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Abstract

Chemical synapses exhibit a diverse array of internal mechanisms that affect the dynamics

of transmission efficacy. Many of these processes, such as release of neurotransmitter and

vesicle recycling, depend strongly on activity-dependent influx and accumulation of Ca2+.

To model how each of these processes may affect the processing of information in neural

circuits, and how their dysfunction may lead to disease states, requires a computationally

efficient modelling framework, capable of generating accurate phenomenology without

incurring a heavy computational cost per synapse. Constructing a phenomenologically real-

istic model requires the precise characterization of the timing and probability of neurotrans-

mitter release. Difficulties arise in that functional forms of instantaneous release rate can be

difficult to extract from noisy data without running many thousands of trials, and in biophysi-

cal synapses, facilitation of per-vesicle release probability is confounded by depletion. To

overcome this, we obtained traces of free Ca2+ concentration in response to various action

potential stimulus trains from a molecular MCell model of a hippocampal Schaffer collateral

axon. Ca2+ sensors were placed at varying distance from a voltage-dependent calcium

channel (VDCC) cluster, and Ca2+ was buffered by calbindin. Then, using the calcium traces

to drive deterministic state vector models of synaptotagmin 1 and 7 (Syt-1/7), which respec-

tively mediate synchronous and asynchronous release in excitatory hippocampal synapses,

we obtained high-resolution profiles of instantaneous release rate, to which we applied func-

tional fits. Synchronous vesicle release occurred predominantly within half a micron of the

source of spike-evoked Ca2+ influx, while asynchronous release occurred more consistently

at all distances. Both fast and slow mechanisms exhibited multi-exponential release rate

curves, whose magnitudes decayed exponentially with distance from the Ca2+ source. Pro-

file parameters facilitate on different time scales according to a single, general facilitation

function. These functional descriptions lay the groundwork for efficient mesoscale modelling

of vesicular release dynamics.
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Author summary

Most information transmission between neurons in the brain occurs via release of neuro-

transmitter from synaptic vesicles. In response to a presynaptic spike, calcium influx at

the active zone of a synapse can trigger the release of neurotransmitter with a certain

probability. These stochastic release events may occur immediately after a spike or with

some delay. As calcium accumulates from one spike to the next, the probability of release

may increase (facilitate) for subsequent spikes. This process, known as short-term plastic-

ity, transforms the spiking code to a release code, underlying much of the brain’s informa-

tion processing. In this paper, we use an accurate, detailed model of presynaptic

molecular physiology to characterize these processes at high precision in response to vari-

ous spike trains. We then apply model reduction to the results to obtain a phenomenologi-

cal model of release timing, probability, and facilitation, which can perform as accurately

as the molecular model but with far less computational cost. This mesoscale model of

spike-evoked release and facilitation helps to bridge the gap between microscale molecular

dynamics and macroscale information processing in neural circuits. It can thus benefit

large scale modelling of neural circuits, biologically inspired machine learning models,

and the design of neuromorphic chips.

Introduction

Chemical synapses constitute the primary means of direct communication between neurons

throughout the nervous system [1]. Neurotransmitters are stored in synaptic vesicles, which

are docked to the plasma membrane of the axon terminal by soluble N-ethylmaieimide-sensi-

tive factor attachment protein receptor (SNARE) complexes. Vesicle-membrane-bound synap-

tobrevin (v-SNARE) and the target-membrane-bound syntaxin and SNAP-25 (t-SNAREs)

form energetic SNAREpin complexes where the α-helices of the v-SNAREs entwine with those

of the t-SNAREs [2–4]. Synaptotagmin (Syt) proteins embedded in both membranes associate

with the SNARE complex and act as Ca2+-sensitive triggers for vesicle fusion. When the action

potential of the presynaptic neuron reaches the axon terminal, it triggers a sudden influx of

Ca2+ through voltage-dependent Ca2+ channels (VDCCs), and when a sufficient number Ca2+

ions binds to the C2 domains of synaptotagmin, it undergoes a conformational change that

triggers the associated SNAREpin to zipper completely, causing the vesicle to fuse with the

membrane and to release its neurotransmitter through the newly opened fusion pore [4,5] (see

Fig 1).

Very often, discussion of the activity in a network tends to focus on the action potentials

(spikes) and subthreshold fluctuations in membrane potential [10–12]. The utility of these

measurements, however, depends on the relevance of the spike code to neural information

processing. How neurons integrate their inputs and generate signals in the context of larger

neural circuits largely determines the sorts of computations that the network can perform

[13,14]. Biological neural networks need to represent information in a way that confers behav-

ioral utility, but since so much of the information in the environment is irrelevant to survival,

synapses may not be optimized to transmit all information faithfully, but rather selectively.

Significantly, neurons do not directly see the spiking activity of their neighbors at chemical

synapses, but only detect presynaptic activation upon the release of neurotransmitter, which is

a stochastic process [15]. Synapses form the basis for learning and information processing, and

short-term plasticity (STP) defines a transformation from a spiking code to a neurotransmitter

release code. All spiking activity is filtered through the dynamics of probabilistic synaptic
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release before the rest of the network can see it. This implies that one must first have an accu-

rate model of release dynamics in order to understand the true nature of information process-

ing of brain circuits. Such a model could, for instance, provide a crucial preprocessing step of

motor cortex for training BCI-based prosthetics [16], or it could enable more accurate compu-

tation of the information capacity of sensory cortex by studying the “language” that neurons

actually receive rather than simply the output that they generate [13,17,18].

Synaptic dysfunction has been implicated in numerous psychological disorders, including

schizophrenia [19,20], bipolar disorder [19], ASD [21], and fragile X syndrome [22]. To ascer-

tain exactly what role synapses play and what specific mechanisms might be causing or exacer-

bating these diseases, controlled experiments would need to be performed on the brain circuits

of interest, testing which changes to synaptic function might push the network into a patholog-

ical state. Doing this in humans would pose significant problems, both technical and ethical.

However, with a computational model that exhibits sufficient realism and scalability, such

experiments become possible in large simulated networks, which could provide important

insight into what sorts of targeted therapies to explore for treating these diseases.

The molecular simulator MCell can track the kinetics and interactions of thousands of mol-

ecules and ions in a three-dimensional model of the synapse, achieving a high degree of real-

ism and elucidating how complex bimolecular systems may function in the absence of

experimental interventions [23–27].When properly constrained by experimental data, MCell

will not only automatically reproduce observed features such as asynchronous vesicle release,

facilitation, and depression in the probability of release [25], but it can also make surprising

predictions that are later confirmed through experiment [28,29]. However, it quickly becomes

too computationally expensive to scale up to the many synapses that exist even in relatively

simple neural circuits.

The ultimate goal, therefore, is to develop a presynaptic model that captures realistic phe-

nomenology while maintaining computational scalability. To that end, in this paper we

develop a mathematical model that describes the phenomenology of presynaptic dynamics,

using the MCell model of [25] as a reasonable approximation to ground truth. Our simplified

model takes an arbitrary spike train and uses it to approximate the single-vesicle release rate

histograms that would emerge from running an infinite number of MCell simulations, taking

into account the facilitation in release rate of both synchronous and asynchronous release

Fig 1. SNARE Complex Structure and Dynamics. (A) SNAREpins prior to vesicle fusion. (B) Binding of Ca2+ to

synaptotagmin (Syt-1 here, Syt-7 attaches to target membrane [6,7]) triggers full zippering of SNARE complex and, in turn,

vesicle fusion [8,9].

https://doi.org/10.1371/journal.pcbi.1010068.g001
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dynamics. The results are easily amenable to event-driven models, producing the generating

distributions for temporally asynchronous vesicle release times with respect to arbitrary

sequences of action potentials. Thus, it provides an avenue for large-scale simulations of spik-

ing neural networks with many realistically performing synapses without incurring high

computational costs, enabling investigations into how various presynaptic mechanisms can

affect computation at the circuit level.

