small pattern changes was
limited

For a better characterization of the performance of tools on spe-
cific expression patterns, we further grouped the simulated pat-
terns into two classes and several categories each. Classes
addressed pattern types (Supplementary Figure S1A) or timing
of expression changes (Supplementary Figure S1B) and were
visualized using the iCOBRA R package [42]. The overall per-
formance of all methods was decreased when the expression

pattern change was small or occurred at later time points.
ImpulseDE2, splineTC, maSigPro, lmms and the pairwise com-
parison achieved the highest score in all categories. In more de-
tail, DyNB, the pairwise approach, maSigPro, lmms and
splineTC more likely detected gradual and mixed patterns. nsgp
performed well on fast/abruptly changing and mixed patterns.
FunPat and EBSeq-HMM were more appropriate for gradual but
not abrupt changing patterns. TimeSeq and ImpulseDE2 had an
almost stable performance with the exception for mixed and
low/late patterns.

Proper FDR control decreased susceptibility to noise

To further assess the robustness of methods as well as to en-
sure that simulated data were not too artificial, we introduced
white noise ranging from 5 to 20% of the signal. DyNB and nsgp
showed reduced TPRs and increased false-positive rates (FPRs)
(chance of falsely classifying a gene as DE). EBSeq-HMM and
timeSeq showed rather constant TPR with increases in FPR
only. In this aspect, MaSigPro was a positive exception, as both
the FPR and TPR were decreasing. On the contrary, well-
controlled FDR methods only had reduced TPR power while
keeping their FPR stable. Comparing tools with a stable FPR, the
pairwise approach had the smallest spread, followed by
ImpulseDE2, FunPat and splineTC (Figure 2D).

Figure 1. The standard experimental design (A) consisted of two TCs having 4 time points with three replicates each. A single value for each gene was sampled from a

negative binomial distribution using mean/dispersion value pairs of a biological data set. Time points and replicates were then drawn from the same distribution and

expression patterns applied by multiplying with the pattern vector. Of the total 24 patterns that were simulated, each consisted of 50 genes, resulting in the simulation

of 1200 DEGs in total (B). As genes were drawn from a negative binomial distribution, each pattern mostly consists of lowly expressed genes and a few highly expressed

genes. (C) Other experimental designs were tested by increasing or reducing the library size, replicates or time points (standard parameters in parenthesis).
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Table 2. Test summary statistics of the standard scenario

Tools TP FP FN TN sen spec prec FNR FDR acc F1

DyNB 675 525 525 16 778 0.56 0.97 0.56 0.44 0.44 0.94 0.56
EBSeqHMM 527 3889 673 13 414 0.44 0.78 0.12 0.56 0.88 0.75 0.19
FunPat 470 0 730 17 303 0.39 1.00 1.00 0.61 0.00 0.96 0.56
ImpulseDE2 980 57 220 17 246 0.82 1.00 0.95 0.18 0.05 0.99 0.88
lmms 836 99 364 17 303 0.70 0.99 0.89 0.30 0.11 0.97 0.78
maSigPro 947 699 253 16 604 079 0.96 0.58 0.21 0.42 0.95 0.67
nsgp 482 718 718 16 585 0.40 0.96 0.40 0.60 0.60 0.92 0.40
pairwise 1014 70 186 17 233 0.85 1.00 0.94 0.16 0.06 0.97 0.89
splineTC 881 53 319 17 250 0.73 1.00 0.94 0.27 0.06 0.98 0.83
timeSeq 801 802 399 16 501 0.67 0.95 0.50 0.33 0.50 0.94 0.57

FN, false negatives; TN, true negatives; sen(sitivity), correctly identify TP; spec(ificity), correctly identify FP; prec(ision), ratio of correctly identified candidates; FNR

(false-negative rate), ratio of falsely refused candidates; FDR, ratio of falsely identified candidates; acc(uracy), ratio of correctly identified TP and FP; F1, weighted har-

monic mean of precision and sensitivity.

Figure 2. Results of standard simulation scenario. (A) ROC showing the TPR and FPR on the x and y axis, respectively. FDR thresholds of 0.01, 0.05 and 0.1 are indicated

by rings on each curve. (B) TPR/FDR curves with ring indicated adjusted P-value thresholds of 0.01, 0.05 and 0.1. (C) AUC fraction (ranging from 0/worst to 1/best) calcu-

lated for the ROC on several FDR thresholds. (D) Performance of TC tools on noisy data ranging from 0.05 to 0.2 white noise added to the samples.
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True-positive but not false-positive genes overlapped

