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A Multibody Model for Predicting
Spatial Distribution of Human
Brain Deformation Following
Impact Loading
With an increasing focus on long-term consequences of concussive brain injuries, there
is a new emphasis on developing tools that can accurately predict the mechanical
response of the brain to impact loading. Although finite element models (FEM) estimate
the brain response under dynamic loading, these models are not capable of delivering
rapid (�seconds) estimates of the brain’s mechanical response. In this study, we develop
a multibody spring-mass-damper model that estimates the regional motion of the brain to
rotational accelerations delivered either about one anatomic axis or across three orthog-
onal axes simultaneously. In total, we estimated the deformation across 120 locations
within a 50th percentile human brain. We found the multibody model (MBM) correlated,
but did not precisely predict, the computed finite element response (average relative
error: 18.4 6 13.1%). We used machine learning (ML) to combine the prediction from
the MBM and the loading kinematics (peak rotational acceleration, peak rotational
velocity) and significantly reduced the discrepancy between the MBM and FEM (average
relative error: 9.8 6 7.7%). Using an independent sports injury testing set, we found the
hybrid ML model also correlated well with predictions from a FEM (average relative
error: 16.4 6 10.2%). Finally, we used this hybrid MBM-ML approach to predict strains
appearing in different locations throughout the brain, with average relative error esti-
mates ranging from 8.6% to 25.2% for complex, multi-axial acceleration loading.
Together, these results show a rapid and reasonably accurate method for predicting the
mechanical response of the brain for single and multiplanar inputs, and provide a new
tool for quickly assessing the consequences of impact loading throughout the brain.
[DOI: 10.1115/1.4046866]
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Introduction

In the past five years, the prevalence of mild traumatic brain
injury (mTBI) has increased significantly from both widespread
changes in monitoring athletes during competition and increased
awareness of mTBI symptoms and diagnosis. Since 2006, the
estimated concussions occurring annually has grown from 1.7–2
million to 2.8 million in 2013 [1,2], with over 2.5 million self-
reported concussions occurring in high-school athletes alone in
2017 [3]. Although most mTBI have no long-lasting neurological
impairments on their own, a subset of concussions can lead to pro-
longed deficits, especially in persons with repeated mTBIs [4–7].
From both acute and prolonged care, the aggregate cost of mTBI
is now estimated to exceed 70 billion U.S. dollars annually [8].

It is well known that concussion can occur from the rotational
motion experienced by the head during direct or indirect head
impact [9]. Due to the soft material properties of the brain (see
reviews: [10–12]), these rotational motions cause substantial
deformations throughout the gray and white matter [13–15]. In
turn, these intracranial strains can cause both structural and func-
tional impairment of brain tissues [16,17]. A key feature of under-
standing and, eventually, reducing concussion risk is to determine
more exact relationships between the external kinematic loading
applied to the head and the subsequent deformation of the intra-
cranial contents. Simple spring-mass-damper models of the brain
have characterized the impact response, natural frequency, and
the surrogate strains experienced by the brain prior to injury
[18–22]. A generation of analytical models provided more spatial
estimates of the brain but were limited to simple geometries (sum-
marized in Ref. [23]). With their ability to simulate complex geo-
metries and loading inputs, finite element approaches quickly
eclipsed both of these approaches to become the most common
current methods relating external mechanical loading to the poten-
tial areas of brain injury.

A series of computational models can be used to study how the
brain deformation response to impact is influenced by brain size,
structure, and physical properties. Finite element (FE) models are
the most commonly used tool and, although they offer significant
insight into injury mechanisms, FE simulations can be computa-
tionally expensive and require hours to simulate impact events
lasting less than 100 ms. In many studies, the computational cost
is offset by the significant benefit provided by the ability to pin-
point areas of vascular injury [24–26], the relative fraction of
brain volume damaged [27–29], or even the estimated changes in
brain networks from a given impact [30].

An alternative method for achieving an estimate of stress/strain
throughout the brain is the material point method, which does not
suffer from some of the drawbacks commonly associated with FE
models [31,32]. These FE limitations include the possibility of
significant mesh warping during the simulation, the difficulty of
modeling nearly incompressible materials, and limited material
models to simulate the nonlinear, viscoelastic behavior of brain
tissue. However, neither the finite element nor the material point
model is well designed for rapidly assessing, i.e., within
seconds—whether an impact poses any risk for brain injury. Rapid
injury risk analysis would be particularly helpful in the headgear
design environment, where the impact of design changes could be
executed quickly and facilitate an iterative process that would
yield a prototype helmet design more rapidly than a design that
requires finite element modeling. In addition, rapid injury risk cal-
culations would also assist with the interpretation of sensor data
recording head acceleration exposures in the field of play, signifi-
cantly improving the ability to detect players who need to be eval-
uated for possible symptoms of mTBI.