Results

Ca2+-evoked dynamics of vesicle release

Diffusion plays a key role in presynaptic processes. Simplified models of Ca2+-dependent pre-

synaptic dynamics may assume that the axon terminal is locally well mixed, equivalent to say-

ing that diffusion happens infinitely fast, at least relative to the spatial and temporal scales

being studied. However, MCell allows one to add a spatial component to molecular simula-

tions, which can account for certain phenomena that well mixed molecular kinetics models

cannot capture [23,24,26]. To characterize the process of Ca2+-dependent neurotransmitter

release, we based two models on the presynaptic model of [25]: a spatially explicit model

implemented in MCell, and an equivalent “well-mixed” model. Both models contained volt-

age-dependent Ca2+ channels (VDCCs) that let Ca2+ ions into the presynaptic volume in

response to an action potential stimulus, a calbindin (CB) buffer that moderated diffusion of

the ions via its binding kinetics, and plasma membrane Ca2+-ATPase (PMCA) pumps that

helped intracellular Ca2+ concentration return to equilibrium over time (see Fig A in S1 Text

for state transition diagrams). However, the two models differed in that the MCell model relied

heavily on diffusion of molecular species through space and discrete state transition events

occurring over time, while the well-mixed model treated all molecular interactions as occur-

ring within the same point in space and tracked continuous state probabilities over time (see

Methods).

Comparing these models, we found that the diffusion of Ca2+ and calbindin through the

axonal volume affects both the timing and the probability of spike-evoked vesicle release,

depending on the distance from the Ca2+ source. Fig 2 compares the well-mixed simulation

without diffusion to the equivalent MCell simulations performed at multiple distances from

the VDCC Ca2+ source. The shape of the Ca2+ transient measured in MCell displays marked

qualitative differences from that obtained without diffusion: Ca2+ sensors near the VDCC

source see a much higher peak concentration with an extra component of decay immediately

following the peak; those farther away progressively lose the fast peak until nothing is left but

an extremely small distance-independent component. The extra component of the proximal

Ca2+ curve, which does not appear in the well-mixed model, likely arises from local saturation

in the nanodomains near the VDCC cluster, where the very high free [Ca2+]i temporarily satu-

rates both the calbindin buffer and the PMCA pumps [30]. Farther out, the MCell model quali-

tatively matches the well-mixed model more closely, until at very large distances, the fast

components almost completely disappear. The distance-independent components represent a

sustained global elevation in [Ca2+]i that persists due to the excess Ca2+ that has yet to unbind

from the calbindin buffer. The slowest component has a magnitude comparable to resting

[Ca2+]i and a time constant of around 1 second.

One would expect the strength of spike-evoked neurotransmitter release to diminish with

increasing distance from the Ca2+ source, where Ca2+ has more time to diffuse and bind to

buffer molecules before reaching the sensor. In fact, numerous studies have found that vesicles

of the readily releasable pool (RRP) fall into one of two subpopulations, depending on their

physical location of vesicles within the synapse: vesicles located very near Ca2+ channels release
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quickly in response to spikes, while those farther away are more reluctant [31,32]. To explore

how the release rate profiles vary with distance, we established a linear array of Ca2+ sensors

along the length of the model axon, with a cluster of 50 VDCCs arranged in a half-disk at one

end (Fig 2A). Reflective boundaries on the ends of a 2-μm tube effectively simulated the effects

of having one cluster of 100 VDCCs every 4 μm, consistent with previous models of the Schaf-

fer collateral axon [25,33]. Running the model again for 2000 trials, with a single action poten-

tial stimulus applied at the beginning, we obtained Ca2+ traces measured at each point along

the axon. For the first 1.4 μm, free Ca2+ from the initial influx dominated, and the peak con-

centration declined exponentially with distance (length constant 0.204 μm; Fig 2C). Farther

out, global accumulation and depletion of Ca2+ dominates, which, although spike-evoked,

does not vary in magnitude with distance and acts over a much longer time scale and at a

much lower level than most of the spike-triggered Ca2+.

Running these simulations in MCell, rather than as a much simpler well-mixed model, was

essential for capturing both distance-dependent effects and temporal features of the Ca2+

waveform. The well-mixed assumption, which ignores diffusion and treated all chemical pro-

cesses as occurring at the same point in space, does not hold at the spatial and temporal scales

of interest in the synapse [34,35]. As seen in Fig 2C, peak Ca2+ dropped precipitously even

over fractions of a micron away from the VDCC cluster, and the shape of the response changed

dramatically over this same scale, transitioning from a predominantly synchronous to a

Fig 2. Spatial Modeling of Spike-Evoked Ca2+ Transients. (A) Ca2+ sensors (dark yellow through dark blue filled

circles) at vesicle cluster centers, displaced linearly from cluster of Ca2+ channels (blue half-disk on the left); distance

in μm, dn = 0.160+0.105n for n2{0,. . .,16}. (B) [Ca2+]i measured over time in MCell (dark yellow through dark blue)

and in the deterministic well-mixed model (maroon). MCell traces averaged from 2000 trials of MCell simulations

with Δt = 0.1 ms. Color transitions from yellow for vesicles proximal to the VDCC Ca2+ source to blue for vesicles far

away, as in A. Proximally (distally) measured [Ca2+]i displays more (fewer) components of decay than are evident in

the deterministic model. (C) Logarithmic plots of peak [Ca2+]i (blue) and peak time (red) as a function of distance

from Ca2+ source; peak [Ca2+]i drops off exponentially with distance from VDCC cluster; amplitude of latent Ca2+

dominates over the initial action-potential-evoked influx after 1.4 μm.

https://doi.org/10.1371/journal.pcbi.1010068.g002
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predominantly asynchronous profile, even before the Ca2+ sensors started responding. These

trends, elucidated by the spatial MCell model, were completely absent in the space-less well-

mixed simulation (Fig 2B, maroon line), even when all other aspects of the model remained

the same, such as the number of VDCCs, calbindin buffer molecules, and PMCA pumps and

the set of all state transitions for each molecular species (see Methods for details). Note also

from Fig 2B that the transition in time from the fast synchronous component to the extended

asynchronous component was much sharper in the case without space. The extra Ca2+ decay

component arose from local saturation effects. After the initial rapid influx, the calbindin

buffer immediately around the VDCC cluster became saturated, causing the high free Ca2+

that remains to overwhelm the PMCA pumps’ ability to evacuate it from the area. The pumps

removed it at a constant maximum rate, leading to a short linear decay only evident very near

the VDCCs (yellow traces, Fig D panel A in S1 Text) or when all calbindin is removed from

the simulation (Fig E in S1 Text). Such effects did not appear in the well-mixed case because all

buffer molecules and pumps were simultaneously available to all the free Ca2+, preventing any

local saturation from occurring. Thus, in light of all these effects, the spatial MCell model was

crucial for the task of properly characterizing the Ca2+ transient in the synapse.