Comparison of separately overlapping TP and FP genes between
methods (Supplementary Tables S2 and S3) allowed us to make
two observations. First, on average only �2% of TP candidates
identified by the individual tools were unique. Second, 37% of FP
candidates were unique to each of the tools (Figure 3A, see
Supplementary Tables S2a and S3a for all tools). Subsequently,
we investigated the effect of overlapping the candidate lists of
individual tools on the overall performance, by computing the
AUC using the R package ROCR [43]. Comparisons were per-
formed for DEGs identified by at least 1 and up to 10 tools (Figure
3B). The best TPR/FPR ratio was achieved by using genes found by
at least three methods. Moreover, further filtering by increasing
the number of minimum overlaps did neither increase the TPR

nor reduce the FPR (Figure 3B). The analysis was repeated using
the top five scoring tools only, and similar results were obtained
with the difference that the minimum required overlap by two
methods resulted in the best TPR/FPR ratio (Figure 3C).

Increases in replicates or time points improved
statistical power

As previously observed for conventional RNA-seq [44], increas-
ing sequencing depth only marginally increases power, whereas
replicates have a major impact on the overall performance of
the analysis (Supplementary Table S4, Supplementary Data S1).
Addition of time points boosted the performances of maSigPro
by 30%, not reporting any FP at all, and splineTC by 10%,

Figure 3. Results of overlapping candidate lists. (A) Overlaps of true-positive (left) and false-positive (right) candidates of top five tools. (B) ROC curve with computed

AUC for overlaps of candidate lists. The number of the overlap indicates the minimum number of lists sharing candidates. (C) ROC curve with computed AUC for top

five tools. FPR thresholds of 0.01, 0.05 and 0.1 are indicated by dashed red lines.
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outperforming the pairwise approach (Supplementary Table
S4). Other tools were discarded, as they either used up too much
memory (EBSeq-HMM) or took too long to run (DyNB, nsgp,
timeSeq), even when splitting the data set.

Performance on biological data

To evaluate the performances on actual biological data, we se-
lected a published data set (accession number GSE69822) [24].
The aim of the study was to identify transient and chronic per-
turbations of phosphatidylinositol-trisphosphate (PIP3) signaling. To
identify such perturbations, four TCs under epidermal growth fac-
tor (EGF) stimulation were performed using: wild-type cells, PTEN
knockout and PIK3CA knockin cells (both mutations leading to
chronic EGF stimulation) as well as cells treated with a transient
EGF inhibitor (Figure 4A). All TC consisted of 6 time points, each
having three replicates. For simplicity, we focused our analysis
on the comparison of the perturbations compared with the con-
trol group over time and at time point 0 (Figure 4B). DEGs were
further categorized into subgroups A–H to identify chronically/
induced and baseline-activated candidate genes. A step log like-
lihood ratio test of DESeq2 [45] was used to identify DEGs. As
DESeq2 performed equally well as edgeR on the simulated data
set (Supplementary Table S5, Supplementary Figure S2), we used
DESeq2 as the pairwise comparison approach for this analysis.
Moreover, to identify the potential of a combinational approach
of top-performing tools, overlapping candidates of ImpulseDE2,
splineTC and maSigPro were investigated as well. MaSigPro was
selected instead of lmms, as lmms did not perform well on lon-
ger time series. In addition, splineTC already represented a
spline fitting approach.

Time course tools reproduced pairwise comparison
candidates

As described in the study, DEG candidates of the perturbation
TCs were merged and overlapped with DEGs of the control TC
(Figure 4B). Overlaps of wild type (WT) and perturbation TC can-
didates were highest with about 59% for DESeq2, 53% for
splineTC, 52% for ImpulseDE2 and clearly reduced with only
37% for maSigPro (Supplementary Figure S3A). Considering each
TC separately, the overlap between the four methods was ex-
tensive, containing at least 30% of each tool’s candidates
(Supplementary Figure S3B and C). Comparing the overlaps be-
tween perturbation and WT TCs, all approaches identified the
same core set of candidates (Supplementary Figure S3D),
whereas maSigPro missed a second set of genes that were re-
ported by the other tools. Therefore, we concluded that
ImpulseDE2 and splineTC were able to reproduce the findings of
the pairwise DESeq2 approach.

Functional annotations between tools were highly
similar

To recapture more functional groups, TC overlaps were catego-
rized as described in the original study [24] (Figure 4B and
Supplementary Figure S4) Functional annotation was performed
via the topGO function of the FGNet [46] R package, and subse-
quently gene ontology (GO) terms were collapsed by the REVIGO
tool [47]. Exemplary results for genes overlapping in all catego-
ries (Class A) are shown as bar plots (Figure 4C) containing the
(up to) 20 most enriched GO terms for each comparison.
Following up on the combinatorial approach of the simulation
study, we also tested an intersection of ImpulseDE2 and
splineTC candidates. MaSigPro was excluded as it failed to

identify a second gene set reported by the other tools
(Supplementary Figure S4) and because of the fact that best re-
sults on simulated data were obtained by overlapping results of
two tools (Figure 3C). Terms and enrichments were highly simi-
lar between methods, though the ranking and enrichment
scores of categories varied between tools and were reordered
correspondingly for the combined approach (Figure 4C and
Supplementary Data S2).