Recent efforts to develop a single degree-of-freedom model of
the brain in response to a rotational motion produced a tool that
successfully approximated the peak brain deformation to a three-
dimensional (3D) acceleration input [33,34]. In this paper, we
extend this approach and develop a multibody-based tool, where
we estimate deformations throughout the brain during an impact

event. We use this model to estimate the brain motions that occur
across an anatomic plane and extend this analysis to predict defor-
mations that occur throughout the brain from simple and more
complex loading. Across a range of mechanical exposure condi-
tions, we find that combining machine learning (ML) techniques
with the MBM predictions provides a fast and reasonably accurate
estimate of tissue deformations calculated using a finite element
model (FEM) of the head. Together, these results demonstrate the
potential for quickly computing the brain deformation response to
impact. In a larger scope, this approach provides the opportunity
to more rapidly identify mechanical exposures that could lead to
traumatic brain injury.

Materials and Methods

Development of Planar Multibody Models. Planar multibody
models (MBM) were implemented in SIMSCAPE (version 4.2, The
Mathworks, Natick, MA) as a coupled mass-spring-damper sys-
tem. To develop the human model structure, the Global Human
Body Models Consortium (GHBMC) owned 50th percentile male
FEM was partitioned along the midline in the coronal, sagittal,
and axial planes to create 19–20 coarse elements in each plane.
MBM nodes were placed at the center of each coarse element
(Fig. 1(a)), with each point mass corresponding to a brain node in
the FEM. Masses for each brain node in the MBM reflected the
proportional area covered by each coarse element in the planar
model. Additional MBM nodes were placed at the locations of
known FEM skull elements, and these additional nodes were used
to deliver a prescribed rotational motion to the model. Springs and
dampers connected each brain node to surrounding nodes, while
skull nodes connected to the closest brain node (Fig. 1(b)). For a
given point mass, each spring was assumed to act through the cen-
ter of mass and yielded a force on the point mass

F ¼ K1d1e1 (1)

where F is the force acting along the spring in the direction speci-
fied by e1, and K1 and d1 are the spring constant and displacement
of the spring, respectively. Across all four springs acting on a
point mass, the net elastic force on the point mass was the sum of
the individual spring elements (Ki) in the direction of their respec-
tive unit vectors (ei)

Felastic ¼ K1d1e1 þ K2d2e2 þ K3d3e3 þ K4d4e4 (2)

which can be represented in matrix form

Felastic;x

Felastic;y

" #
¼

K1e1x K2e2x

K1e1y K2e2y

K3e3x K4e4x

K3e3y K4e4y

2
4

3
5

d1

d2

d3

d4

2
6666664

3
7777775

(3)

We implemented damping proportional to K using a damping
factor (b) and the corresponding displacement rates ( _dÞ

Fdamping ¼ bK _d; (4)

or

Fdamping;x

Fdamping;y

" #
¼ b

K1e1x K2e2x

K1e1y K2e2y

K3e3x K4e4x

K3e3y K4e4y

" # _d1

_d2

_d3

_d4

2
666664

3
777775 (5)
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and combined these to develop the governing equations of motion

Max

May

� �
¼ Felastic;x

Felastic;y

� �
þ Fdamping;x

Fdamping;y

� �
(6)

Skull nodes were driven using position-time histories of either
simple or more complex loading pulses (described below)
(Fig. 1(c)). MBM simulations were solved using a Dormand–
Prince method [35] based ordinary differential equation solver.

Three-Dimensional Finite Element Simulations of Nodal
Displacement in Response to Rapid Planar Rotation. Idealized
sinusoidal rotational motions were applied to the human MBM
and the GHBMC FEM to validate the model and evaluate predic-
tive capability, as in Ref. [34]. Briefly, angular velocities and
accelerations from 660 sled, crash, and pendulum tests were ana-
lyzed, and a single sinusoidal acceleration pulse was developed
across the range of impact pulses. Angular accelerations and

velocities ranged from 0.1 to 15 krad/s2 and 1–100 rad/s, respec-
tively. For each kinematic variable, 17 values across the range
were selected. The maximum principal strain (MPS) and nodal
position time history were recorded for each simulation and later
compared to results from the MBM. Impact times were limited to
avoid erroneous portions of the kinematic parameter space (n¼ 75
of 280 total simulations), yielding 205 FEM simulations per ana-
tomic plane (< 60 ms; [15]).