Furthermore, diffusion of Ca2+ through the cytoplasm depends in part on the presence of

cytoskeleton components and the vesicles themselves [36–39], which can obstruct diffusion.

For the purposes of this investigation, we included just the vesicles surrounding each release

site, arranged in hexagonal clusters of seven and centered over the locations described in Fig

2A, each vesicle measuring 35 nm in diameter [25], to act as obstacles. Cytoskeletal compo-

nents, such as the actin filaments and microtubules abundant in the axon [40], can have a sub-

stantial slowing effect on the diffusion rate of cytoplasmic proteins [37] such as calbindin

(CB). To account for the higher viscosity of cytoplasm, the diffusion constant for calcium used

in this paper (DCa = 220 μm2/s) is several times slower than the free diffusion of Ca2+ in water.

Our simulations explicitly account for the interactions of diffusing calcium with diffusing CB

and stationary calcium binding proteins, resulting in an effective diffusion constant of around

50 μm2/s, consistent with experimental measurements of the apparent diffusion constant of

Ca2+ in cytoplasm [25,41]. Furthermore, the diffusion constant of CB in our MCell simulations

(DCB = 28 μm2/s, [25,42]) also takes into account the viscosity of cytoplasm, falling between

the infinitely fast diffusion of well-mixed models and the completely immobile conditions in

other investigations of synaptic calcium transients [38,39]. We found that CB does not contrib-

ute significantly toward transporting Ca2+ ions to the active zone, acting instead primarily to

slow and suppress free calcium influx, shortening the initial transient and extending the time

window in which Ca2+ is available for binding to the SNARE complex (see Fig E in S1 Text).

Although many more proteins are involved in coordinating release kinetics at active zones

[4,8,9,32], for validation purposes we restrict the scope of this paper to the function of synapto-

tagmins. The model of synaptotagmin-mediated release used in our simulations followed the

dual Ca2+-sensor model of Sun et al. [5], which includes mechanisms for both fast/synchro-

nous and slow/asynchronous release. In excitatory hippocampal synapses, these synchronous

and asynchronous modes of release may correspond to the roles of synaptotagmin-1 (Syt-1)

and synaptotagmin-7 (Syt-7), respectively [43]. The model incorporates cooperative binding

of Ca2+ to multiple sites on the sensor, requiring five Ca2+ ions before triggering synchronous

release and two Ca2+ ions for asynchronous release (see Fig 3). Because both binding and

unbinding rates for the synchronous mechanism are substantially higher than those for the

asynchronous mechanism, Syt-1 produces rapid release over a very narrow window relative to

spike arrival time, while Syt-7 produces slow release over a much more extended window.

Table 1 contains the values used in this model for Ca2+-binding and unbinding rates with each

release mechanism, along with the rates of vesicle fusion from the fully bound states (γS and
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γA) and the time constant for the post-release refractory period (ε) [44,45], which features in

the Nadkarni et al. [25] MCell model.

The MCell model, because it tracks thousands of individual particles through Markov chain

Monte Carlo simulations [23,24,26], can both capture very realistic synaptic dynamics and

uncover their underlying molecular causes, which would be difficult to obtain through other

methods. Unfortunately, this realism can also obscure the patterns necessary for building sim-

plified models. First, many processes, such as asynchronous or “mini” release events [46,47],

Fig 3. Model of Ca2+-Evoked, Synaptotagmin-Mediated Neurotransmitter Release. (A,B) Model adapted from Sun et al.

[5]. γS and γA represent rates of vesicle fusion from the releasable states of the synchronous and asynchronous mechanisms,

respectively. (A) Ca2+-bound states for Syt-1 (synchronous release); Sn indicates n Ca2+ ions bound to the synchronous

release mechanism. (B) Ca2+-bound states for Syt-7 (asynchronous release); An indicates n Ca2+ ions bound to the

asynchronous release mechanism. (C,D) Action-potential-like stimulus delivered to model axon starting at 0 ms. Diffusion is

assumed to be instantaneous, and molecular state probabilities are tracked deterministically over time. (C) Free [Ca2+]i in

response to single action potential. (D) Instantaneous vesicle release rate in response to buffered Ca2+ from both

synaptotagmin-mediated release mechanisms.

https://doi.org/10.1371/journal.pcbi.1010068.g003

Table 1. SNARE Release State Transition Parameters.

synchronous asynchronous other parameters

kS+ 6.12×107 M−1s−1 kA+ 3.82×106 M−1s−1 b 0.25

kS− 2.32×103 s−1 kA− 13 s−1 ε 6.34 ms

γS 6.0×103 s−1 γA 50 s−1

Values taken from Nadkarni et al. [25], adapted from Sun et al. [5].

https://doi.org/10.1371/journal.pcbi.1010068.t001
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occur slowly enough that many thousands or millions of simulated trials would be required to

uncover precise functional descriptions, which could become computationally prohibitive. For

instance, the histograms of synchronous release obtained from 2000 trials of MCell in Fig 4

offer little information on spontaneous release from the Syt-1 mechanism between action

potentials, and synchronous release far from the VDCC cluster (blue) hardly occurs at all. Sec-

ond, the fact that vesicles deplete upon release hides how the instantaneous single-vesicle

release rate actually changes with time. The tails of the release distributions fall off too quickly

as vesicles are removed from the simulation over time, and any paired-pulse facilitation (PPF)

in single-vesicle release probability is countered by the release-dependent depletion in the

model (Fig 4D).

Fig 4. Synchronous and Asynchronous Release in MCell. Color indicates distance from VDCC source, with yellow representing a

nearby Ca2+ sensor and dark blue a distant one (as in Fig 2A and 2B). Action-potential-like stimulus delivered at 0 ms (left), followed

by another at 20 ms (center) and 100 ms (right). (A) Spike-evoked Ca2+ traces that drive release. (B) Synchronous release raster. (C)

Asynchronous release raster. (D) Synchronous (tall, thin bars) and asynchronous (short, wide bars) release stacked histogram. Most

synchronous releases happen close to the Ca2+ source; asynchronous releases distributed across all distances.

https://doi.org/10.1371/journal.pcbi.1010068.g004
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The only way to avoid these depletion effects in MCell would be to run many millions of tri-

als with a single vesicle to track how the vesicle’s alacrity for release fluctuates with the Ca2+

history detected at its position. For these reasons, we decided not to depend on the release his-

tograms generated by many trials of MCell for building a phenomenological model. Instead,

we used the Ca2+ traces generated by MCell, which do not suffer from the aforementioned

problems, to drive deterministic simulations of the SNARE state probability dynamics (as

described in Methods), effectively producing what an infinite number of trials would produce

in MCell with the same Ca2+ data. Thus, using the deterministic release rates driven by the sto-

chastic MCell Ca2+ data balances the necessary realism of MCell with the smoothness and

insights required for designing a versatile phenomenological model.

