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ABSTRACT: Characterizing large-scale structural transitions in biomolec-
ular systems poses major technical challenges to both experimental and
computational approaches. On the computational side, efficient sampling of
the configuration space along the transition pathway remains the most
daunting challenge. Recognizing this issue, we introduce a knowledge-based
computational approach toward describing large-scale conformational
transitions using (i) nonequilibrium, driven simulations combined with
work measurements and (ii) free energy calculations using empirically
optimized biasing protocols. The first part is based on designing
mechanistically relevant, system-specific reaction coordinates whose
usefulness and applicability in inducing the transition of interest are
examined using knowledge-based, qualitative assessments along with
nonequilirbrium work measurements which provide an empirical framework
for optimizing the biasing protocol. The second part employs the optimized biasing protocol resulting from the first part to
initiate free energy calculations and characterize the transition quantitatively. Using a biasing protocol fine-tuned to a particular
transition not only improves the accuracy of the resulting free energies but also speeds up the convergence. The efficiency of the
sampling will be assessed by employing dimensionality reduction techniques to help detect possible flaws and provide potential
improvements in the design of the biasing protocol. Structural transition of a membrane transporter will be used as an example to
illustrate the workings of the proposed approach.

1. INTRODUCTION

With relentless advances in supercomputing, and rapid
expansion of the number of structurally characterized macro-
molecules, molecular dynamics (MD) has evolved into a
standard tool for studying biomolecular phenomena.1,2 While
experimental techniques often provide either a high-resolution
static or a low-resolution dynamic picture of the molecular
phenomena, MD simulations can violate this “uncertainty
relation” between spatial and temporal resolutions and provide
a dynamic, yet detailed view at an atomic level.3,4 Conventional
MD simulations, however, suffer from poor conformational
sampling, preventing one from achieving an accurate
description of conformational ensembles and free energy
landscapes. Despite the ever-increasing capability of super-
computers, the time scale limitation remains a great challenge;
the typical time scale of an atomistic MD simulation of
biomolecular systems is much smaller than those required to
describe most biologically relevant molecular phenomena. For
instance, many biological processes, e.g., active membrane
transport, which rely on large-scale conformational changes of a
protein, occur on time scales of milliseconds or longer.5

Over the past few decades, various enhanced sampling
techniques have been formulated to address the time scale
problem in biomolecular simulations.6−16 These methods are
often tested initially on relatively small representative molecular

systems, e.g., dialanine peptide.10,17−21 A handful of these
methods are used routinely for the study of more realistic
biomolecular systems. From a practical perspective, however,
applying many of these advanced methods to complex
biological systems is challenging.
Ideally, MD simulations can be used to characterize

thermodynamic and kinetic properties of a biomolecular
system/process. From a numerical perspective, these quantities
require certain integrations over a high-dimensional phase
spaceor configuration space, with making certain assump-
tionswhich in turn require a large set of independent and
identically distributed samples. One can also reduce the many-
dimensional atomic coordinate space into a much smaller space
simply by considering the constraints associated with the steric
factors (e.g., covalent bonds).22 Nonetheless, the curse of
dimensionality remains unbeatable unless additional assump-
tions or simplifications are made.
One particular premise that many free energy calculation and

path optimization methods rely on is the existence of a low-
dimensional manifold on which lie most of the relevant
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conformations visited by a system during a structural transition,
i.e., an intrinsic manifold embedded in the atomic coordinate
space.22,23 The intrinsic manifold premise relies mostly on the
high cooperativity of the biomolecules; the motions of different
parts of a protein, for instance, are correlated along the
transition pathway(s).22

The identification of the “true” reaction coordinate (or the
committor function24) which, in principle, parametrizes the
intrinsic manifold becomes particularly important for inferring
kinetic information from configurational integrations. Note that
one may need to make several assumptions with regard to the
committor function (e.g., velocity independence) and the
transition tube (e.g., localization) in order to connect a
computable potential of mean force (PMF) to transition
rates.25

In the context of PMF calculations, the task of identifying the
intrinsic manifold is often done in an ad-hoc manner. In many
free energy methods, e.g., umbrella sampling (US)16 or its
nonequilibrium variations (such as many flavors of driven6,7 or
adaptive-bias techniques10,26−29), a low-dimensional collective
variable is defined based on the a priori knowledge of the
system. The assumption is that biasing the system along a
“good” reaction coordinate will result in samples that are
distributed (although not statistically correct, due to the bias)
along the correct transition tube.
In order to identify the intrinsic manifold more systemati-

cally, one may use a statistical learning method such as principal
component analysis (PCA),30 isomap,22 or diffusion map.23,31

Dimensionality reduction techniques such as PCA and its
nonlinear counterparts are often used to analyze MD
trajectories.22,23,30,32 These have also been used in conjunction
with enhanced sampling techniques such as metadynamics,33,34

adaptive biasing force,35 and US.18

Many techniques take advantage of the intrinsic manifold
premise without an explicit use of a conventional dimension-
ality reduction technique. For instance, path-optimization
techniques (e.g., different flavors of the string method11,17,36)
or path-optimizing free energy techniques37−39 rely on the
existence of a localized transition tube. These methods simplify
the choice of collective variables by allowing the use of many
atomic coordinates or collective variables since the sampling is
assumed to converge to the relevant regions of the
configuration space (i.e., the transition tube).
The approach discussed here can be categorized as an ad-hoc

dimensionality reduction method in that the reaction
coordinates and biasing protocols are designed through an
empirical search. Moreover, our approach heavily relies on our
knowledge of the system under study in order to limit the
conformational sampling to the relevant regions of the phase
space while keeping the calculations reliable and accurate. The
approach and the underlying methodology are particularly
tuned toward systems that undergo large-scale and complex
conformational changes. We take advantage of available
structural information for the system (e.g., the crystal structures
of the end states even if they only provide partial information
on the atomic coordinates) to identify a set of system-specific
reaction coordinates that can be used to induce conformational
transitions. By combining several techniques within an
empirical framework, the proposed approach could narrow
the gap between advanced sampling techniques and realistic
applications. The general framework of this approach is based
on two equally important and novel elements: (i) empirical
design of nonequilibrium driving protocols and (ii) converting

the optimized nonequilibrium protocols into equilibrium
biasing protocols for free energy calculations.
This paper is organized as follows. In section 2, we discuss

our proposed approach with an example illustrating the
workings of the approach. Section 3 will detail some of the
technical aspects of the approach for the interested
practitioners, while the last section is reserved for a brief
summary and conclusion.

2. COMBINING NONEQUILIBRIUM AND EQUILIBRIUM
APPROACHES

It is believed that functionally important, large-scale conforma-
tional motions of proteins are associated with a hierarchy of
substates and time scales.40 Consider a complex conformational
transition in a rugged free energy landscape involving multiple
metastable states and several/many characteristic time scales.
Under these conditions, any MD-based quantification of
thermodynamic properties such as free energy goes hand in
hand with some simplification (e.g., selecting a few reaction
coordinates). Even in methods that allow for simultaneous
application of many collective variables (e.g., string meth-
od17,36), the choice of initial conformations/pathways is crucial
to what the final results converge to (e.g., free energy or
transition pathway).
Recognizing these issues, we propose an approach that takes

into account, in a balanced manner, all the factors determining
the final results including (i) the reaction coordinates used for
biasing, (ii) the initial conformations/pathways used to initiate
the sampling, (iii) the enhanced sampling techniques, and (iv)
the posthoc analysis methods used to quantify the results and
estimate the uncertainties.
Figure 1 illustrates the overall flow of our proposed

approach. Briefly, there are multiple mostly qualitative (I)

and mostly quantitative (II) stages involved. Our approach
hinges on efficiently combining these stages in a balanced
manner. Although an accurate quantitative result such as a free
energy profile is much more desirable than a qualitative
description, a reliable free energy map is often too costly to be
obtained. On the other hand, the more we know about a system
and its approximate free energy landscape, the better we can