Helmet Impact Testing to Estimate Complex Three-
Dimensional Head Motions. Six-degree-of-freedom (DOF) head
kinematics from laboratory tests involving a helmeted dummy
head-neck were used to estimate complex loadings that may occur
during a helmet-to-helmet impact in American football. Labora-
tory tests were obtained from a larger study involving impacts to
various helmets at multiple speeds and locations [36]. MPS for
these impacts were previously obtained from FEM simulations
using the GHBMC [33]. A total of 96 impacts involving four dif-
ferent helmets, eight locations, and three speeds (5.5, 7.4, and
9.3 m/s) were collected from the previous studies and used in this
study for testing of MBM performance.

Anthropomorphic Test Dummy Reconstructions of On-
Field Head Impacts for Evaluation of Model Fidelity. We used
a set of video-based reconstructions for striking and struck players
in professional football [37] to further compare our MBM results
with FE simulations. Initially based on anthropomorphic test
dummy reconstructions of 31 impact events, these kinematic load-
ing conditions were reexamined in a recent report [38] and
updated to provide more accurate 3D kinematic loading
conditions for 53 specific impact scenarios that encompassed
helmet-to-helmet impacts. We utilized the estimated 3DOF rota-
tional velocity inputs for both the hybrid machine learning-MBM
and the FEM, truncating simulation times to avoid erroneous por-
tions of the kinematic loading profile (<60 ms, [38]).

Validation and Optimization of Planar Multibody Model.
To optimize the stiffnesses and damping factors of all springs in
each multibody model, we divided a planar model into smaller
subdomains (Fig. 2(a)). For each subdomain, positions of the adja-
cent nodes were prescribed to match the corresponding node from
the FEM simulation. The stiffnesses of the springs connected to
the central node in the subdomain were varied over a range of
2000–70,000 N/m (n¼ 250 simulations total per subdomain). For
a given haversine acceleration pulse, the position history of the
central node was compared to the corresponding position history
of the equivalent node in the FEM, and the resulting root-mean-
squared-error (RMSE) of position was computed for each

Fig. 1 Creation of planar MBMs: (a) Human full brain FEM
mesh with overlay of mass-spring-damper system from MBMs;
(b) nodes were connected into triangular elements and used for
calculating true strain; and (c) flow diagram to calculate maxi-
mum principal strains from MBM inputs

Fig. 2 Overview of optimization process for MBMs: (a) planar MBMs were split into subdomains for spring stiffness optimiza-
tion and (b) a range of spring stiffnesses for each subdomain was tested. The mean stiffness of the 10% of cases (dashed
line) with the minimum RMSE was implemented for the subdomain. Springs existing in multiple subdomains were assigned
the mean stiffness from subdomain optimization. (c) Planar MBMs were tested for an optimal range of proportional damping
values for all springs, with 0.15% damping (arrow) used for all springs in all planes. Shading represents 25th to 75th percen-
tiles. (d) Representative plot comparing nodal position histories of the MBM and FEM in the coronal plane.
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simulation. The simulations leading to the smallest 10% of
RMSEs over all simulations were selected, and the spring stiff-
nesses used in this simulation subset were averaged to identify the
optimal stiffness for each subdomain. For springs shared between
two subdomains, the optimal stiffnesses were averaged from the
values derived from each subdomain analysis. To achieve a robust
set of stiffness values that would apply over a broad kinematic
loading, we determined the optimal stiffness values for 15 differ-
ent kinematic loading conditions that spanned the peak changes in
angular velocity (10–50 rad/s) and peak angular accelerations
(0.5–7.9 krad/s2) that occur in helmet impact tests. The resulting
stiffness value for each spring in the MBM was averaged from the
values obtained from these 15 loading simulations.

Following spring stiffness optimization, each full planar model
was run over a range of damping factors, from 0% to 1%. We
compared the RMSE at different damping factors, determining
which damping factors yielded results that were not different from
each other. With this subgroup of damping factors, we selected a
single damping factor and kept it constant across the models.
Resulting models were then compared to the FEM to ensure nodal
position accuracy.

Comparison of Maximum Principal Strain Between Finite
Element and Multibody Model. To evaluate the ability of the
MBM to accurately predict the strain calculated from a 3D FEM,
we computed the Hencky (true) strain tensor components for all
triangular elements that connected triads of adjacent nodes in the
MBM. Using three points in the undeformed (a1, a2, a3) and
deformed (x1, x2, x3) state for each triangle, we computed the
lengths of the triangle sides in both states (ds,dso) and use this to
calculate Green strain (EG)

ds2 � dso
2 ¼ 2EG

ij daidaj (7)

from which we computed Hencky strain (EH)

EH ¼ 1

2
ln I þ 2EGð Þ (8)

where I is the identity matrix. The Hencky strain matrix was used
to compute principal strains for each element in the MBM. The
MPS was determined as the larger of the two principal strains in
that element. The 95th percentile MPS, a common metric for esti-
mating brain injury risk [39], for a MBM was selected from the
list of MPS values from each triangular element in the MBM for a
given input acceleration pulse.