Reducing from molecular simulations to phenomenological model

By driving a deterministic simulation of SNARE dynamics with the [Ca2+]i waveform obtained

from MCell, one can see that each release mechanism induces vesicle fusion with a histogram

that essentially follows a multi-exponential form (Fig 5). The release rate profiles (r(t), where

r2{S, A} may refer to synchronous or asynchronous release rate) rise quickly from baseline

after the spike and decay with several exponential components, approximated as

r tð Þ ¼ r0 þ
PN

c¼1

Pc

tc
e� t=tcuðtÞ; ð1Þ

Fig 5. Multi-Exponential Shape of Ca2+-Driven Vesicle Release Rate. (A,B) Plots given as semi-log to highlight exponential decay

components (straight line segments of profiles). (A) A single, spike-evoked [Ca2+]i transient, which drives (B) the synchronous and

asynchronous release rates. (C) Instantaneous time constants for Ca2+, synchronous, and asynchronous curves, calculated from the

well-mixed model (see Eq (2)). Long release rate time constants (around 80 ms and 1000 ms; dashed lines) follow Ca2+ curve due to

slow un-buffering of latent Ca2+. Asynchronous starts high because fast and slow components have comparable magnitude and

become conflated; it goes up to infinity where additive effects cause the curve to flatten.

https://doi.org/10.1371/journal.pcbi.1010068.g005
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where r0 is the spontaneous release rate (related to “mini”-EPSCs [47,48]; S0 = 5.70×10−9ms−1;

A0 = 1.84×10−5ms−1), t is the time since the last spike, u(t) is the Heaviside step function (so

that release occurs only for t�0), N is the number of exponential decay components, τc are the

time constants of exponential decay, and Pc are the expected number of releases from each

component for a single vesicle. Note that because the release rate profile is not a probability

distribution, but rather it represents the instantaneous rate of release conditioned on having

not released yet (see Methods), its integral Pc can potentially exceed one (just as the integral

over the spontaneous component r0 for t = 0. . .1 is infinite). The probability that the expo-

nential component causes release at any point in time, ignoring the other components, is prc =

1−exp(−Pc) (and the integrated release probability for the spontaneous component is pr0 = 1

−exp(−1) = 1). The existence of multiple exponential components is apparent from the linear

segments visible in log-linear space for synchronous and asynchronous release rates in Fig 5B.

To calculate the time constants of exponential decay (Fig 5C), we used the slope of the loga-

rithm of the release rate curve according to

t tð Þ ¼ �
d
dt

lnðr�ðtÞ � r�ð0ÞÞ½ �

� �� 1

; ð2Þ

where τ(t) is the instantaneous time constant and r�(t) is the observed instantaneous release

rate. We used the well-mixed model for the derivative calculation because it had no noise in

the release rate profiles.

Most of the Ca2+ that enters the axon following an action potential quickly binds with the

calbindin buffer before diffusing to the SNARE complex, causing a narrow spike in the free

[Ca2+]i available to the release mechanism. Therefore, most of the spike-evoked release occurs

in response to this narrow window of influx. To test how each release mechanism responds to

transient Ca2+ spikes, we supplied an instantaneous burst of Ca2+ to a single time step of the

deterministic model, allowing us to measure the impulse-response function. These simulations

were repeated for various resting Ca2+ levels ([Ca2+]i0), ranging from 0 to 10 μM, to see how

the presence of Ca2+ at equilibrium affects the response to spike-evoked transients. As Fig 6

shows, when there is no resting [Ca2+]i, the rate of release for both synchronous and asynchro-

nous mechanisms rises quickly in response to a sudden influx before dropping exponentially

with a single exponential component (black). However, when [Ca2+]i0 settles at some level

greater than zero, an extra exponential component emerges for both mechanisms (blue and

red lines). The exponential decay time constants seem to be mostly independent of resting

[Ca2+]i0 at low levels, but they drop off more quickly as spontaneous release rates begin to

overtake the spike-evoked rates at high concentrations. The extra component emerges as a

result of the back-and-forth Ca2+-binding and unbinding processes, where finite baseline

[Ca2+]i0 likely provides a “floor” to “bounce off of” in terms of the number of Ca2+ ions bound

to the release mechanism. Note, however, that even though it depends on equilibrium [Ca2+]i0,

this secondary release component is still purely spike-evoked and arises due to the nonlinearity

of the system. The baseline rate r�(0) was subtracted off to ensure that the function approached

zero prior to taking the logarithm (dotted lines). Time constants in Fig 6C were calculated

using Eq (2).

From the above, it would seem that each mechanism should have three components to its

release histogram: a constant spontaneous rate that increases with [Ca2+]i0, a fast exponential

component that acts in response to an impulse of spike-evoked Ca2+, and a slower spike-

evoked component that results from a “rebound” interaction with the Ca2+ floor. However,

the profiles of the release rate histograms display more complexity than this, which will be dis-

cussed in more detail below. Significantly, [Ca2+]i does not drop instantly to baseline after the
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initial influx, but some leftover Ca2+ continues to have a small effect over a long time window

as it slowly unbinds from the calbindin buffer (see Fig E in S1 Text). This allows a small but

noticeably enhanced rate of release efficacy to continue out to hundreds or thousands of milli-

seconds before returning fully to baseline (within noise). Fig 5C shows the effect that this latent

Ca2+ has on producing longer time constants in the decay of the release rate profiles, using the

smooth curves obtained from the well-mixed model.

Of course, neurotransmitter release cannot begin at exactly the moment of the spike, both

because the action potential itself is not an instantaneous process and because it takes finite time

for Ca2+ to diffuse from the VDCC source, through the buffer, to the Ca2+ sensor in the SNARE

complex. MCell represents this complex process with a Markov chain Monte Carlo method

(MCMC). Because of this, the release process cannot begin until the spike-evoked Ca2+ arrives,

which time may vary randomly relative to the timing of the spike. Thus, the process of buffered

Fig 6. Synchronous and Asynchronous Release Rates in Response to Ca2+ Impulse at Different Resting

Concentrations. Instantaneous impulse of Ca2+ delivered at 10 ms. Solid lines represent true release rate; dotted lines

have spontaneous rates subtracted off to show secondary exponential components. Black lines show release rate

decaying with a single exponential component with no baseline [Ca2+]i. For other curves, [Ca2+]i0 ranges from

0.001 μM to 10 μM. (A) Synchronous release rate over time: S(t). (B) Asynchronous release rate over time: A(t). (C)

Instantaneous release rate decay time constants for synchronous and asynchronous mechanisms. Fast components

(lower blue and red lines) determined from profiles with [Ca2+]i0 = 0 (black lines in A and B). Slower components

(upper blue and red curves) determined from cases with small [Ca2+]i0.

https://doi.org/10.1371/journal.pcbi.1010068.g006
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diffusion acts as a temporal filter on the release dynamics, transforming the equation of release to

r tð Þ ¼ r0 þ
PN

c¼1

Pc

tc
e� t=tcuðtÞ
� �

� a t; kc; mc; scð Þ; ð3Þ

where a(�) is the temporal filter and kc, μc, and σc are parameters to be discussed below. The con-

volution operation effectively smears the start time of the average release profile in a way that

accounts for random temporal jitter across trials.

Importantly, the release-start-time filter a(�) must integrate to one over all real numbers.