Figure 1. Proposed approach for the study of large-scale conforma-
tional changes in proteins. (I) Qualitative component using non-
equilibrium driven simulations (left panels). (II) Quantitative
component using free energy calculations (right panels). Although
the conclusions drawn from the analysis of the results (stages I.3 and
II.3) may be used at any point (depending on the assessed accuracy),
iterating the process improves the accuracy of such conclusions.
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design an efficient free energy simulation. Therefore, one may
improve the efficiency of free energy simulations by taking
advantage of qualitative (but reliable) information on the
system. In particular, experimental clues combined with fast
nonequilibrium techniques provide an appropriate framework
for this approach.
Given the complexity of conformational free energy

landscapes, an iterative sampling approach seems necessary in
which the results of each iteration (from imperfect sampling)
are used to design better reaction coordinates, to generate
better initial conformations, and to better sample the relevant
regions of the configuration space.
2.1. Nonequilibrium Driven Simulations. One of the

fastest ways to generate a physically meaningful pathway
between two known conformations for a molecular system is to
use a time-dependent external force. This approach is employed
most prominently in simulation techniques such as steered7 and
targeted6 MD which use a harmonic restraint with a center
(defined in a collective variable space) moving according to a
given schedule.
An important disadvantage of these methods is that the

resulting trajectories are “far from equilibrium;” these methods
often violate laws of equilibrium thermodynamics as well as
those laws formulated for local-equilibrium, near-equilibrium,
and steady-state nonequilibrium thermodynamics (e.g., Ons-
ager reciprocity relations and fluctuation−dissipation theo-
rem41). In other words, inferring information with regard to the
behavior of the system at equilibrium from trajectories
generated by steered or targeted MD is not straightforward.
Fortunately, externally driven, far-from-equilibrium systems too
follow certain laws such as “nonequilibrium work rela-
tions.”42−45

Nonequilibrium work relations are powerful tools in
describing the behavior of systems driven far from equilibrium
by the external variation of a parameter. In an MD simulation, a
time-dependent biasing potential defined in terms of a
collective variable can be used to drive the system from an
initial state toward a final one. Here, the collective variable acts
as a control parameter, varied according to a protocol. Methods
such as steered7 and targeted6 MD, therefore, fall into the
category of nonequilibrium driven simulations.
Nonequilibrium work relations have been used in many

applications to numerically estimate the free energies based on
the nonequilibrium work measurements;46,47 however, the use
of these relations is not limited to free energy calculations. In
principle, nonequilibrium work relations can be used to
estimate any equilibrium macroscopic quantity from non-
equilibrium driven trajectories.43,48 Due to the sampling
limitations, such a generalization is not necessarily of practical
use; however, one may find certain quantities that can be
estimated at a modest computational cost.
As an example, one may estimate the relative transition rates

of competing pathways using nonequilibrium work measure-
ments.49−51 The relative transition rates of different paths can
be used to estimate their relative importance without requiring
an accurate estimate of the whole free energy landscape.49,51

Suppose that different “hypothetical” mechanisms associated
with a conformational transition can be attributed to distinct
transition tubes in a particular collective variable space. The
relative importance of each tube can be estimated using
nonequilibrium work measurements based on biasing protocols
that guide the system via these transition tubes.49−51

Along the same lines, one may measure the nonequilibrium
work along different transition pathways, not for a quantitative
description of the transition rates but rather to simply assess, in
a qualitative and relative manner, the practicality of different
nonequilibrium protocols.47,52,53 This semiquantitative ad hoc
work analysis is one of the novel features of our nonequilibrium
approach that will be discussed here. However, we can only
provide some general rules on how to employ the method and
how to improve the biasing protocols. The approach is
intrinsically empirical and knowledge-based and will not result
in any improvements without some a priori knowledge of the
molecular system under study.

2.1.1. Assessment of Biasing Protocols Using Non-
equilibrium Work Measurements. In principle, the probability
of each transition tube (which is proportional to its associated
transition rate) can be measured using work measurements
given adequate sampling.49,51 However, the presence of distinct
work trends between the most relevant transition tube (which
is dominant when the system is not biased) and other
hypothetical transition tubes (which are disfavored when the
system is not biased) can simplify the calculations.47,52−54 Note
that due to the nonequilibrium nature of the simulations, one
cannot make reliable statements based on single trajectories.
However, the trend of the work (determined from repeated
simulations) can be used to compare different transition paths/
mechanisms.
In order to explore the transition tubes, one may define a set

of relevant reaction coordinates to reduce the configuration
space to a coarse coordinate space with a clear distinction
between different states of the system including initial, final,
and different hypothetical intermediate states. Let us assume
that, using these reaction coordinates, one designs two
nonequilibrium driven protocols 1 and 2, each sampling a
particular transition tube by driving the system from state A to
B through transition tubes 1 and 2, respectively. Consider a
scenario in which there is a clear trend in the work profiles
generated by the two protocols such that protocol 1 always
results in a nonequilibrium work profile whose largest peak is
lower than the largest peaks of all work profiles generated by
protocol 2. Under such a scenariowhich is not uncommon
one may quickly identify which hypothetical transition
mechanism is worth investigating (mechanism 1 in this case).
We note that any parameter involved in the biasing protocol

(e.g., simulation time) can influence the trend of the work. One
can simplify the comparison by keeping some of these
parameters constant between different protocols associated
with different mechanisms/pathways. Ideally, only one
“explanatory” variable55 should be varied among the protocols
to avoid complications in the comparison. In other words, the
protocols should be designed such that they all differ only in
one parameter. Here we consider the trend of the work as a
“response” variable;55 any parameter that varies between
different biasing protocols could be generally considered a
candidate “explanatory” variable which might substantiate the
difference in the work trends. For instance, if the two protocols
use two essentially different collective variables (e.g., a distance
versus an angle), the comparison will be nontrivial; the different
work trends could be due to the way the collective variables are
defined (not due to the difference of the paths taken).
Using different collective variables exploring similar pathways

will be justified if it provides a way of empirically finding the
optimum protocol to sample a given pathway. Therefore, one
may take advantage of nonequilibrium driven MD and
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nonequilibrium work relations in an empirical manner, in order
to set the stage for a more systematic investigation. In section 3,
we will discuss a few typical techniques for fast comparison of
candidate protocols that are not necessarily designed to
represent different transition tubes. We show how non-
equilibrium work measurements can be used to assess the
quality of a protocol and more importantly to compare it to
other protocols in order to define an optimal set of collective
variables and/or force constants.
2.2. Equilibrium Free Energy Calculations. With a

multidimensional free energy landscape calculated, one can
identify and quantify the free energy minima and saddle points.
Unfortunately, this is currently too ambitious of a goal for an
MD-based study of large-scale conformational changes. Most
free energy calculations thus effectively sample a localized
region of the configuration space. Using a knowledge-based
approach in choosing the biasing protocol involved in the
sampling and employing an empirical work minimizer in order
to optimize the biasing protocol may increase the chance of
sampling along the “relevant” transition tube. The idea is not
exclusive and may be combined with other approaches. For
instance, our best nonequilibrium trajectory can be relaxed into
an even more optimized pathway using the string method.11,17

Note that the choice of the initial pathway is crucial to the
convergence of path-finding algorithms such as the string
method.56−58

With appropriate changes, a nonequilibrium driven scheme
can be converted into a free energy calculation method. For
instance, repeating the nonequilibrium driven simulations
(preferably in a bidirectional scheme) may be used to
reconstruct the PMF.44,59 Unfortunately, this approach is
often associated with a slow convergence. We recently
proposed an adaptive-bias variation of nonequilibrium driven
MD which takes advantage of an iterative adaptive biasing
potential in order to speed up the convergence.60 Nonetheless,
here we will base our approach on the most popular free energy
calculation method, i.e., US.16 Due to its similarity to steered
MD, an US protocol can be conveniently designed based on a
fine-tuned steered MD protocol by replacing the time-
dependent driving potential with a time-independent biasing
potential, as will be discussed in more detail in section 3.
2.2.1. Bias-Exchange Umbrella Sampling. US16 combined

with the weighted histogram analysis method (WHAM)61 is a
standard free energy calculation scheme for reconstructing the
PMF along a given reaction coordinate. Employing the method
to large-scale transitions, however, is often challenging, and
simple biasing protocols (e.g., using the-root-mean-square
deviation (RMSD) from a target structure as the reaction
coordinate) usually produces unreliable estimates for free
energies. By using system-specific reaction coordinates and
sampling around reliable transition pathways (obtained using
the approach described above), one may significantly improve
the sampling.
Sampling a continuous portion of the configuration space

along a reaction coordinate becomes particularly more likely
when US is used in conjunction with a replica-exchange
scheme,8,9 termed here bias-exchange umbrella sampling
(BEUS)54 (also known as window-exchange or replica-
exchange umbrella sampling9,62,63).
In replica-exchange MD,8,9 each replica is associated with a

different value of a given property whose periodic exchange
between the replicas based on an “exchange rule” accelerates
the exploration of the phase space. Temperature is the most

commonly used property to exchange between the replicas
which accelerates the sampling of all degrees of freedom
somewhat blindly. Alternatively, one can exchange, in a time-
dependent64 or time-independent62 manner, biasing potentials
in a “bias-exchange” scheme to specifically accelerate the
sampling of the degrees of freedom most relevant to the
transition of interest. Temperature- and bias-exchange simu-
lations could also be combined to yield a better con-
vergence.47,65−68