Development of Machine Learning-Assisted Multibody
Model Tool. Once we identified optimal stiffness and damping
values to approximate the finite element response for each planar
MBM, we used ML techniques to improve the correlation
between the MBMs and the corresponding FEM. We created a
regression model in each plane, composed of an ensemble of 30
regression trees trained with the LSBoost algorithm [40]. We used
the 95th percentile MPS computed from the MBM, the peak angu-
lar velocity, and the peak angular acceleration as features in the
ML model to predict the 95th percentile MPS in the FEM. To
determine if ML could predict MPS across the entire parameter
space, all 280 sinusoidal impact traces were utilized, including
those left out of MBM-only analysis. Of the 280 traces in each
plane, 60% (n¼ 168, selected randomly) were used for training
and validation. Models were validated with fivefold cross valida-
tion. Model testing was conducted on the remaining 40%
(n¼ 112) of the sinusoidal traces to analyze its predictive capabil-
ity. Models were labeled according to the dataset used to train
them, e.g., “MBM-ML-sinusoid” refers to ML models trained
using haversine acceleration pulses.

To extend the model for predicting the MPS that occurred when
rotational motion occurred simultaneously across three planes, the

resultant of the maximum principal strain (MPSres) in each plane
(MPSx, MPSy, MPSz)

MPSres ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MPS2
x þMPS2

y þMPS2
z

� �r
(9)

was taken and compared with the MPS from the FEM, consistent
with the previous work [33]. To determine the relative improve-
ment provided by ML-assisted predictions of the brain deforma-
tion compared to the MBM alone, we compared resultant errors of
each approach to the calculation of the FEM. For this comparison,
we computed the relative error

Relative error %ð Þ ¼ jMPSMBM �MPSFEMj
MPSFEM

� 100 (10)

where MPSMBM and MPSFEM are the MPS (95th percentile) from
the MBM and FEM, respectively. Until this point, our ML was
restricted to predicting the mechanical response from simple haver-
sine acceleration pulses. Helmet impacts typically contain accelera-
tion components along three axes and may contain more than one
phase of acceleration. We next used two approaches to evaluate if
ML-assisted MBMs would be well suited for these more complex
acceleration pulses. Our first approach used the optimized, ML-
assisted models for each plane (see above MBM-ML-sinusoid
models), applied the corresponding planar kinematic inputs to each
model, and then estimated the MPS for the complex pulse as the
resultant of the MPS from each ML-assisted planar MBM. Our sec-
ond approach relied only on the loading conditions from the 96
complex professional football helmet impact cases to create a set of
new models (MBM-ML-helmet) that were separately trained and
validated using only these helmet impacts. The advantage of this
second approach was creating a model optimized for actual impact
conditions, rather than possibly losing accuracy by fitting the model
to a broader range of loading conditions that extend well beyond
typical impact conditions. Approximately, 60% (n¼ 57) of the pro-
fessional football helmet impact cases were used to train and vali-
date the models. Models ranged from having three (e.g., MBM
MPS in each plane) to nine features (all three MPS parameters, all
six kinematic parameters in each plane). All models were created
with an ensemble of 30 regression trees trained with the LSBoost
algorithm and validated with fivefold cross validation. Model per-
formance was evaluated using three metrics: RMSE, R2, and mean
absolute error (MAE). The remaining 40% (n¼ 39) of complex
cases were reserved for testing the best performing model from the
training and validation phases.

Generation of Machine Learning-Based Regional Maximum
Principal Strain Predictions. Given that it is likely that injury
risk prediction will be influenced by where the peak brain defor-
mation occurs during an impact exposure, we next created a set of
ML models for each triangular element in the planar MBMs to
predict the corresponding peak FE MPS in the same location. To
avoid possible errors from individual element variations, we
selected a group of FEs that captured 10% of the total triangular
area of each MBM triangle, averaging the MPS from these ele-
ments to develop the output to the regression model. ML models
were not created for triangular MBM elements which (1) did not
have any FEM elements within the calculated radius or (2) had a
centroid in nonbrain matter (e.g., a ventricle or cerebrospinal
fluid). From a possible total of 137 element models, we created
120 element-specific ML models. The MBM- and kinematics-
based features of the element-specific ML models were identical
to those in the model used to predict whole brain MPS.