That way, it does not affect the probability of release, only its timing. The temporal filter cho-

sen is an ex-Gaussian distribution, resulting from the convolution of an exponential distribu-

tion of rate k with a normal distribution of mean μ and standard deviation σ:

a t; k; m; sð Þ ¼ ðke� ktuðtÞÞ �
1

s
ffiffiffiffiffiffi
2p
p e�

ðt� mÞ2

2s2

� �

¼

Z t

� 1

ke� kðt� t0Þ
1

s
ffiffiffiffiffiffi
2p
p e�

ðt0 � mÞ2

2s2 dt0

¼ ke� k t� mþs
2

2
k

� �� �

F
t � ðmþ s2kÞ

s

� �

; ð4Þ

where F(�) represents the CDF of the zero-mean, unit-variance normal distribution. In the

limit where σ!0, this CDF simply becomes the shifted Heaviside step function u(t−μ), and

aðt; k; m; sÞ ! ke� kðt� mÞuðt � mÞ, which is just a rightward shift in time of the exponential dis-

tribution by μ. The values of μ and σ result from the sum of the delays caused by numerous

random processes, including the timing of Ca2+ entry relative to the spike, the accumulation of

collision events during Brownian motion, and the binding/unbinding events with the calbin-

din buffer and SNARE complex. Assuming that the individual events of the buffered diffusion

process are numerous and similar enough for a given spike, the central limit theorem states

that the sum of their delays should approximate a normal distribution [49]. The value of k rep-

resents the rate of some limiting step in the process of buffered diffusion, and it slows with

increasing distance between the VDCC source and the Ca2+ sensor in the SNARE complex.

Keep in mind that these parameters constitute only a phenomenological approximation to the

exact filter, but they work well enough for the purposes of this paper.

For an event-driven model, which this paper is working towards, the convolutional opera-

tion can be implemented by sampling a normally distributed random number (with mean and

standard deviation μc and σc) and an exponentially distributed random number (with rate kc)

and adding them to the spike time to determine the start time for the release response. In

other words, combine the spike time with an ex-Gaussian random delay to determine when

the release component begins to respond to the spike, following Eq (1). In aggregate, across

many trials with the same spike time, the release histogram will approach Eq (3).

With the mathematical description of the release rate profiles in mind, we ran a fitting algo-

rithm (see Methods) to determine the values of the parameters for each profile. Initially, we

used release profiles driven by Ca2+ measured at 400 nm from the cluster of 100 VDCCs,

which provides a physiologically realistic probability of release for a single vesicle (around

0.04) [50]. The synchronous release mechanism exhibits more exponential decay components

in its release rate histogram than does the asynchronous mechanism (4 versus 3), likely

because it has more Ca2+ binding sites (5 versus 2) and because it operates on a faster time

scale. Fig 7 shows how the fitted parametric release profiles match the simulated release
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profiles to within noise across multiple orders of magnitude; the noise in the simulated profiles

was due to fluctuations in [Ca2+] at the Ca2+ sensor. Table 2 lists the values of the best-fit pro-

file parameters.

Keep in mind that the μ values are somewhat arbitrary in that they depend on exactly when

during the action potential that the spike time is taken to occur. Action potential waveforms

last a couple of milliseconds (see Fig B in S1 Text) [51]; the values for μ above used a point on

the action potential waveform immediately prior to the rising phase as the spike time. Using

the peak of the action potential would take away about 2 ms from all values of μ. Again, the

time point along the action potential where the spike is counted is arbitrary, but it must be

consistent across all components.

Combining release profiles for multiple spikes

Having established the shape of the release profile for a single spike, we considered how the

release profiles of multiple spikes in a train would combine. Consider first the case of two

Fig 7. Fitted Release Rate Histogram Profiles for a Single Spike. Parameter values given in Table 2. (A) Synchronous

release rate: true histogram (blue) with estimated histogram (black). (B) Asynchronous release rate: true histogram

(red) with estimated histogram (black).

https://doi.org/10.1371/journal.pcbi.1010068.g007

Table 2. Spike-Evoked Release Rate Parameters.

component P τ k μ σ
S1 0.0175 0.163 ms 1.79 ms-1 3.41 ms 0.168 ms

S2 0.0220 6.50 ms 18.0 ms-1 3.56 ms 0.0977 ms

S3 1.70×10−5 80.0 ms 0.526 ms-1 10.0 ms 4.44 ms

S4 1.10×10−5 1000 ms 0.142 ms-1 50.0 ms 11.5 ms

A1 3.72×10−3 17.7 ms 1.60 ms-1 3.05 ms 0.243 ms

A2 0.0111 76.9 ms 0.0759 ms-1 4.00 ms 1.14 ms

A3 0.0136 1000 ms 0.0337 ms-1 76.5 ms 21.9 ms

Parameter values calculated for a single spike following a period of low activity. Valid for Ca2+-sensitive synchronous and asynchronous release mechanisms located 400

nm from a cluster of 100 VDCCs.

https://doi.org/10.1371/journal.pcbi.1010068.t002

PLOS COMPUTATIONAL BIOLOGY Mesoscale model of presynaptic dynamics based on MCell

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010068 May 9, 2022 13 / 35

https://doi.org/10.1371/journal.pcbi.1010068.g007
https://doi.org/10.1371/journal.pcbi.1010068.t002
https://doi.org/10.1371/journal.pcbi.1010068


spike times, ts1 and ts2 (where ts2 > ts1). After the first spike, the release mechanism will

respond to a Ca2+ influx after some delay with the release profile of Eq (1) shifted in time by

tCa1, where the delay between the spike time and the arrival of the Ca2+ influx is distributed

according to the ex-Gaussian temporal delay filter:

tCa1 � ts1 � aðt � ts1; k; m; sÞ: ð5Þ

Fig 8A–8C shows visually how this temporal delay filter affects a given release profile

component.

When the second spike arrives at the release site, the VDCCs produce another influx of

Ca2+ that can again propagate to the SNARE complex, building on the Ca2+ from the first

spike. The buffered diffusion again involves an ex-Gaussian-distributed delay, after which the

Fig 8. Convolutional Filter Applied to a Component of a Release Rate Function. Toy model with P = 5, τ = 10 ms, k = 0.5 ms–1, μ
= 5 ms, and σ = 1 ms. (A) Unfiltered release rate component. (B) MCMC ex-Gaussian filter shape. (C) Filtered release profile

produced by convolving the release rate profile with the temporal delay filter. (D-F) Release rates in response to spike trains without

applying delay filter. (G-I) Release rates in response to spike trains with delay filter applied. (D,G) Response to one spike. (E,H)

Response to two spikes. (F,I) Response to multiple spikes. Dotted lines show how the histogram of response to one spike falls off with

interference from the response to the following spike. Spike times at 0, 15, 20, 30, and 50 ms.

https://doi.org/10.1371/journal.pcbi.1010068.g008
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release mechanism starts responding to the second spike at time tCa2. With a future event-

driven simulator in mind, we treated the arrival of Ca2+ from the second spike as a transition

point between release-time generating functions. That is, the synapse stops generating release

times in response to the first spike (whose release profile was shifted by tCa1) and starts gener-

ating release times in response to the second spike (with a release profile shifted by tCa2),

according to

r t; ftCa1; tCa2gð Þ ¼ r0 þ
PN

c¼1

Pc

tc
e� ðt� tCa1Þ=tc u t � tCa1ð Þ 1 � uðt � tCa2Þð Þ

þ
XN

c¼1

Pc

tc
e� ðt� tCa2Þ=tc u t � tCa2ð Þ

¼ rðt � tCa1Þð1 � uðt � tCa2ÞÞ þ rðt � tCa2Þ; ð6Þ

where r(t) is the unfiltered release profile from Eq (1). Notice that Eq (6) does not account for

facilitation yet. In this section, we focus on the interaction of individual spikes’ release profiles,

reserving the discussion of facilitation for the next section. For a spike train with an arbitrary

number of spikes, this becomes

rðt;TCaÞ ¼
P

tCai2TCa
ðrðt � tCaiÞ

Q
tCaj 2 TCa

tCaj > tCai

ð1 � uðt � tCajÞÞÞ; ð7Þ

where TCa ¼ ftCa1; tCa2; . . .g is the set of all Ca2+ arrival times, each resulting from the combi-

nation of a spike time with an ex-Gaussian-distributed delay. Fig 8D–8F shows what these pro-

files should look like for a certain set of parameters in response to various spike trains.