The mixing of the replicas in the bias-exchange method
guarantees the continuity of the conformational space sampled
(at least for each individual replica), thereby yielding a more
reliable free energy profile for the process. Note that due to the
large number of degrees of freedom in most biomolecular
systems, it is virtually impossible to sample a continuous
conformational space if the simulations were to run
independently as in a conventional US scheme.
The efficiency of the BEUS simulations depends on (i) the

definition of collective variables, (ii) the choice of initial
conformations, and (iii) the choice of the window/umbrella
parameters (i.e., centers and force constants). The choice of the
collective variables (and initial conformations) can be
improved, e.g., by using nonequilibrium simulations as
described above. The umbrella parameters can be optimized
iteratively using short runs with the goal of achieving roughly
similar rates of exchange between neighboring replicas. With
certain assumptions, one may also use a more systematic
approach to adjust these parameters.62,63,69,70 Along with the
factors mentioned above, the choice of the exchange rules plays
a role in the efficiency of the BEUS scheme as discussed
elsewhere.71,72

2.2.2. Reweighting and Analysis of BEUS Data. The
trajectories generated by (BE)US MD simulations are biased by
a known biasing scheme that can be used to reweight the
samples, recover the correct statistics, and extract (by proper
integration) information with regard to the transition
mechanism. However, a suboptimal reaction coordinate for
biasing can easily result in a poor sampling and unreliable
information. It is thus important to assess the quality of
sampling68,71,73,74 before interpreting the results.
The conventional US/WHAM approach16,61 often assumes a

priori knowledge of a good reaction coordinate which is used
for both biasing and PMF reconstruction. However, in the
absence of a perfect reaction coordinate, the sampling in the
degrees of freedom other than the one used for sampling is
important for both determining the reliability of the results and
designing better reaction coordinates. The data collected from
(BE)US simulations along an imperfect reaction coordinate
may not give us an accurate free energy profile, but it can be
used, particularly in an iterative manner, to arrive at better
reaction coordinates and thus reliable free energies.
Given the computational cost of the (BE)US simulations, it

is important to recognize that a flexible analysis framework may
be necessary in order to (i) maximize the amount of acquired
information on the transition mechanism and (ii) detect
sampling flaws and possibly identify better reaction coordinates.
In both cases, the sampling along the degrees of freedom
orthogonal to the one used for biasing plays a key role. Some of
these degrees of freedom are too slow or too fast; the former
cannot be identified, and the latter will be sampled properly.
Special care must be taken, however, with regard to those
events which occur neither too slowly nor too quickly. The
degrees of freedom associated with such events will be sampled
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poorly, thus needing to be identified and taken into account in
interpreting the results.
One of the techniques that simplifies much of the analysis

required to derive information on the degrees of freedom other
than the one used for sampling is the nonparametric
reweighting,75−78 which assigns a weight to each individual
conformation sampled. A weighted histogram or other
weighted statistical analysis methods can thus be performed
once the weights are estimated. The PMF (or weighted
histogram) can be reconstructed in terms of any arbitrary
measurable quantity; however, the PMF reconstructed along a
poorly sampled coordinate will not be accurate. Assessing the
quality of sampling along different coordinates is thus
important in order to (i) determine the reliability of the results
and (ii) diagnose the sampling. For a discussion on several
variations of nonparametric reweighting schemes, see section
S1 in the Supporting Information. These variations include
both maximum-likelihood75,77 and Bayesian78 estimators.
One important set of reaction coordinates to investigate is

the knowledge-based set as defined in stage I.1 (Figure 1). One
may measure those collective variables that potentially
represent significant mechanistic features. The PMF along
such reaction coordinates is naturally only accurate within the
well-sampled region. An unweighted histogram/PMF can be
used to readily distinguish between well-sampled and poorly
sampled regions. Note that the importance of the continuous
sampling is evident here as a gap along any reaction coordinate
(not just the one used for biasing) indicates unreliable statistics.
A systematic approach in detecting discontinuities (or outliers)
is clustering, e.g., using pairwise RMSDs. A relatively less costly
clustering approach involves PCA79 (based on the biased BEUS
samples). A pairwise clustering can then be performed using a
metric defined only based on the significant PCs (i.e., those
with significant contributions to the variance).
In an n-dimensional BEUS simulation, the first n PCs are

likely to correlate well with the n reaction coordinates used for
biasing. Detecting more than n significant PCs indicates the
existence of slow degrees of freedom orthogonal to the reaction

coordinates used for sampling. Note that for reliable sampling,
all slow degrees of freedom must be included in the biasing
scheme. A similar idea has been introduced by Ferguson et al.
based on a nonlinear dimensionality reduction technique.18

The importance of the degrees of freedom orthogonal to the
order parameter for efficient and robust sampling has been
known for quite a while, which is related to the so-called
“Hamiltonian lagging” problem.80 Our approach to addressing
this issue is to iteratively (i) detect hidden free energy barriers
which are in the conformational space orthogonal to the
reaction coordinate and (ii) incorporate the slow orthogonal
degrees of freedom in the biasing protocol. An alternative
approach is the “orthogonal space random walk”81−83 (or more
recently “orthogonal space tempering”84) which simultaneously
enhances the sampling in the reaction coordinate space and its
generalized force space.

2.3. ExampleLarge-Scale Structural Transition in a
Membrane Transporter. In order to illustrate the effective-
ness and some of the technical aspects of the methodology
introduced here in the context of a concrete biomolecular
system, we will take advantage of a set of simulations we have
recently performed on a membrane transporter in an explicit
lipid/water environment.54 We set out for an extensive search
on conformational ensemble and structural transitions of
MsbA, a bacterial exporter of the ATP-binding cassette
(ABC) superfamily.54 We note that our recent report on this
membrane transporter54 did not describe the methodological
details of the approach (the subject of the present paper) and
only emphasized our findings from a mechanistic perspective
and in the context of the function of ABC exporters. Here, we
provide in-depth discussion and analyses that were mostly
omitted in our recent report due to the difference in the scope
and emphasis.54

An ABC exporter consists of two nucleotide-binding
domains (NBDs) and two transmembrane domains
(TMDs).85 The NBDs dimerize upon ATP binding and
dissociate due to its hydrolysis.86,87 MsbA is a unique ABC
exporter in that its structure has been crystallized in three

Figure 2. Cartoon representation of MsbA crystal structures in OF, IF-c, and IF-o conformations along with the definitions of reaction coordinates
α, β, and γ. The panels on right show the projections of the OF (square), IF-c (circle), and IF-o (triangle) crystal structures onto (α,β), (α,γ), and
(β,γ) spaces. Color Code: NBDcis/trans is colored yellow/green, and TMD bundles B1 (TM1,2

cis , TM4,5
trans helices), B2 (TM1,2

trans, TM4,5
cis ), B3 (TM3,6

cis ), and B4
(TM3,6

trans) are colored blue, red, yellow, and green, respectively. In the OF conformation, the roll axes of bundles B1/B4 (Gβ
cis) and B2/B3 (Gβ

trans) are
colored blue and red, respectively, to illustrate the definition of β. In the IF-o conformation, the roll axes of bundles B1/B3 (Gα

cis) and B2/B4 (Gα
trans)

are colored blue and red, respectively, to illustrate the definition of α. The roll axes of NBDcis/trans in the OF and IF-c conformations are colored
yellow/green to illustrate the definition of γ.
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distinct conformations, including an outward-facing (OF) and
two inward-facing (IF) conformations with varying degrees of
cytoplasmic opening, termed IF-closed (IF-c) and IF-open (IF-
o), respectively. The OF structure was solved to 3.7 Å (PDB:
3B60), while both IF structures are solved at a lower resolution
(4.5 Å), therefore allowing for only Cα positions to be
determined (PDB: 3B5X and 3B5W).88

Experimental evidence supports an IF↔OF transition during
the transport cycle87,89 such that the transporter alternates
between IF and OF states (“alternating access” mechanism90);
however, there is no consensus on what exactly these two states
are and what intermediate conformations are involved. From a
computational perspective, conventional unbiased MD simu-
lations cannot be used directly to study the IF↔OF transition,
due to their limited time scales. However, the crystal structures
of MsbA provide a great framework for the study of the
transition by designing relevant collective variables and biasing
protocols inducing the transition.
2.3.1. Reaction Coordinates. As pointed out earlier, we can

use any source of information on the end states to design global
reaction coordinates that best capture the molecular motions
involved in a transition. For the case of MsbA, the available
crystal structures88 provide such a source of information.
Although the crystal structures of MsbA (IF-c and IF-o, in
particular) are of low resolution, they can be used to identify
the bundling of the helices and their orientations in different
states, based on which we defined the following reaction
coordinates: α, the relative orientation of the TMD helices
describing the cytoplasmic opening; β, the relative orientation
of the TMD helices describing the periplasmic opening; γ, the
relative orientation of the two NBDs (see Figure 2). Note that
α and β are associated with the TMD conformational changes
and can be used to induce opening of the cytoplasmic side and
closing of the periplasmic side, respectively. On the other hand,
γ is associated with the NBD conformational changes and can
be used to induce the twisting of the NBDs.
Triplet (α,β,γ) describes the global conformational features

of the MsbA transporter in a 3D coarse coordinate space. One
may think of many other collective variables to be used for
biasing, e.g., the distance between the mass centers of NBDs
(dNBD). dNBD was actually used in some of our simulations as
well, but to simplify our discussion, we will only focus on α, β,
and γ reaction coordinates here.
2.3.2. Nonequilibrium Protocols. We used the equilibrated