Results

Optimization of Multibody Model Parameters. Across a
range of brain stiffness values and model subdomains, we

091015-4 / Vol. 142, SEPTEMBER 2020 Transactions of the ASME



observed the residual error in displacements predicted from the
subdomain central node and the closest FEM node (Fig. 2(b)).
RMSE dependence on spring stiffness was variable depending on
the associated subdomain. Stiffnesses did not correlate with nodal
location or boundary proximity. We also found that the error
residuals for each planar multibody model were influenced by the
proportional damping specified for the model (Fig. 2(c)), with
0.15% as the optimal proportional damping factor. Optimization
in each plane resulted in a close match of nodal trajectories to the
motion of equivalent nodes in a FEM subjected to the same rota-
tional input pulses (Fig. 2(d)).

Minimizing the differences in the displacements of comparative
nodes between the MBM and FEM led to optimized stiffness val-
ues for the springs used in each of the planar models (Fig. 3). The
optimized stiffness values spanned the range of possible stiffness
values for each planar model (Figs. 3(a)–3(c)). We observed no
noticeable differences in the range assigned for any of the planar
models, suggesting that the range chosen was sufficient to find
optimal values.

We next compared the predicted peak deformations between
the MBMs and the FE simulations (Fig. 4). Across all three opti-
mized MBMs, we found that the MBMs had generally good
agreement with the FEM MPS values at lower-predicted MPS

values. Coronal and axial plane models showed some variability
in results at higher predicted MPS that was dependent on angular
acceleration in high peak velocity conditions (Figs. 4(d) and 4(f)).
Additionally, the sagittal and axial plane models routinely
underestimated MPS values in high strain conditions (Figs. 4(e)
and 4(f)). We also confirm previous results that MPS is primarily
dependent on peak angular velocity and not acceleration (Fig. 4,
[28]).

Machine Learning Assists Planar Multibody Model Strain
Prediction. Given potential discrepancies between the MBM and
FEM, we next developed a ML model for each plane (MBM-ML-
sinusoid), utilizing three features in each plane and comparing
these features to the corresponding peak strain from the FEM sim-
ulations. With this approach, we observed a significant improve-
ment in the ability to predict MPS from the 3D FEM using the
MBM (Figs. 5(a)–5(c)), achieving an average absolute relative
error of 9.8 6 7.7% between the predicted and actual FEM peak
deformations for each of the three planar MBMs.

Given that head acceleration exposures that may cause mTBI
are rarely restricted to planar loading, we next examined the effec-
tiveness of combining the three planar MBMs to predict the peak

Fig. 3 Optimized values of spring stiffness in multibody models. Spring stiffness values for the (a) coronal, (b) sagittal,
and (c) axial planes. Springs existing in multiple subdomains were assigned the mean stiffness from subdomain optimi-
zation. Springs were color-coded based on spring stiffness and positioned between nodes as displayed in the diagram.
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strain that occurred from more complex, 3D kinematics (Table 1).
We simplified the 3D angular velocity input from the helmet test-
ing data (see methods) into its three separate rotational velocity
inputs, using these rotational velocity inputs for each of the three
planar MBMs. We input these three kinematic loading profiles
into the planar MBM-ML-sinusoid models and calculated the
resultant MPS (Fig. 5(d)). Without utilizing the ML models, we
found this approach did not yield a strong correlation between the
computed peak FE strain for the complex loading profile and
the estimate from the MBM (Fig. 5(e)). However, the resultant of
the MBM-ML-sinusoid models improved our accuracy of predic-
tion to 13.7 6 10.1% (Fig. 5(f)). This model slightly overestimates
full brain MPS compared with the FEM, but shows high correla-
tion across the range of impacts tested. We additionally tested our
models on human impact reconstructions and found similar per-
formance between the pure MBM and the hybrid MBM-ML-
sinusoid models (Figs. 5(g) and 5(h)). The MBM alone performed
better on the human impact reconstructions (Fig. 5(g)) than on the
helmet testing data (Fig. 5(e)). This can be accounted for in that
the magnitudes of the impact kinematics were significantly lower
(one-tailed t-tests, p< 0.001 and p¼ 0.019 for velocity and accel-
eration, respectively) for the human impact reconstructions.
Lower kinematic magnitudes are correlated with lower strains
[29], and the pure MBM performs better on smaller strains
(Fig. 4).