While the above formulation relies on fixed delay times, an event-driven simulator will

need to sample new delay times on every trial for a given spike train, as well as different delay

times for each release component. Therefore, we calculated the probability Dc(t) that the Ca2+

sensor has begun responding to the Ca2+ from the latest spike for release component c, allow-

ing for a gradual switch from one spike-evoked release profile to the next, taking into account

the variation of delay among all possible trials. For two spike times, ts1<ts2, the net release pro-

file for each component of Eq (6) becomes

rcðt; fts1; ts2gÞ ¼ rcðt � ts1Þð1 � Dcðt � ts2ÞÞ þ rcðt � ts2Þ: ð8Þ

In other words, the response to the first spike is cut short after the second spike by Dc(�) to

give way to the new release response. And every time another spike arrives, it decreases the

probability of release relative to the first spike multiplicatively, such that each component of

Eq (7) becomes

rcðt;TSÞ ¼
P

tsi2TS
ðrcðt � tsiÞ

Q
tsj 2 TS

tsj > tsi

ð1 � Dcðt � tsjÞÞÞ; ð9Þ

where TS ¼ fts1; ts2; . . .g is now the set of all spike times.

Because this formulation now uses spike times rather than delayed Ca2+ arrival times, the

step functions u(t–tCaj) of Eq (6) and (7) have been smeared out in time by the temporal delay

filter of Eq (4) to become Dc(t–tsj). Assuming the latest spike arrives at t = 0, Dc(t) is simply the
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cumulative distribution of the temporal delay filter:

DcðtÞ ¼
Z t

� 1

aðt; kc; mc; scÞdt

¼ F
t � mc

sc

� �

� e� kc t� mcþ
s2
c
2
kc

� �� �

F
t � ðmc þ s

2
c kcÞ

sc

� �

: ð10Þ

More intuitively, by letting σc!0, the Gaussian component becomes a delta function, and

the first-release distribution function above becomes much more simply

DcðtÞ ¼ ð1 � e� kcðt� mcÞÞuðt � mcÞ: ð11Þ

Thus, after the second spike, the histogram of releases from the first spike drops off expo-

nentially, while those due to the second spike rise and fall as for the first spike. When σc is

small relative to the median interspike interval, third spikes have an almost imperceptible

effect at cutting the first profile short relative to the second spike’s effect. Fig 8G–8I shows how

this transition works in response to the same spike trains as in Fig 8D–8F.

Characterizing facilitation in vesicle release rates

The discussion above has focused on the release response of a single vesicle with a constant

probability of release across spikes. However, many synapses display a facilitation in release

probability from one spike to another [14,44,52–54]. This results both from an accumulation

of Ca2+ in the presynaptic space [52] and from a stochastic accumulation of Ca2+ on the sensor

(Syt) of the SNARE complex. Simulations with the MCell model demonstrate how nonlinear

binding cooperativity in the Ca2+ sensors induces facilitation in excess of what would be

expected from cytoplasmic Ca2+ buildup alone (Fig I in S1 Text). This happens because on

some trials, Ca2+ accumulates on the sensor, not enough to trigger vesicle fusion on the first

spike, but enough to increase the probability of reaching the releasable state after subsequent

spikes. As can be seen in Fig H in S1 Text, Ca2+ entry from one spike can predispose the distri-

bution of bound states of the sensor to trigger release with greater alacrity on subsequent

spikes.

Furthermore, the level of facilitation depends to some extent on the full history of spiking

activity in the synapse. In the simplest case, the probability of release on one spike should

depend only on the probability for the previous spike and on the time since the previous spike.

However, the level of facilitation is not a simple function of the most recent activity but

depends on the rate of stimulation prior to the last spike. To explore the space of facilitation

dynamics more fully, we applied spike trains with spike ramps of different rates and durations,

to see how quickly facilitation builds up, followed by single probe spikes at increasing inter-

spike intervals (ISI), to see how quickly it decays back to baseline (see Methods). Fig 9 shows

examples of how these different spike trains affect the rates of synchronous and asynchronous

release.

Facilitation does not affect all components of release equally. Therefore, we derived a gen-

eral facilitation function Fc(�) that affects each release component c independently. The area

under the curve of each component of the release rate profile (see Eq (1) and (3)) depends on

the facilitation factor according to

PcðnÞ ¼ Pc0 � FcðnÞ; ð12Þ

where Pc0 is the baseline value and n is the index of the current spike. To ensure that the func-

tion works for arbitrary spike trains, the factor Fc(n) needs both to grow somehow from spike
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to spike and to decay back toward one for large ISIs. This growth can happen in a highly non-

linear fashion, so to account for this, we take Fc(n) to be a nonlinear combination of linear

facilitation factors fci(n) such that

FcðnÞ ¼
YMc

i¼1
fciðnÞ

xci ; ð13Þ

where Mc represents the number of facilitation components (either one or two for all functions

Fig 9. Empirical Facilitation in Synchronous and Asynchronous Release Rates. Release rate profiles facilitate in

response to single spikes (A) or to spike ramps (B,C). Probe spikes of increasing ISI reveal how facilitation then decays

back toward baseline after a delay. Each rise in release rate is triggered by a spike event. Synchronous release rate profiles

shown in blue. Asynchronous profiles shown in red. Profiles from multiple runs are overlaid in each panel. Dark colors

represent response to initial spike or spike ramp (common to all traces on a plot). Light colors represent profiles from

different runs in response to single probe spikes at different ISIs following the initial spike or ramp. (A) After single spike,

paired-pulse facilitation decays with increasing ISI (probe ISIs of 2, 5, 10, 20, 50, 100, 200 ms). (B) 5-spike ramp with a

5-ms ISI shows strong facilitation in release rate (dark colors) followed by rapid decay seen at the probe spikes (light

colors). (C) 5-spike ramp with a 20-ms ISI shows weaker facilitation in the ramp phase but a similar rate of decay at the

probe spikes. Note the orders of magnitude difference in scale between synchronous and asynchronous release rates, as

well as the change in scale from (A) to (B,C).

https://doi.org/10.1371/journal.pcbi.1010068.g009
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explored below), and ξci represents the nonlinearity applied to facilitation component i of

release component c. Each fci(n) accounts for some aspect of the internal state of the SNARE

complex, in terms of how the expected number of Ca2+ ions bound changes with time, that

helps determine the probability of release on subsequent spikes.

In the simplest case, each fci(n) would decay exponentially from its previous value fci(n−1)

before incrementing by one:

fciðnÞ ¼ fciðn � 1Þe� Dt=tci þ 1; ð14Þ

where Δt is the delay from the previous spike to the current one. The increment of one is

meant to account for the influx of about the same amount of Ca2+ during each action potential.