OF structure of apo MsbA to initiate several nonequilibrium
driven MD simulations using different protocols driving the
protein toward the IF-o state, including conventional targeted
MD simulations and orientation-based driven simulations. We
have previously reported on “one-stage” targeted MD
simulations based on the IF-o structure.54 Here, we used
“two-stage” targeted MD simulations, targeting the OF state
toward IF-c in the first stage, and IF-c state toward IF-o in the
second stage. Figure 3 compares the results of a typical one-
stage targeted MD protocol (red) to its two-stage counterpart
(blue).
In the trajectories resulting from the one-stage targeted MD

protocols the cytoplasmic opening occurs consistently prior to
the closing of the extracellular side resulting in a channel-like
intermediate that is simultaneously open to both cyto- and
periplasm (see Figure 3B). This clearly contradicts the
alternating access mechanism and questions the relevance of
these trajectories (knowledge-based assessment). In addition,
the final conformation of one-stage targeted MD simulations is

found to be unstable in subsequent equilibrium simulations,
during which the structure opens to both cyto- and periplasmic
sides.
The two-stage targeted MD simulations typically result in

better trajectories in that (i) the intermediate conformation
does not violate the alternating access mechanism (see Figure
3B) and (ii) the equilibration of both final and intermediate
conformations (i.e., the ones at the end of first and second
stages) results in locally stable conformations. More interest-
ingly, one can identify a clear difference in the trend of
nonequilibrium work of the two protocols: two-stage
simulations always require less work than one-stage ones
when the same simulation time is used (see Figure 3D for an
example).
Introducing the IF-c structure as an intermediate in the

targeted MD simulations proved to be helpful in improving the
protocol both qualitatively (more consistent with the
alternating access mechanism) and semiquantitatively (based
on nonequilibrium work). Nevertheless, the amount of
nonequilibrium work still appears to be too high, and it is
unlikely that the resulting trajectory provides a reliable pathway
that can be used for further quantitative studies, especially for
free energy calculations. We thus use a more systematic
approach to sample the reaction-path ensemble of this complex
transition.
We use different combinations of α, β, and γ reaction

coordinates to induce the OF → IF transition. One may design
many different biasing protocols using these reaction
coordinates. Assuming the major changes in α, β, and γ occur
in discrete stages, a systematic study will be feasible with only
six distinct classes of protocols (all possible orders of these
reaction coordinates). The results show that one particular
biasing order (β → γ → α) consistently requires less amount of
work than others. Interestingly, comparing this protocol with
RMSD-based protocols reveals great improvement. Figure 3
compares examples of trajectories obtained from our optimum
orientation-based protocol and targeted MD simulations.
Although the nonequilibrium work provides a semiquantita-

tive tool for comparing different protocols, a knowledge-based

Figure 3. Comparison of the results of one-stage (red) and two-stage
(blue) targeted MD protocols with our (α,β,γ)-based protocol (gray).
The three 160 ns trajectories are projected onto the
(RMSDIF‑o,RMSDIF‑c), (α,β), and (β,γ) spaces in panels A, B, and
C, respectively, while panel D shows the nonequilibrium, transferred
work measured along the trajectories. Note that square, circle, and
triangle represent OF, IF-c, and IF-o crystal structures, respectively.
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assessment of the resulting trajectories is necessary, particularly
if one decides to perform free energy calculations based on
these trajectories. For instance, it is quite likely that a protocol
involving a short nonequilibrium simulation results in internal
conformational distortions such as helix unwinding. This
artifact was observed in some of our shorter simulations (not
shown in Figure 3). In addition to the secondary structure, one
may monitor other conformational features of the internal
domains for a knowledge-based assessment (see Figure S3 for
examples). We note that certain local conformational changes
(e.g., a side-chain flipping) may be achieved only through
further relaxation of conformations during an unbiased or
biased equilibrium simulation (e.g., during follow-up BEUS
simulations).
2.3.3. Free Energy Calculations. One may use our optimum

biasing protocol and its resulting nonequilibrium trajectory to
initiate a set of BEUS simulations to estimate the PMF. One
may think of this process as transforming a nonequilibrium
work profile which is dominated by a dissipative term (e.g., the
gray line in Figure 3) to an equilibrium free energy profile.
Within the methodological framework introduced in this paper,
equilibrium free energy calculations can be thought of as the
final step in the process of removing the dissipative term from
work. In other words, nonequilibrium protocol optimization
reduces the amount of dissipative work and makes the
subsequent free energy calculations more efficient and less
costly; however, the optimized work profiles are likely to be
dominated by a dissipative term.
Given the multistage nature of our MsbA protocol, we set

out to perform free energy calculations only on the final stage
(i.e., conformational change along α between IF-c and IF-o
conformations). These calculations are particularly useful in
identifying the resting state of IF MsbA by characterizing the
degree of cytoplasmic opening for the nucleotide-free apo
MsbA in its IF state. Figure 4 compares the PMF along α
between the values associated with IF-c and IF-o crystal
structures88 (i.e., αIF‑c ≈ 16° and αIF‑o ≈ 48°, respectively) to
the work profiles associated with the nonequilibrium
simulations discussed above (i.e., one-stage and two-stage
targeted MD as well as the optimized protocol) as plotted
against α and offset by the work at αIF‑c ≈ 16°. Here, the PMF
was estimated from BEUS MD free energy calculations along α
as the reaction coordinate using 22 replicas each running for 24
ns, with degrees of opening ranging from 13° to 49° in the α
space.
Figure 5A shows the reconstructed PMF along α within the

entire sampled range. There exists a local minimum around α ≈
16° (the value associated with the IF-c crystal structure), while
no free energy basin is discernible around α ≈ 48° (the value
associated with the IF-o crystal structure88), suggesting that the
large opening of the cytoplasmic end might be an artifact of
crystal contacts. Nonetheless, the deepest minima in the α
space are in the 26−32° range forming a basin that is associated
with an IF conformation resembling the crystal structures of a
homologous transporter protein (P-glycoprotein),91−93 which
are obtained at higher resolutions. The overall picture emerging
from the PMF calculations along α represents MsbA as a fairly
flexible structure in its resting state in the absence of
nucleotides and substrates. We note that while these
observations support the relevance of our PMF results, we
cannot rule out the possibility of a more stable open
conformation corresponding to the IF-o crystal structure
which is not captured in our sampling.

PMF in Other Dimensions. Although α is the single most
relevant reaction coordinate (among the ones designed) to
capture the conformational changes of MsbA associated with
the opening of the cytoplasmic side in the IF state, more
information can be extracted from the BEUS simulations
performed along α by reconstructing the PMF along other
reaction coordinates. Among them, γ is of particular interest,
not only from a mechanistic perspective but also to assess

Figure 4. Nonequilibrium, transferred work required by 160 ns MD
simulations performed using one-stage (red) and two-stage (blue)
targeted MD as well as the optimized protocol (gray), as plotted
against α and offset by the work at αIF‑c ≈ 16°. The work profiles are
obtained from the same simulations described in Figure 3, and shown
only within the α = 16−48° (≈ αIF‑c−αIF‑o) range. Inset: Non-
equilibrium work obtained from the optimized protocol (gray)
compared to the PMF along α as obtained from the BEUS simulations
(see Figure 5). Note that the circle and triangle represent crystal
structures IF-c and IF-o, respectively.