While using ML to correct sources of error in the planar MBM
shows promise in improving predictive capability, ML-based
modeling using impact traces from helmet testing data may show
further accuracy gains. We used a subset of the complex pulse
inputs to train a new ML-assisted model that used the MBM esti-
mates and peak kinematic parameters simultaneously (MBM-ML-
helmet). We tested many feature sets for our MBM-ML-helmet

model and found incorporating both the maximum angular veloc-
ity and acceleration of the impact traces and the MPS output from
the MBM in each plane produced the best accuracy during train-
ing (Table 2). Using individual kinematic inputs (peak angular
acceleration, peak angular velocity) was not as strong as combin-
ing these two features into a ML model (Table 2). However, com-
bining the peak MPS from the MBM with either the peak angular
acceleration or peak angular velocity improved the prediction
accuracy relative to models using either kinematic parameter
alone. We then tested the MBM-ML-helmet model on helmet test-
ing data (Fig. 6(a)) and found that this model performed with an
average absolute relative error of 11.3 6 8.5% with the peak maxi-
mum principal strain computed from the FEM (Fig. 6(b)). As a
final test, we then compared predictions from our three feature
(peak multibody MPS, peak angular velocity, and peak angular
acceleration) ML model using kinematic loading from reconstruc-
tion on helmet impacts in professional football [38]. Similar to the
helmet testing dataset, we found that our predictions were provid-
ing comparable estimates to the peak MPS calculated from the
FEM (average absolute relative error of 16.4 6 10.2%; Fig. 6(c)).
However, as the impact reconstruction dataset expanded below
the range of the training helmet impact dataset, the predictive
MBM-ML-helmet model created a minimal MPS floor of 0.18.

Machine Learning-Assisted Multibody Model Predicts
Regional Strain. Much of the power in a detailed FEM lies in the
ability to accurately represent not only the single highest value of
brain deformation during an impact but strain in regional loca-
tions. As the next step in our analysis, we used a hybrid model-
ML methodology to accurately predict the spatial distribution of
peak principal strains throughout the brain for a given impact.

Fig. 4 Comparison of MBM and FEM performance from sinusoidal impact traces. Cases are colored according to the peak
angular velocity (a)–(c) and peak angular acceleration (d)–(f) of the impact trace. MBM closely predicted FEM MPS at low angu-
lar velocities but showed distinct differences in impact pulses with high angular velocities and low accelerations.

091015-6 / Vol. 142, SEPTEMBER 2020 Transactions of the ASME



Using FE simulations that computed the 3D brain response to real
impact loading, we compared the strains from multibody elements
spanning three adjacent nodes (triangular elements in Fig. 1(b)) in
each of the three planar models to the equivalent FE results. For a
given planar model and helmet impact kinematic inputs, we found
that the correlation between the MBM elements and FEM results
was reasonable. However, after training individual ML models
with feature sets identical to the model used for whole-brain MPS

prediction for each of the elements within a given planar MBM,
the predictions improved significantly. The triangular elements in
the MBM for which we created ML models had an overall abso-
lute relative error of 14.9 6 13.0% (Figs. 7(a)–7(c)) from the cor-
responding elements in the FEM, with the relative error of
individual triangular elements ranging from 8.6 to 25.5%
(Figs. 7(d)–7(f)).

Fig. 5 Machine learning assists MBM predictions of MPS from simple and more complex head acceleration inputs.
(a)–(c) Performance of ML-assisted MBM on planar sinusoidal impact pulses. ML models were trained to predict FEM
MPS using the MBM MPS and peak velocity and acceleration from the sinusoidal impact pulse (MBM-ML-sinusoid). (d)
Flow diagram for evaluating the MBM-ML-sinusoid models with acceleration inputs from helmet impact tests, where i
represents each planar direction. (e) MBM without the assistance of the MBM-ML-sinusoid model underestimates strain
from finite element simulations of the helmet impact tests. (f) MBM-ML-sinusoid model improves the absolute relative
error by correcting maximum principal strain estimates in each plane. MBM alone (g) and MBM-ML-sinusoid (h) models
were then tested on independent human impact reconstructions.
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Discussion

In this paper, we built a MBM to predict the spatial distribution
of strain across a range of impact conditions. We use simulation
data from a 3D FEM of the brain subject to rapid rotation to
develop and optimize this model. Further, we used ML techniques
to improve the accuracy of predicting brain deformations from
this MBM and show that it is possible to develop reasonably accu-
rate estimates of brain deformation, even in response to realistic
impacts, when MBMs are combined with ML algorithms.