This formulation ensures that even after infinitely long intervals, the facilitation factor will

equal a value no less than Fc(0) = 1, allowing the release components to return to their baseline

values of Pc = Pc0 during long periods of inactivity, as expected.

However, this formula implies that for an infinitely fast rate of stimulation, fci(n) could

grow toward infinity, producing an infinitely fast rate of release, all of which are impossible.

More realistically, there should exist some finite saturation level, Lci, such that the facilitation

function could never theoretically exceed

Fcð1Þ ¼
YMc

i¼1
Lci: ð15Þ

The value of this upper limit is constrained by the rates of vesicle fusion from the fully

bound states of the SNARE complex (γS and γA in Table 1) and by the maximum level of Ca2+

buildup in the presynaptic space. When facilitation is still well below this level, it should con-

tinue to increment by approximately one on every spike, but this increment should fall to zero

quickly enough that facilitation never exceeds saturation. Setting a maximum number of

equal-sized steps to saturation for each component, Nci ¼ L1=xci
ci , the value of fci(n) becomes

fci nð Þ ¼ fci n � 1ð Þe� Dt=tci þ 1 �
fciðn � 1Þe� Dt=tci

Nci

� �Nci

: ð16Þ

The new term subtracted off at the end ensures that fci(n) never exceeds Nci, just as Ca2+

cannot accumulate to infinite concentrations but is limited by the electrochemical gradient

across the cell membrane [55]. An alternative would be simply to set fci(n) = Nci whenever a

step size of one would cause it to exceed this limit, but the formula in Eq (16) allows for a

smoother approach.

With the model for facilitation established, we sought to fit it to the empirical changes

observed in release rate for complex spike trains. For simplicity, we took facilitation to apply

only to the Pc parameters, which control for the magnitude of each release component,

although in principle the parameters of the temporal filter (kc, μc, and σc) might also increase

(ξci>0) or decrease (ξci<0) with spike history. As discussed in Methods, we explored 136

unique spike trains for how both spike rate (along the spike ramp) and ISI (of the probe spike)

affect the release rate in response to the last spike.

For the fitting algorithm, we used a simplex method for gradient descent, since the deriva-

tives of the error function are difficult to compute (see Methods). The values of the Pc parame-

ters were allowed to vary within bounds, while the profile time constants and the temporal

filter parameters were held constant. The best-fit set of values for Pc were found for the spike-

response profile at the end of each spike train, after which the meta-parameters of the facilita-

tion functions could be fitted to the patterns in Pc. Fig 10A shows some examples of fitted

release rate functions fit to baseline (blue) and facilitated (yellow) profiles. Fig 10B depicts how
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Fig 10. Release Rate Parameters and Facilitation Metaparameters Fitted to Empirical Histogram Profiles. (A) Synchronous

and asynchronous profiles fitted for baseline (un-facilitated) case, and for highly facilitated case (probe spike 5 ms after 5-spike

ramp of 5-ms ISIs). (B,C) Release fidelity values fitted case-by-case (dark colors) overlaid with predictions from best-fit facilitation

functions (light colors) for synchronous (B) and asynchronous (C) components.

https://doi.org/10.1371/journal.pcbi.1010068.g010
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release magnitudes varied for the release magnitude components (first (PS1) and third (PS3)

components of synchronous release and first component (PA1) of asynchronous release) across

all 136 facilitation spike trains (see Fig J in S1 Text for a depiction of how stimulus cases are

ordered).

Through trial-and-error, we found that the two components of synchronous release with

the fastest time constants, along with the fastest component of asynchronous release, each

required two facilitation components to explain their patterns of change from case to case. The

synchronous and asynchronous release components with “medium” time constants (each

close to 80 ms) could each be fitted with a single facilitation component. The slowest release

components, with time constants of 1000 ms due to latent [Ca2+]i released from the buffer (see

Fig 5C), were constrained not to facilitate, since changes in these components seemed to have

a negligible effect on fitting error. Table 3 records the facilitation meta-parameters obtained

from the fits, along with the baseline values for release fidelity for each component (P0). Dur-

ing each step of the fitting algorithm, these metaparameters were used to generate predictions

for the state of facilitation across all 136 spike-train cases, and error was calculated as the frac-

tion of the variance of the “true” release fidelity values unexplained by the predicted pattern

(Fig L in S1 Text; see Methods).

Discussion

Advantages and limitations of treating MCell as ground truth

Basing the new model on MCell has distinct advantages over biological experiments in terms

of both flexibility and precision when it comes to model validation. As an example, estimates

of [Ca2+]i in neurons obtained from fluorescent reporters in physiological experiments may

provide accurate estimates of slow (tens of milliseconds) Ca2+ transients [56,57], but the buff-

ering kinetics of the calcium reporters can act as a low-pass filter, obscuring the faster (0–5

milliseconds) components of Ca2+ dynamics [27]. Molecular simulations like MCell, on the

other hand, can capture these fast transients, since they track every particle, which may be cru-

cial for correctly modeling fast, Ca2+-dependent synaptic processes like synchronous vesicular

release of neurotransmitter [48].

Table 3. Metaparameters for Facilitation of Release Fidelity.

component P0 τ N ξ L = Nξ

S11 0.0175 95.9 ms 7.00 1.27 11.8

S12 7.66 ms 2.32 2.93 11.8

S21 0.0220 13.1 ms 10.0 1.23 17.0

S22 114 ms 17.6 1.68 125

S3 1.70×10−5 199 ms 12.5 2.67 846

S4 1.10×10−5 – 1 0 1

A11 3.72×10−3 141 ms 12.2 1.48 40.0

A12 17.2 ms 12.5 0.996 12.4

A2 0.0111 126 ms 12.1 1.67 64.4

A3 0.0136 – 1 0 1

First column shows baseline magnitudes of integrated release rate, duplicated from Table 2. First and second components of synchronous release and first component of

asynchronous release facilitate with two time constants each. Smallest component of both release mechanisms does not facilitate. P0 is integrated release rate for the un-

facilitated case (baseline), τ is the time constant of decay for each facilitation component, N is the number of linear facilitation steps to saturation, ξ is the nonlinearity

parameter, and L is the maximum facilitation factor contributed by each component. Valid for Ca2+-sensitive synchronous and asynchronous release mechanisms

located 400 nm from a cluster of 100 VDCCs.

https://doi.org/10.1371/journal.pcbi.1010068.t003
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Furthermore, neurotransmitter release may occur asynchronously with respect to the

arrival time of action potentials, following some time-dependent distribution [48]. Experimen-

tal methods for determining release rate would offer far less control of presynaptic conditions

over the number of trials that would be required to tease out the same resolution of detail as is

possible with controlled simulations. Therefore, we chose to constrain ourselves to validating

the model developed in this paper against an MCell model, which has itself been validated

already against hippocampal Schaffer collateral synapses [25].

However, this approach is limited on several levels. First, it assumes that MCell can cor-

rectly replicate the dynamics of diffusion and molecular interactions of biophysical systems

through its Markov chain Monte Carlo framework [23,24,26]. Second, it assumes that the

molecular kinetics of the included species match their true kinetics. Finally, it assumes that the

molecular species and biological systems modelled are the only ones present in the presynaptic

compartment, or at least that any other systems would produce only negligible changes to the

phenomenology of the synapse. MCell has been sufficiently well validated to satisfy the first

assumption [26], at least for the temporal and spatial scales of interest here (hundreds of

microseconds and several microns).