Figure 5. PMF of apo MsbA in the IF state along different reaction
coordinates (A, α; B, γ; C, PC1; and D, PC2). The PMF is obtained
from BEUS MD simulations performed using an α-based biasing
protocol and estimated using a Gibbs sampler (see Supporting
Information). Principal components were constructed from all Cα

atoms of the protein from all conformations used for the PMF
estimations. The mean values and the error bars are estimated from
100 PMFs generated by bootstrapping.
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sampling efficiency. This is due to a flexibility associated with γ;
diffusion along γ is fast enough to be sampled during 24 ns of
BEUS simulations. However, sampling along γ is not
homogeneous since it was not included in the biasing protocol.
Figure 5B shows the PMF along γ. Noting that in all initial
conformations γ is between 60° and 80°, it is not surprising to
have the smallest estimated errors around this region (i.e.,
better sampling) while the largest estimated errors are for the
regions with γ < 35° (i.e., poor sampling).
From a sampling efficiency assessment perspective, instead of

choosing arbitrary reaction coordinates to analyze, one may use
PCA.30 We thus performed PCA based on all Cα atoms of the
protein using all conformations sampled by BEUS simulations.
Table 1 shows the fraction of variance explained by first four

PCs along with the correlation between the PCs with a select
number of other reaction coordinates. As expected, PC1
correlates well with α, which was used for sampling (correlation
coefficient of 0.97). The PMF along PC1 (Figure 5C)
resembles the PMF along α as well. However, PC1 only
explains about 2/3 of the variance. PC2, on the other hand,
correlates strongly with γ (correlation coefficient of 0.82), and
the PMF along PC2 (Figure 5D) resembles that along γ. PC2
explains about 22% of the variance.
The PCA results suggest that biasing the system along α

alone might not be enough to achieve good sampling in the
PC2 space (which correlates strongly with γ). Meanwhile, the
PMF along the (α,γ) space, although not accurate in some
regions, may provide clues on the mechanism of transition
(Figure 6A). γ tends to “un-twist” in the intermediate α range, a
behavior also observed in our earlier equilibrium simulations.54

In the next iteration, one may use a 2D BEUS MD
simulation involving both α and γ in order to ensure good
sampling along both dimensions. If the 2D BEUS is not
feasibleit could be too computationally demandingthe
resulting approximate 2D PMF provides a way of identifying
important pathways, e.g., the pathway shown in Figure 6B,
found using the lowest free energy path (LFEP) algorithm,94

and restraining the replicas along a 1D path. If multiple
competing pathways coexist, one may perform several 1D
BEUS simulations, instead of a 2D one. Obviously the 2D
BEUS simulation will be more informative but also computa-
tionally more costly. Better sampling along γ not only improves
the PMF estimate along γ but also makes our free energy
estimate along α more accurate. However, note that the
definition of free energy along α will depend on the way γ was

incorporated into the protocol, i.e., a second dimension for
sampling or a degree of freedom to be restrained.
Figure 6C,D show the PMF in the (PC1,PC2) space. The

fraction of variance explained by the first five principal
components and their cumulative value are also shown. The
free energy along the two LFEP-generated pathways as
obtained from our reconstructed PMFs is compared to the
PMF along PC1. The 1D PMF is significantly lower than the
free energy along either pathway, where the sampled region is
elongated along PC2 due to the presence of multiple
metastable states.

Identifying Potentially Significant Residues. Besides PCA
and other analyses targeting the global features of the
conformations, one may be interested in more local conforma-
tional changes, particularly those correlating with large-scale
conformational changes. A 2D PMF can be constructed in
terms of α (or PC1), representing the global conformational
change, and any quantity of interest representing a more
localized change.
As an example, here we discuss a potentially significant salt

bridge between residues D252 and K299. Figure 7 plots the 2D
PMF in the (α,χD252−K299) space in which χD252−K299 counts the
number of D252−K299 salt bridges formed in the cis and trans
monomers. Conformations associated with several minima are
presented in Figure 7. IF-c and IF-c* are both similar to the IF-
c crystal structure; however, they differ in their number of salt
bridges. IF-o* and IF-o† are also similar to the IF-o crystal
structure (although both less open), exhibiting different
numbers of salt bridges.

Table 1. Correlation between Select Collective Variables and
Principal Components Based on All BEUS Data

PC1 PC2 PC3 PC4

fraction of variancea 65.6% 22.5% 2.1% 1.6%
correlation coefficientb

α 0.97 0.30 −0.06 −0.15
β −0.05 0.28 0.13 −0.03
γ −0.14 0.82 −0.01 0.14
dNBD 0.98 0.33 0.03 0.04
RMSDOF 0.90 0.54 0.05 −0.02
RMSDIF−c 0.98 0.01 −0.06 0.01
RMSDIF−o −0.94 −0.45 0.01 0.03

aFraction of (unweighted) variance explained by each principal
component. bPearson correlation coefficient between a principal
component (column) and a collective variable (row).

Figure 6. (A) Contour plot of the PMF in the (α,γ) space (in kcal/
mol) as obtained from the α-based BEUS simulations. (B) Same as A
with a pathway generated by the LFEP algorithm.94 (C) Same as A but
in the (PC1,PC2) space (as defined in Figure 5). Inset: the fraction of
variance (of unweighted BEUS-generated conformations) “explained”
by the first five principal components (bars) and their cumulative value
(gray line). (D) Same as C with two pathways generated by the LFEP
algorithm. Inset: free energy along the two LFEP-generated pathways
(black and gray) compared to the PMF along α (red). An IF-c → IF-o
reaction coordinate is defined by transforming either α (red) or arc
length of the path (black and gray) to make the comparison between
the three easier.
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The 2D PMF reveals a strong (nonlinear) correlation
between the two global and local quantities α and χD252−K299.
The larger the α, the less likely it is for the salt bridges to form;
however, it turns out that the largest basin (associated with IF-
s) which spans over a large α range is associated with an
asymmetric salt-bridge pattern. This implies that MsbA in the
IF state (at least in the apo form) is more likely to have only
one of the salt bridges than both or none. This observation is in
line with recent experimental work suggesting an asymmetrical
TMD arrangement in MsbA.95

Beside the mechanistic insight obtained from the 2D PMFs,
e.g., the one shown in Figure 7, such multidimensional PMFs
can be used more quantitatively to arrive at a better estimate for
the transition barrier. Note that the PMF maximum along any
collective variable, if estimated accurately, only provides a lower
bound to the actual barrier. This is due to the degeneracy
associated with collective variables which becomes evident in
our example by comparing the PMF along α with that in the
(α,χD252−K299) space. There appears to be an approximately 2-
kcal/mol barrier around α ≈ 20° in the 1D PMF (Figure 5A);
however, the α ≈ 20° point is associated with both a saddle
point (χD252−K299 ≈ 1) and a basin (χD252−K299 ≈ 2), implying
that the 2-kcal/mol estimate is dominated by the free energy of
a local minimum and not the transition state. The 2D PMF
indicates that the free energy associated with the saddle point at
α ≈ 20° is around 4 kcal/mol rather than 2 kcal/mol. Although
both 4-kcal/mol and 2-kcal/mol values can be considered as
lower-bound estimates for the free energy barrier, the 4-kcal/
mol estimate is a larger lower-bound, which makes it more
informative. Note that, however, there is a trade-off between
the accuracy and precision since including more dimensions in
PMF reconstruction increases the uncertainty of the results due
to limited sampling.

3. TECHNICAL CONSIDERATIONS
In section 2, we gave an overview of our proposed scheme to
combine several sampling techniques in order to optimize the

reliability and relevance of free energy calculations. Here, we
will discuss some of the more technical aspects of the approach
which could be of particular interest to MD practitioners.
Although some of the techniques described here are already
known to practitioners, as referenced throughout the
discussion, certain practical difficulties ariseor become
more seriouswhen one tries to combine different techniques.
The emphasis here is on having a balanced approach toward
addressing such practical issues by taking into account the
entire process of designing, performing, and analyzing the
simulations.

3.1. Nonequilibrium Approach. Nonequilibrium work
measurements can be used for a qualitative comparison of
different protocols, as described in section 2. However, such
comparisons are limited to the sampled transition mechanisms
and cannot rule out the possibility of alternative transition
mechanisms that are either not sampled or sampled only poorly
due to the use of a particular biasing protocol. Another
important limitation arises when multiple transition protocols
are found with similar trends of nonequilibrium work. If there is
a clear trend in work profiles of different mechanisms favoring a
number of paths over the others, one can make general
qualitative statements about their relative importance; however,
the transition paths with similar trends of work cannot
necessarily be considered similarly important. For these cases,
longer simulations or more iterations might establish a
difference in their trends of nonequilibrium work.

3.1.1. Empirical Protocol Optimization. Despite the
considerations mentioned above, one may take advantage of
nonequilibrium driven MD simulations and nonequilibrium
work measurements in an empirical manner as an efficient way
to optimize the biasing protocols. We note that before assessing
the quality of a protocol based on the amount of work, one
needs to determine whether or not the employed protocol is
effective in inducing the transition of interest. This may be a
trivial task for simple molecular systems, but in the presence of
many metastable states, it is quite likely for the system to get
trapped in an irrelevant metastable state without ever getting
close to the product. The rule of thumb is that once the system
is steered along the designed reaction coordinate, followed by a
careful equilibration, the product must be locally stable while
verifiably resembling the target structure. The careful
equilibration here includes (i) restraining the system around
the final target, (ii) slow removal of the restraint, and (iii)
unrestrained equilibration. In cases in which the target is not a
well-known state, our low-resolution knowledge of the target
may be used; however, the stability of the product should be
established before performing costly computations such as free
energy calculations.