This report builds on past studies developing rapid estimates of
peak brain deformation to estimate brain injury risk. The maxi-
mum strain criterion was the first attempt to predict the relative
amount of brain movement and strain from linear acceleration
inputs [20]. By matching impedance characteristics derived from
linear impact tests, the maximum strain criterion was used to esti-
mate the likelihood of serious brain injury with impacts delivered
across different locations on the head. More recently, the concept
of precomputation emerged as a new tool to quickly estimate the

Table 1 Kinematic features of helmet impact tests that show angular velocity and acceleration of helmet impact tests (n 5 96) and
a helmet with matched angular velocity rotational directions

Fig. 6 ML-assisted MBM performance after training on results from helmet impact tests. (a) Flow diagram for evaluating
the ML model trained on helmet impact tests (MBM-ML-helmet), where i represents each planar direction. (b) MBM-ML-
helmet model performance on the testing set of helmet impact acceleration inputs. (c) MBM-ML-helmet model performance
on independent human impact reconstructions. The shaded region lies outside the lower bound MPS of the training set for
the ML model, creating an MPS prediction floor. Error metrics only include points within the bounds of the training set.

Table 2 Feature sets and performance metrics of machine learning models trained on helmet impact testing data

Training Validation

Model features RMSE MAE R2 RMSE MAE R2

MBM MPS 0.036 0.026 0.906 0.054 0.043 0.746
Peak angular velocity 0.033 0.024 0.928 0.059 0.046 0.707
Peak angular acceleration 0.038 0.029 0.897 0.066 0.052 0.617
MBM MPS, peak angular velocity 0.031 0.022 0.933 0.051 0.040 0.785
MBM MPS, peak angular acceleration 0.029 0.020 0.949 0.052 0.038 0.759
Peak angular velocity, peak angular acceleration 0.029 0.020 0.950 0.058 0.046 0.715
All 0.028 0.019 0.953 0.047 0.035 0.823

Features were drawn from each plane, e.g., the MBM MPS model included one feature from each plane. Metrics used to evaluate the training and valida-
tion of the ML models include RMSE, MAE, and correlation coefficient (R2). The model utilizing both MBM-based and all kinematics-based features
(bolded) performed best.
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peak mechanical response at different points throughout the brain
for a given impact [41]. Rather than relying on computing the
exact response to a specific impact condition using a 3D FEM,
precomputation reverses the process and rapidly accesses a data-
base of precomputed 3D simulations to best approximate the peak
mechanical response at any point throughout the brain. Across a
wide range of loading conditions, the precomputation response
shows it is possible to use kinematic descriptors (peak rotational
acceleration, rotational velocity) to provide reasonably good esti-
mates of the peak brain response, as well as the response through-
out different anatomic regions [41]. However, precomputation is
not well suited for complex loading inputs that contain multiple
impact events [42]. In contrast to these past efforts, our MBM
offers the advantage of fast and reasonably accurate forward com-
putation estimates of brain deformation for even complex rota-
tional loading input cases, making this model particularly suitable
for studying diffuse brain injuries.

Our work is most similar to a single DOF model developed
recently to analyze different impact loading conditions quickly as
a substitute for more intensive finite element simulations [33,34].
This type of rapid assessment tool is most relevant in crash protec-
tion and protective headgear design studies, where many different
experimental values (e.g., helmet liner material, thickness; impact
direction) can be tested quickly to determine which variable
would most influence the brain’s mechanical response. However,
in generalizing the entire brain to a single mass-spring-damper,
there is no ability to pinpoint possible areas of the brain that may
be more likely damaged from a given impact. Our model begins
to fill this gap by using a MBM to both predict the maximum
strain experienced by the brain and, if desired, estimate the distri-
bution of strain throughout this simplified model. Knowing the
distribution of strain in the brain may make our model useful to
predict an approximate volume of the brain exceeding specific
strain threshold, matching the cumulative strain damage measure
that has been used in past studies to estimate brain injury risk for
a given impact exposure [28,43–45]. An alternative approach that
can be used in future work is to determine whether similar

accuracy for predicting strains throughout the brain could be gen-
erated by using a combination of predicted peak MPS from a sin-
gle DOF model, and the relevant kinematic loading inputs along
each plane.

A key technique that made our approach accurate was the inclu-
sion of ML algorithms to better correlate the MBM prediction
with the FEM simulation. Early in our analysis, we observed that
discrepancies between the MBM and FEM tended to follow gen-
eral trends in the kinematic loading. For example, we observed
that lower angular velocity conditions showed MBM peak
responses that were similar in magnitude to the FEM simulations,
but this agreement soon disappeared when examining higher
angular velocity conditions. The interrelationships between the
kinematic inputs and MBM output responses are ideally suited for
ML methods, and our significant improvement in correlating
MBM output and FEM simulation shows clearly the benefit of
these techniques. In recent work, similar tools were used to clas-
sify head acceleration exposure data collected with mouthguard
sensors [46]. The goal of this past study was to use part of the data
to train or “learn” the features that would successfully separate
nonimpact and impact events, and to determine how accurate this
algorithm was in classifying a separate set of data that included
both nonimpact and impact events. Using one measure (peak head
acceleration) in this past study poorly discriminated between non-
impact and impact events [46], much like how our MBM model
prediction did not consistently track with FEM predictions. The
ML methods were particularly useful for exploring a feature of
the MBM that is not computed from the simpler single DOF
model [33]—the distribution of maximum principal strains
throughout the brain. By considering both the kinematic loading
features and MBM prediction, we significantly reduced the predic-
tion error and, on average, produced a model that differed by only
10% from the FE predictions.