Discussion

In this manuscript, we have evaluated the performance of nine
RNA-seq TC DE tools (Table 1) and standard pairwise compari-
son. Performance was first assessed on simulated data (Figure
2, Table 2 and Supplementary Table S3), and top-performing
tools were applied to a published biological data set (Figures 3
and 4).

ImpulseDE2 was the overall best performing tool, achieving
results comparable with the classical pairwise comparison ap-
proach, with a higher number of replicates even outperforming
edgeR. With increasing time points, ImpulseDE2 performance
dropped, caused by increased numbers of FPs. Most likely, the
data modeling approach facilitating an impulse model is not
the best fit for the stretched patterns simulated in this study.
Moreover, authors state that performance and runtime are line-
arly correlated to the number of time points.

SplineTC was the best performing tool on long time series
(8þ time points) simulation data, excelled in running time (a
few seconds) and achieved good control of the FDR. The major
pitfalls are the vulnerability to noisy data and the requirement
of log count data as input. Log transformation is standard for
microarray data and smoothens the signal for better spline fit-
ting. However, this might not be describing RNA-seq count data
optimally, thereby providing a possible explanation for the
proneness to noise.

lmms reached the fourth place in terms of F1 score.
Performance was highly similar to the second spline approach
on the standard experimental setup. Nevertheless, it performed
slightly worse than splineTC and could not properly account for
the increased number of time points. lmms was broadly de-
signed for omics data; therefore, RNA-seq-specific normaliza-
tion and data transformation might increase performance.

MaSigPro’s performance is placed in the upper section com-
pared with other tools. The main strength of this tool is that no
preference for any patterns was observed. Interestingly,
maSigPro had decreased FPRs with increasing noise, which
might be attributed to the model selection step. Nonetheless, it
did not control its FDR as good as the pairwise or splineTC
approaches. This was highly dependent on the goodness-of-fit
threshold, whose modifications could lead to a better perform-
ance. Increasing the number of time points dramatically im-
proved the performance of maSigPro up to 30%, without
increasing the number of FPs. Finally, positive features of
maSigPro include the running time of only several minutes.

TimeSeq was robust to noise, despite the long running times
when computing P-values and the fact that it identified as
many FP as TP candidates. Further, no information on how to
include replicates and how the tool handles them is supplied in
the original study [36]. Therefore, replicates had to be supplied
as separate gene entries. TimeSeq offers the additional feature
of gene set-level analysis, which is thought to increase perform-
ance of DEG identification, but was not tested in this simulation
study.
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Figure 4. Experimental design and results of published data on PIP3 signaling perturbations. (A) Experimental design and processing steps of samples. (B) DESeq2 over-

laps of DEGs between TCs and T0 for further categorization and GO analysis. (C) GO enrichment for Class A DEGs for each method and the combined approach. The

length of the bar depicts the number of enriched genes in each term. Log10 P-value is indicated by color (increasing from colored to gray), and is shown for the first and

last term to indicate the range.
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FunPat’s performance was only average, as it only identified
a third of all DEGs of the simulated data set. Nevertheless, con-
sidering that it did not identify a single FP, this tool might be ap-
pealing for biologists to select candidates for downstream
validation, to gain confidence for certain candidates, with the
trade-off to potentially loose TP candidates. FunPat requires
only a single time point to be replicated to extract the variance
parameters and has an extremely short running time.
Nevertheless, several drawbacks for this method were identi-
fied, including the need for data transformation to account for
replicates, a poor performance on minor pattern changes, only
moderate robustness to noise and the aforementioned conser-
vative candidate selection, especially when increasing the num-
ber of time points.

The performance of DyNB and nsgp ranked them in the mid-
dle section of the tested tools. Several drawbacks and aspects
might be considered before using these tools. Among them is
the long running time, the vulnerability to noise, as well as the
output format of BFs making the interpretation of the results
more demanding. Furthermore, these two tools are Matlab im-
plementations, which require a commercial license. A potential
way to improve these tools could be to select genes by plotting
the distribution of BF and filtering candidates by setting a
threshold at the drop-off the BF distribution plots. Owing to the
underlying machine learning algorithms, a higher number of
replicates and time points are likely to improve the perform-
ance but also profoundly the runtime.