Choice of Force Constant. The amount of nonequilibrium
work might be sensitive to the choice of force constant when a
harmonic bias is used. The force constant needs to be large
enough to induce the transition. If the force constant is too
large, however, the simulation could become unstable, and the
molecular system could undergo deformation or distortion.
Within these limits, any force constant may be used to induce
the transition of interest; however, choice of the force constant
will influence the amount of dissipation. Nonequilibrium work
measurements may be used in order to find an optimum value
for force constant in an empirical manner. We take advantage
of the fact that different force constants result in different work
distributions; thus, one may find an optimum force constant
which typically (or on average) results in a lower work. See

Figure 7. Contour plot of the PMF in the (α,χD252−K299) space (in
kcal/mol) as obtained from the α-based BEUS simulations. χD252−K299
smoothly counts the number of D252−K299 salt bridges (in the cis
and trans monomers). χD252−K299 = χ(rD252cis−K299cis) + χ(rD252trans−K299trans),
and rA−B is the distance between (i) the mass centers of the side-chain
oxygen atoms of residue A (D252) and (ii) the side-chain nitrogen
atom of residue B (K299). Inset: A smooth step function χ(r) used to
quantify the formation/breakage of a salt bridge based on
rD252cis/trans−K299cis/trans. Select conformations associated with several minima
are presented in a cartoon representation. TM5 (green) and TM6
(orange) helices are highlighted along with D252 (red) and K299
(blue) residues in van der Waals surface representation.
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section S2 for a more detailed discussion and an example for
this use of work measurements.
Definition of Collective Variables. Suppose that one is

interested in inducing a particular conformational transition
such as an interdomain orientational change. A “measure” that
identifies the desired orientational changes can be easily
defined. However, a practical collective variable needs to
meet additional requirements. For instance, it should induce
the desired conformational change without distorting the
system, that is, without taking the system through irrelevant
molecular configurations (e.g., unlikely, high-energy states). If
several collective variables satisfying this criterion are available,
one may use nonequilibrium work measurements in a
semiquantitative manner to choose the best one. Thus, one
can try different definitions and compare the results, first, by a
qualitative knowledge-based assessment of the conformations
sampled and, if there is no clear preference, by comparing the
work profiles.
Similarly, one may use qualitative comparison of work

profiles (along with knowledge-based comparison of the
generated trajectories) in order to optimize the choice of
atoms directly affected by the biasing potential. For instance,
either all heavy atoms, all backbone atoms, or only Cα atoms
can be subjected to a biasing potential to induce an
orientational change in a helical domain. Nonequilibrium
work measurements again provide a basis for optimizing the
details of a protocol in a systematic fashion.
3.2. System-Specific Reaction Coordinates. In order to

induce a conformational transition, it is often relevant to define
a set of collective coordinates96−99 such that by applying
appropriate forces on the system, one can vary these collective
variables and change the conformation of the system. Any
measure/metric distinguishing between different conformations
can be used for the analysis of a trajectory; however, it does not
necessarily make a practical collective variable suitable for
biasing/driving a system from one state toward another.
Metrics used for the analysis are often chosen to quantify
certain properties in an intuitive manner, but they do not need
to be, for instance, differentiable. On the other hand, a
collective variable has to be well-behaved to be used in a biasing
potential since its gradient and time derivative, for instance, are
needed to calculate the biasing force and work, respectively.
One particular collective variable that is widely used in the

context of structural transition of proteins is RMSD. Although
using the RMSD from a target structure as a collective variable
(e.g., in a targeted MD6 simulation) has proven useful, the
method has its own pitfalls and limitations. RMSD is associated
with both extreme degeneracy and large entropy loss100 (for
large and small values of RMSD, respectively). The trajectory
generated by targeted MD represents a pathway along which
the RMSD decreases almost monotonically and nearly linearly.
Another limitation that reduces the flexibility of the method to
a great extent is its high sensitivity to the quality/resolution of
the target structure. In addition, a targeted MD simulation
typically requires a large amount of work to induce a transition,
thus making the interpretation of its results difficult in the
context of nonequilibrium work relations.
Other conventional collective variables such as distance and

radius of gyration have their own limitations in inducing
complex structural transitions. Collective variables such as
RMSD and radius of gyration can be considered special cases of
a “generalized distance” which has been studied with regard to

some of its features (e.g., its entropy loss) when used in a
biasing potential.100

One particular feature that seems to best describe a variety of
large-scale conformational changes in proteins is semirigid-body
domain orientational changes. There are several ways of
defining a collective variable that quantifies an orientation-
based conformational change. Among them, the orientation
quaternion technique54,101−103 has proven successful as a well-
behaved, flexible method for defining system-specific collective
variables, specifically aimed at inducing interdomain orienta-
tional changes.
Note that here we use the term system-specific reaction

coordinates or collective variables for definitions that rely on
our knowledge of the conformational changes involved in a
transition. If the conformational changes are spatially localized
(e.g., a side-chain flipping or a salt-bridge formation/breakage),
one may use relatively simple techniques to define a reaction
coordinate on a select number of atoms. If the conformational
change is global, more advanced collective variables such as the
orientation quaternion may be needed to induce the transition
of interest. The selection of atoms (grouping of domains,
bundling of helices, etc.) in the definition of the collective
variables is again a knowledge-based component. We note that
when a local conformational change triggers a global conforma-
tional change, using collective variables defined on a limited
number of atoms may prove more useful in inducing the
transition. Using combinations of (generalized) distance-based
and/or orientation-based collective variables may be necessary
in order to induce a complex global transition.

3.2.1. Orientation Quaternion. Suppose that the relative
orientation of two molecular domains change during a
transition. The angle between the two domains can be defined
as a simple geometric angle based on the mass centers of three
groups of atoms (three-group definition). Similarly the
arccosine of the dot product of principal axes (usually the
roll axes) of two groups of atoms can be used to define the
orientation angle (vector-based definition).
Unfortunately, using a simple three-group definition of an

angle to induce a global conformational change often results in
undesired deformations of the protein. Using the principal axes
is associated with certain technical difficulties as well; e.g., the
three principal axis components may interchange during the
simulation due to conformational changes. We will discuss an
alternative technique to define orientation-based collective
variables, namely, the orientation quaternion54,101−103 which
has been recently implemented in several MD packages by
Fiorin et al.103 This technique allows for a flexible and reliable
definition of system-specific collective variables, specifically
aimed at inducing interdomain orientational changes.
The orientation quaternion,102 often used for “optimal

superposition” in computational biology,101 is a tool to deal
with the so-called “absolute orientation” problem. Suppose that
for a set of N atoms (labeled 1 ≤ k ≤ N), we have two different
sets of measurements: {xk} and {yk}. To simplify the problem,
we assume both sets have been already shifted to bring their
barycenters to the origin (optimum translation). To find the
optimum rotation to superimpose {yk} on {xk}, we introduce
“pure quaternions” xk and yk whose vector parts are xk and yk,
respectively. A quaternion is a four-component vector that can
be considered as a composite of a scalar and an ordinary vector,
or as a complex number with three different imaginary parts. A
quaternion whose scalar part is zero is called pure (reminiscent
of pure imaginary numbers). The optimal rotation can be
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parametrized by a unit quaternion, q ̂ that minimizes ⟨∥q ̂xkq ̂* −
yk∥2⟩ in which ⟨·⟩ denotes an average over k, q* is the conjugate
of q, and ∥q∥2 ≡ qq* (see ref 101 for more details). The
optimal rotation unit quaternion (or orientation quaternion) q ̂
can be written as (cos(θ/2), sin(θ/2)u ̂) in which θ and u ̂ (a
unit vector) are the optimum angle and axis of rotation,
respectively.
As a collective variable, an orientation quaternion can be

used not only to monitor rotational changes but also to apply
force (which is proportional to the gradient of the quaternion)
on the system in a practical way to induce the desired rotational
changes. Suppose that we are interested in inducing a particular
rotationgiven by its axis of rotation (unit vector u ̂) and its
target angle of rotation θtargeton a particular segment of a
biomolecule, e.g., part of a helix, an entire helix, or a bundle of
helices. This can be done by using a time-dependent harmonic
potential similar to steered MD in spirit:

= ΩU q t k q Q tx x( ({ }), )
1
2

( ({ }), ( ))k kB ref
2

ref (1)