Our model formulation has five primary limitations. First, we
assumed that the mechanical response from a complex, 3D head
rotation could be approximated by computing the peak strains
from each of three orthogonal acceleration planes individually,

Fig. 7 ML-assisted MBMs to predict regional MPS. Machine learning performance in the (a) coronal, (b) sagittal, and (c) axial
planes. Triangular elements are shaded according to the mean percent relative error. Striped regions were not trained with ML
models. (d)–(f) The average absolute relative error in predicted MPS for regions in each plane.
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and then recombining these into a resultant MPS [33]. Not includ-
ing the potential mechanical interactions across the three planes of
rotational loading is an acknowledged weakness and can be
addressed in the future by developing a 3D MBM. However,
developing the 3D MBM would start to increase the complexity
and computational cost, e.g., roughly maintaining the same ele-
ment resolution that we used in the two-dimensional models
would lead to a 3D MBM of >5000 elements with a significantly
longer solution time. Given the improvement in prediction offered
by incorporating ML in simpler models, we explored the more
computationally efficient path first. A second feature of our model
was that we carefully applied our rotational loading about the cen-
ter of mass for each planar model. Due to the formulation of the
model, the MBM will predict significantly linear movement of
nodes if a linear acceleration is applied. Such linear motion would
conflict with a past work showing little to no brain motion during
pure linear acceleration [15,47–50]. By using a rotation of the
model about its center of mass, these effects were minimized. A
third limitation is that we did not explicitly model the nonlinear
properties of human brain tissue, and therefore may introduce
some uncertainty in our estimates of the brain response to com-
plex loading profiles. Fourth, our ML models are only effective
when used to evaluate data that are similar to the data on which
they were trained, which is a limitation inherent to ML models.
Finally, our correlation of the MBM to FE simulations means that
we are indirectly limited by the accuracy of the FEM. Although
current FEM use much higher resolution now than models from a
decade ago, the predicted deformations are influenced by a num-
ber of factors that include the choice of brain material properties,
the interface between the brain and skull, and the physical size of
the model [34]. We expect that our MBM, in combination with
ML, is sufficiently general to evolve with new features of future
FEM and therefore will continue to provide a rapid assessment
tool for the community.

We recognize that this work is dependent on examining as
many different impact conditions as possible to both capture the
possible exposures that would lead to injury, as well as minimize
the potential predictive errors that occur when using ML
approaches on small datasets. This potential source of error was
minimized, but not eliminated, when we divided the data into a
training set and a test set, and further minimized by using cross-
validation techniques to optimize the prediction from the machine
learning algorithms. For human-based FEMs, we expect that our
efforts to predict MPS in realistic impacts would improve with the
addition of more reconstruction cases, and these are under contin-
ual development in the field [47,51–53]. Despite the drawback of
using a limited number of simulations to develop our models, we
are encouraged by the results from our current efforts.

In a larger scope, we expect the continued improvement of this
model will offer an opportunity to advance helmet designs and
player safety simultaneously. As a modeling tool, this will give
helmet designers an added ability to estimate the possible benefit
of any new design feature quickly during prototype testing.
Although there are new computational models that can be used to
evaluate new helmet designs in silico [54], these models may
have difficulty capturing all of the new features in materials and
shell structure that could be examined directly with helmet proto-
types. Likewise, the higher resolution of the MBM may allow
designers to focus on specific regions of the brain that are com-
monly damaged in concussive brain injury [6] when considering
new helmet designs. For player safety, this tool can help better
interpret head acceleration exposures measured with helmet, ear-
piece, or mouthguard-based accelerometer systems [55–58]. Cur-
rent algorithms to predict injury risk are not based on any estimate
of the brain mechanical response and suffer from low specificity
[58]. Although the accuracy of these head exposure technologies
may explain some of the low specificity [55,59,60], one additional
factor is the inability to consider the effect of the exposure on the
brain itself. Our tool would fill this need and possibly improve the
ability to better separate safe from unsafe impacts.
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