The purpose of EBSeq-HMM is to identify dynamic patterns
and clustering them by setting their expression behavior to be
either up/down or constant. The main issue observed was that
no constant components were observed, because of the fact
that it is unlikely that 2 time points have exactly equal expres-
sion values. Another drawback was that no P-values of DE but
posterior probabilities belonging to an expression path (see
‘Material and methods’ section) are reported. Additionally, it
was not possible to test for DE between two TCs, as the first
time point of the individual TC instead of a control TC was
taken as reference. While performing robustly on noisy data,
the overall performance of EBSeq-HMM was rather poor.
Improvements might be achieved by changing the normaliza-
tion method as recently described [48].

Other insights gained from this study are in agreement with
previous publications on pairwise RNA-seq data sets analysis
[44]. Tools performed poorly on small and late pattern changes.
However, the late category should not affect the pairwise com-
parison; therefore, this category might not be properly simu-
lated or biased by too high variance. Further, addition of
replicates or time points increased statistical power to a greater
extent compared with an increasing sequencing depth.

Overlapping candidate lists from different tools is a standard
approach to increase confidence and reduce the number of can-
didate genes. Here, we showed that TPs in contrast to FPs are
highly overlapping between tools (Figure 3A). Stringent filtering
was not improving the FPR but only decreasing the sensitivity
and thereby limiting the ability to find TPs. Consequently, the
minimal overlap of three and two methods had the best TPR/
FPR ratio, considering all or the top five tools, respectively
(Figure 3B and C).

To confirm insights gained from the simulation studies, best
performing tools and their combination were applied to a biolo-
gical data set. The tested tools gave similar and specific enrich-
ment results, whereas the combined approach seemed to filter
out more general GO terms and re-rank essential ones in similar
classes (e.g. Classes B and E) but negatively dominated

nonsimilar classes, as most genes were discarded (e.g. Classes C
and H). While all tools identify the same core set of genes, inter-
section of all tools might have eliminated a second bigger set of
genes identified by ImpulseDE2, splineTC and DESeq2 only.
This pointed out that conservative or tools that identify differ-
ent sets of genes might dominate final results by excluding
large fraction of candidates shared by other tools. Therefore, we
suggest only combining result lists of well-performing tools
yielding similar results.

Conclusions

Overall, we concluded that except for ImpulseDE2, splineTC and
maSigPro, TC RNA-seq tools are only partially able to account
for the temporal character of data sets. Unexpectedly, pairwise
comparison of time points was the most robust and accurate
approach on the standard experimental setup. The only excep-
tion was ImpulseDE2 that performed almost equally, but was
more prone to noise. While increasing the number of replicates
improved performances of all tools, increasing the number of
time points boosted maSigPro and splineTC performance only.
MaSigPro did not report any additional FP, and splineTC outper-
formed the pairwise approach. Other tools proved impractical
on longer time series because of their computational demands.
Therefore, TC tools only outperform classical approaches on
time series with a higher number of time points, implying
greater costs because of a greater number of samples that have
to be sequenced.

Finally, we conclude that combining candidates of several
methods is the most reliable and cost-effective trade-off to
increasing replicates or time points. Nevertheless, possible
domination of candidate selection by conservative tools or tools
that identify different set of genes has to be considered.
Candidates from this first-level analysis can be further reduced
using, e.g., clustering and enrichment techniques as well as in-
tegration of other omics data fitting the hypothesis for down-
stream analysis and candidate selection for validation.

Future perspectives

Improving technologies and more powerful computing devices
enable scientists to apply algorithms that have been so far too
computational demanding. These newly available algorithms,
shorter runtimes as well as the active research in RNA-seq TC
field will enable better and easier analysis of time series data.
Existing tools allow only the analysis on a single or on two TCs,
while future tools might allow multiple group TC DE analysis.
Further, integration of other data types such as chromatin
immunoprecipitation (ChIP)/assay for transposase-accessible
chromatin with high throughput sequencing (ATAC-seq), vari-
ant information, adenylation or microbial data, will allow for
better DE, dissection of underlying regulatory mechanisms and
to test more specific hypotheses. Taken together, future RNA-
seq TC analysis will enable scientists to better elucidate general
and specific temporal biological processes, their dependencies
and help to understand the bigger picture of, e.g., cancer types
or disease progression.

Key Points

• Time course analysis tools are outperformed by the
classical pairwise comparison approach on short time
series, except of ImpulseDE2.
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• Overlapping of candidate lists between similar tools
reduced FPs to a greater extent than TPs.

• splineTC and maSigPro have best overall performance
on long time series data.

Availability

All data simulated are supplied as Supplementary Files
(Supplementary Data S1 and S2), scripts are accessible at GitHub
(https://github.com/daniel-spies/rna-seq_tcComp) and biolo-
gical data are freely available from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) under the accession number
GSE69822.

Supplementary Data

Supplementary data are available online at http://bib.ox-
fordjournals.org/.
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