Here, qref({xk}) is the optimum orientation quaternion to
superimpose {xk} on a reference set {xk

ref}. The reference could
be the initial, target, or any other structure. Here, to simplify
the notations, we assume the reference is the same as the initial
structure. Q(t) ≡ (cos(θ(t)/2), sin(θ(t)/2)u ̂) is a unit
quaternion that is varied externally, providing the center of
the harmonic potential at time t during a simulation (0 ≤ t ≤
T). If the reference is the same as the initial structure, θ(0) and
θ(T) can be set to 0 and θtarget, respectively. Once we have
Q(0) and Q(T), we can use different interpolation methods to
determine Q(t). A simple method is varying θ(t) linearly, which
is a special case of the spherical linear interpolation (Slerp)
method.104 The particular method discussed hereimple-
mented by Fiorin et al.103is based on the linear interpolation
of the quaternion Q(t), using the current and final centers,
followed by its normalization at each time step. Finally Ω(p̂,q ̂) is
the length of the geodesic between two points on the unit
sphere, transformed by p ̂ and q ̂ from an arbitrary point on the
unit sphere. An approximate estimate for Ω(p ̂,q ̂) is known to be
arccos(|p ̂·q ̂|) in which p̂·q ̂ is the inner product of p ̂ and q ̂.
The nonequilibrium work along a trajectory generated by the

quaternion-based biasing protocol (eq 1) can be measured via
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which is the accumulated work at time t. The nonequilibrium,
transferred work105 can also be measured by subtracting
UB(qref({xk}), t) − UB

0 from the accumulated work, in which UB
0

is the biasing potential measured at t = 0. One can collect the
biasing potential (UB(qref,t)) and its partial time derivative
(∂UB(qref,t)/∂t) based on the instantaneous qref at time t. For
the particular qref schedule, Q(t) that comes from the linear
interpolation of the quaternion (Q′(t + Δt) = Q(t) + (Q(T)−
Q(t))Δt/(T−t)) followed by its normalization (Q(t + Δt) =
(Q′(t + Δt)/∥Q′(t + Δt)∥), one can show:
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Examples of Orientation-Based Collective Variables. We
use our transporter example to demonstrate how orientation
quaternions can be used to induce rotational changes. Let us
recall the definition of α and β (defined on the TMD helices)
as well as γ (defined on the NBDs). Suppose TMi

cis and TMi
trans

denote the ith transmembrane helix of the two monomers
(labeled cis and trans, arbitrarily) and consider four relatively
rigid bundles, B1 (TM1,2

cis , TM4,5
trans helices), B2 (TM1,2

trans, TM4,5
cis

helices), B3 (TM3,6
cis helices), and B4 (TM3,6

trans helices), colored in
Figure 2 blue, red, yellow, and green, respectively. α describes
the angle between two groups of bundles B1/B3 (or Gα

cis) and
B2/B4 (or Gα

trans). On the other hand, β describes the angle
between B1/B4 and B2/B3 (or Gβ

cis and Gβ
trans, respectively). γ is

simply the twist angle between the two NBDs.
The bundling of the helices and the grouping of the bundles

as explained here are clearly inspired by the crystal structures of
MsbA.88 In order to induce conformational changes along α, β,
or γ, one may define several orientation quaternions based on
(i) individual helices, (ii) different bundles of helices, or (iii)
segments of helices and even combine them in different ways.
We have discussed this empirical process in section S2 (see
Supporting Information). Our empirical process led us to use
six orientation quaternions as collective variables to describe
the three-dimensional (α,β,γ) space including (qα

cis, qα
trans, qβ

cis,
qβ
trans, qγ

cis, qγ
trans). For each angle two collective variables are

defined on the two sides of the angle. qα
cis and qα

trans are the
orientations of the two groups of bundles Gα

cis and Gα
trans,

respectively. Similarly, qβ
cis and qβ

trans are the orientations of Gβ
cis

and Gβ
trans, respectively. qγ

cis/trans is the orientation quaternion
defined on NBDcis/trans.

3.3. Free Energy Calculations. The connection between
harmonic-based nonequilibrium driven MD and harmonic-
based (BE)US is quite evident. One can easily design a number
of time-independent biasing potentials along the time-depend-
ent biasing potential as the umbrella window potentials and use
the generated nonequilibrium conformations close to the
window centers as initial conformations. The force constants
and the window centers may be adjusted in order to achieve
sufficient overlapping of the sampled windows and, in the
BEUS scheme, reasonable mixing of the replicas.
It is shown that placing the window centers equidistantly

defined with a proper thermodynamic metric (i.e., along the
geodesic) minimizes the variance in the estimate of free
energies and optimizes the mixing of replicas (within a given
protocol).69 Similarly, within the linear response regime, a
nonequilibrium driven protocol can be optimized by minimiz-
ing the dissipation or the thermodynamic divergence by moving
along the geodesic with a constant speed.106 The two are
indeed related and one may use the information obtained from
one (e.g., the thermodynamic metric) to optimize the other. In
other words, the overlap (mixing) required for the convergence
of (BE)US simulations is related to the average dissipative work
measured from the driven simulations. Roughly speaking, one
may conclude that the more dissipation that is observed in a
driven protocol, the more expensive the free energy calculations
from (BE)US simulations would be.

3.3.1. Proposed Sampling Protocol. Suppose that we are
interested in sampling the transition between A and B state
along the protocol ζ. We propose the following steps to prepare
and perform BEUS simulations.
1. Nonequilibrium Driven MD. In order to decrease the risk

of discontinuous sampling in BEUS simulations, we propose
generating the initial conformations from a continuous
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trajectory. This can be done using a nonequilibrium driven MD
simulation. We assume we have already optimized the protocol
ζ. Starting from A, we drive the system along ζ toward B and
generate M conformations along the protocol.
2. Parameter Adjustment. Efficiency of the sampling in

BEUS simulations relies on both (i) mixing of the replicas and
(ii) overlap between the windows. Suppose that the exchange
rate between replica i and i + 1 is ri,i+1 (for i = 1, ..., N − 1, in
which N is the number of replicas). The optimum exchange
rate R = ri,i+1 depends on several factors, e.g., the exchange
scheme.72 However, the flatness of the ri,i+1 function (i.e., ri,i+1 =
R, where R is constant) is particularly important to achieve an
efficient diffusion along the reaction coordinate (assuming no
phase transition involved). With regard to the overlap between
the windows, a critical criterion (particularly when weak force
constants are applied) is that the entire reaction coordinate
space must be sampled without any gap. Note that having an
equal exchange rate between the replicas does not guarantee a
flat sampling along the reaction coordinate. Therefore, when
adjusting the parameters, one needs to first make sure that
there are no nonexchanging/nonoverlapping windows.
One may use the following procedure prior to production

runs of BEUS simulations to prepare the initial conformations
and umbrella potentials using a trajectory generated in a prior
nonequilibrium simulation:
(a) Take N initial conformations from the M nonequilibrium

conformations. At first, one may pick the conformations from
equal time intervals.
(b) Based on each conformation i (selected above), identify a

center ζi along the reaction coordinate. For each umbrella i = 1,
..., N, design a biasing potential (or umbrella potential) Ui
restraining ζ around ζi with harmonic constant ki.
(c) Perform short BEUS MD simulations starting with the

initial conformations and using the umbrella potentials
obtained from steps a and b, respectively.
(d) Iterate steps a to c with different initial conformations (N

can be varied as well) and harmonic constants until (i) the
exchange rate between any two neighboring replicas was
estimated to be in a given range (e.g., 20−40%) and (ii) the ζ
space (in a given continuous range) is expected to be sampled
without any gap. This process may be done empirically;
however, a more automatic process can also be implemented.
3. Production. The final set of initial conformations and

umbrella potentials generated above can be used to perform
longer BEUS simulations to achieve convergence.
3.3.2. Sampling Efficiency. While the mixing of the replicas

in a BEUS scheme decreases the likelihood of discontinuity, it
does not fully eliminate it. The continuity of the regions
sampled by each replica is evident; however, there could be
discontinuity introduced by the initial conformations such that
some of the replicas never cross the regions sampled by other
replicas. Suppose one picks the initial conformations of a BEUS
simulation from several independent simulations or a single
simulation much longer than the individual BEUS simulations.
This introduces a high risk of nonoverlapping replicas which all
sample perfectly well along the reaction coordinate (used for
sampling) with a reasonable mixing (in terms of exchange rate),
but they never actually cross each other along a degree of
freedom orthogonal to the reaction coordinate. Although
clustering will detect such problems, it is important to avoid
risky choices for initial conformations. We suggest using a
single nonequilibrium simulation to generate the initial
conformations.

In the conventional US scheme, using weak force constants
may result in a higher risk of discontinuous sampling. In the
BEUS simulations, however, the discontinuity in the sampling
is less likely and the use of weaker force constants is justified as
long as they are stiff enough to ensure a continuous sampling
free of any gaps. The convergence, however, is typically slower
than that in a stiff-spring setting.
Note that using stiff harmonics which result in narrow

Gaussian distributions is a straightforward approach to simplify
the optimization of US/BEUS parameters.62,70 However, using
stiff harmonics is not necessarily computationally efficient. The
narrower the distribution, the larger the number of windows
needed for reasonable exchange rate and overlap. On the other
hand, a broader distribution may converge slower; thus, the
trade-off between the convergence time and number of
windows must be considered in choosing the force constants.
Finally, we note that for detecting insufficient sampling and

hysteresis along the degrees of freedom orthogonal to the
reaction coordinate, one may use techniques such as a pairwise
consistency test between the probability distribution of adjacent
windows as recently introduced by Zhu and Hummer.107 For
other techniques used to characterize the sampling efficiency,
we refer the reader to refs 71, 73, 74, and 108.

3.3.3. Relaxation. Conventional US is a time-independent
biasing scheme; thus, the samples generated by each umbrella
are assumed to satisfy the detailed balance criterion and have
the correct biased Boltzmann distribution. However, the initial
conformations are not necessarily selected from the correct
distribution. The initial part of US simulations, thus, cannot be
used to construct the biased (and subsequently unbiased)
distributions and must be discarded. Note that the equilibration
process may be longer for weaker biasing potentials since a
broader configuration space is accessible. In general, the time
scale associated with this conformational relaxation is not
known a priori and must be determined a posteriori. For
instance, one may discard the samples from an initial period
several times longer than the autocorrelation time. Alter-
natively, one may take advantage of the fact that the sampling
during the equilibration period is often inconsistent with the
rest of the data and discard (from the beginning) as many
samples as possible in order to minimize the posterior error.
In the BEUS scheme, the conformations sampled in a

particular umbrella window may belong to different replicas.
Unlike the extended ensemble (i.e., all replicas/windows
combined), neither individual replica trajectories nor individual
(reconstructed) window trajectories satisfy the detailed balance
criterion. However, conformations sampled by any given
umbrella have the correct biased Boltzmann distribution,
assuming the extended ensemble is equilibrated. This implies
that in addition to conformational relaxation, another relaxation
associated with the diffusion of replicas within the extended
ensemble scheme is required. Similar to the conformational
relaxation, the replica/window relaxation time scale may be
determined a posteriori. Note that one may equilibrate the
initial conformations (which may come from nonequilibrium
simulations) in a conventional US setting prior to performing
the BEUS simulations. In this case, the relaxation of the replicas
in the window space is still required.
An estimate for the relaxation time associated with mixing of

the replicas can be obtained from the exchange rates.71 A lower
bound for the relaxation time can be estimated from τ2 ≡ Δt/(1
− λ2) in which Δt is the effective time between exchange
attempts and λ2 is the second largest eigenvalue of an empirical
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transition matrix constructed using the exchange rates between
the windows.71 By considering an ideal exchange rate between
the windows, one may obtain a lower bound for τ2. For
instance, in a 1D BEUS simulation including N windows/
replicas, if the exchange is only attempted between the
neighboring windows, one can easily show a flat exchange
rate of R results in τ2 ≈ (N2 + 1)/(10R)Δt. We note that we
have assumed a stochastic choice of odd−even pairs while the
deterministic choice (as was used in our example) is expected
to result in faster relaxation.72

Relaxation, Correlation, and Convergence in Our Exam-
ple. Let us examine our BEUS MD trajectories of MsbA
transporter used for sampling along α (see section 2) to
estimate the relaxation and correlation times. Note that the two
are not the same but related; the former determines the portion
of data to be discarded due to nonequilibrium relaxation effects,
while the latter is needed for error estimation and convergence
assessment.
By constructing the empirical transition matrix, τ2 was

estimated to be about 184 ps, which is close to the estimate
from τ2 ≈ (N2 + 1)/(10R)Δt ≈ 180 ps ps. We also explicitly
estimated the autocorrelation times associated with different
quantities including the window index, select collective
variables, and several principal components (Table 2). We
estimated the autocorrelation times from the correlation
functions using the scheme discussed in ref 73. For a given
window, the exchange of the conformations in the BEUS
scheme results in apparent decorrelation of the data as
compared to conventional US. The autocorrelation time for
different quantities was estimated to be around 50 to 500 ps.
However, one may notice that the actual trajectories associated
with the replicas have much longer autocorrelation times when
compared to reconstructed window-based trajectories (see
Table 2).
The longest autocorrelation time is associated with PC2

which is τac* ≈ 1.7 ns. PC1 and PC2 may be considered the
most significant biased and unbiased principal components,
respectively. PC2 roughly represents the slowest degree of
freedom orthogonal to the reaction coordinate used for biasing.
The largest autocorrelation time, which is incidentally
associated with PC2, may be used to estimate the statistical
inefficiency of the entire data set as g ≈ (2τac*)

−1 ≈ 3.4 ns.
Alternatively, g can be estimated using the so-called structural
decorrelation time108 which is related to the block-averaging
approach.109 Defining a metric in the (PC1,PC2) space, we
estimated τdec ≈ 3.2 and 0.5 ns for replica- and window-based
trajectories, respectively. With correlation times on the order of
nanoseconds, reaching a verifiable convergence may require
simulation times on the order of microseconds. The presence
of multiple copies of the system and the mixing of the replicas,
however, may speed up the convergence considerably.
Nonetheless, given these highly correlated data sets, typical of
conformational sampling simulations, it is important to use an
appropriate technique for error analysis, e.g., Bayesian block

bootstrapping110 as discussed in section S1 in the Supporting
Information.

4. CONCLUSION

In summary, here we introduce a computational recipe for
efficient description of large-scale conformational transitions in
complex molecular systems. The approach combines a set of (i)
driven nonequilibrium and (ii) biased equilibrium simulations
with similar (but not identical) (i) time-dependent and (ii)
time-independent harmonic biasing potentials. The biasing
protocols are designed using a knowledge-based approach
taking advantage of system-specific collective variables and
empirically optimized parameters. The process is knowledge-
based in that any structural information available on the end
states is used both in the design of the biasing protocols and in
their quality assessment. The process is also empirical in that
both (i) nonequilibrium and (ii) equilibrium biasing protocols
are optimized iteratively by varying the protocol parameters
such as collective variables or centers of umbrella windows and
assessing the results, e.g., based on nonequilibrium work or rate
of exchange. The approach discussed here can be viewed as an
ad-hoc dimensionality reduction method in that the sampling is
adjusted empirically to restrain the system in a particular region
of the configuration space representing relevant transition
tube(s) and intrinsic manifold.
Several ideas/techniques described here have been previously

discussed/employed by us and others elsewhere, some of which
are referenced throughout the paper. The emphasis here is on
presenting a coherent picture of the entire process of
performing, analyzing, and improving MD simulations aimed
at describing functionally relevant, large-scale conformational
transitions in complex, realistic biomolecular systems. The
process is indeed challenging with diversified, multifaceted
issues involved, some of which less appreciated than others. We
propose a balanced strategy to combine several techniques
within an empirical framework, to address the practical
obstacles involved in sampling large-scale conformational
changes. Moreover, the current work calls for a more concerted
attempt to develop strategies aimed at improving the
applicability of advanced sampling techniques to realistic
biological problems.

■ ASSOCIATED CONTENT

*S Supporting Information
Two nonparametric reweighting schemes for US simulations
are described in section S1, and Figure S1 compares their
results. Some simulation details with regard to our illustrative
example are given in section S2, with Table S1 and Figure S2
providing information on select number of these simulations.
Figure S3 reports on internal structural stability of individual
domains during select trajectories. This material is available free
of charge via the Internet at http://pubs.acs.org/.

Table 2. Autocorrelation Times (in picoseconds) of the BEUS Trajectories Associated with Different Quantities Including the
Window, Select Collective Variables, and First Four Principal Componentsa

window α β γ dNBD PC1 PC2 PC3 PC4

replica 975 ± 30b 1391 ± 70 1492 ± 67 1448 ± 96 783 ± 89 1234 ± 79 1711 ± 54 934 ± 56 1544 ± 71
window 247 ± 17 402 ± 30 175 ± 14 41 ± 36 51 ± 32 136 ± 14 203 ± 41 417 ± 42

aThe correlations were estimated along (i) an actual trajectory associated with a given replica and (ii) a reconstructed trajectory associated with a
given window. bThe mean values and standard deviations are given based on 22 trajectories/windows.
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