The second assumption is valid insofar as the molecular models used by MCell correctly

represent reality, both in terms of the molecular state diagrams and in terms of the binding

and interaction kinetics reported by other groups: Sun et al. [5] for the descriptions of

Ca2+-driven SNARE kinetics for vesicular release; Bischofberger et al. [51] for the VDCC

dynamics for spike-evoked Ca2+ influx; Nägerl et al. [58] for the high- and medium-affinity

sites of the calbindin Ca2+ buffer; and Sneyd et al. [59] for the kinetics of the PMCA pumps.

The state diagrams and kinetic parameters for these species are summarized in Fig A and

Table A in S1 Text. Simplifying assumptions inevitably go into models such as these, which

limit the accuracy of any model based on them. However, for the purposes of this paper, we

assume that these models reproduce experimental results sufficiently well to use them.

The greatest limitations to model accuracy come from the third assumption in that the true

variety of systems and molecular species in biological synapses far exceeds what MCell repre-

sents [60]. For instance, the Nadkarni et al. [25] model did not include any endoplasmic reticu-

lum (ER), which stores intracellular Ca2+ and has a significant effect on neuronal signaling,

nor did it include the ryanodine receptors (RyR) and inositol 1,4,5-trisphosphate receptors

(IP3R) that unleash these Ca2+ stores [61]. Inclusion of such an ER would likely alter the shape

of the Ca2+ transient and increase the probability of neurotransmitter release, possibly over

longer time scales, as in synaptic augmentation [50,62]. Another system that would signifi-

cantly affect Ca2+ dynamics over multiple spikes is the facilitation and inactivation of Ca2+

channels mediated by Ca2+-calmodulin (CaM) and Ca2+ binding proteins (CaBP) [46,63].

These interactions might help control release-independent depression (RID) and the fre-

quency-dependent recovery (FDR) from depression [53,64] by restricting Ca2+ influx over

extended spike trains. Furthermore, the presynaptic Ca2+ buffer includes more than just cal-

bindin [65,66] and diffusion is limited by the plethora of intracellular microstructures [36–39],

beyond just the synaptic vesicles included in this study. Because location and movement

through space plays a crucial role in phenomenology (see Fig 2 and Figs D, F, and G in S1

Text), investigating how these features affect release dynamics would require rerunning the

MCell model with them included.

The advantages of using MCell as ground truth, we believe, outweigh the limitations enu-

merated above. A simulated synaptic model allows for much finer experimental control and

consistency from trial to trial, while yielding far more precise results than physiological experi-

ments. Measuring release rate, probability, facilitation, and depression at biological synapses is

difficult and requires a number of problematic assumptions [67]. Using MCell allows for
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precise measurements of unmodified Ca2+ traces [27] and of single-vesicle release rates, even

controlling for such confounding processes as the post-release refractory period [25]. Any new

features, including arbitrary numbers of vesicle pools and synaptic processes, can easily be

included in future work.

Comparison to other models of short-term synaptic dynamics

In response to a given spike train, this model produces a release rate profile that represents the

rate of a time-varying Poisson process, the average release activity of an infinite number of syn-

apses (or trials) responding to the same spike train. The multi-exponential form of the release

rate profile and the facilitation factors that modify it evolve deterministically for a given

sequence of spike times. Incorporating this as a deterministic synaptic model into a spiking

neural network simulation would allow for comparison with other deterministic models of

short-term plasticity, such as that introduced by Tsodyks and Markram [68]. Their model uses

a relatively simple representation of the utilization of synaptic resources, tracking the fraction

of resources in recovered, active, and inactivated states, to flexibly model both short-term

depression and facilitation [14], and has proven useful in simulated neural network contexts

for producing complex behavior [69]. On the other hand, the predictive power of the Tsodyks-

Markram model is limited by how it abstracts away all the internal processes of the synapse,

conflating presynaptic (vesicle availability, release probability) with postsynaptic (neurotrans-

mitter receptor saturation and desensitization) resources. In contrast, our model more closely

tracks the vesicle release phenomenology that results directly from Ca2+-evoked molecular

dynamics. This allows us to explore the contribution of more fine-grained synaptic features to

whole-network computations.

Another limitation of the Tsodyks-Markram model is its deterministic formulation, repre-

senting average or aggregate synaptic behavior rather than single-trial or single-synapse behav-

ior. However, the presence of trial-to-trial stochasticity in synaptic transmission may have

important implications for the learning and information processing performed in neural cir-

cuits [18,70,71]. Our model can capture such trial-to-trial and synapse-to-synapse variability if

we sample release events from the time-varying Poisson process defined by the release rate

profile.

An example of a presynaptic model that captures probabilistic release is that by Maass and

Zador [72]. The Maass-Zador model tracks short-term facilitation in response to spike history

and short-term depression in response to release history, calculating the probability of release

at each spike time and generating Boolean release events according to this probability. How-

ever, these release events only occur exactly at spike times, in contrast to the spontaneous and

asynchronous release that occurs in real synapses [73,74]. Furthermore, the phenomenology of

the Maass-Zador model, while elegant, arises from mathematical abstractions rather than from

physiologically grounded mechanisms, making it susceptible to producing unrealistic behavior

and limiting its utility as a testable model.

Kandaswamy et al. [50] present another presynaptic model that aims for more physiologi-

cally grounded realism, employing multiple mechanisms of vesicle recycling, facilitation, aug-

mentation, and release-dependent depression, each with its own set of parameters. Some

parameters were constrained to values derived from earlier studies, while other parameters

were fit to experimental measurements of changes in synaptic strength in response to various

constant-frequency spike train stimuli. Although the resulting model does qualitatively well at

matching the experimental data, it lacks generalizability. In particular, the free parameters of

their model, which they adjusted to fit the experimental data, depend empirically on the fre-

quency of stimulation but without any discernible pattern that would provide insight into
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their physiologic origin (see Table 2 in [50]). Furthermore, the model for facilitation treats the

first spike as a special case relative to all subsequent spikes, excluding the first spike from facili-

tation to fit the data. A realistic short-term facilitation model should scale the probability of

release on the first spike as though it occurred in the middle of a train after an infinite ISI,

since the synapse should return to its baseline state after a sufficiently long interval of no spik-

ing activity, which our model accomplishes.

Future work with our model will involve implementing it in an event-driven framework,

where release events are sampled from the time-varying Poisson process defined by the release

rate profile. This approach will provide a powerful way to include a highly generalizable facili-

tation function and sub-millisecond vesicular release phenomenology, grounded in molecular

kinetics, into a highly scalable and computationally efficient presynaptic model. In contrast to

the models reviewed above, this model can achieve both the stochasticity and the asynchroni-

city that are characteristic of real synapses, while maintaining a clear mapping between its

parameters and the underlying molecular mechanisms. This approach will be crucial for

exploring the impact of different presynaptic mechanisms on the computational performance

of large neural circuits.

The main advantage of our model is its balance of computational efficiency with physiologi-

cally grounded realism. It accounts for both asynchronous and spontaneous release events,

which the Maass-Zador model lacks. For neural network simulations where the presence of

stochasticity in synaptic transmission is more important than reproducing true dynamics, the

Maass-Zador model may suffice. However, for investigations into how presynaptic mecha-

nisms of vesicle release affect information transmission and network behavior, our model pro-

vides and indispensable layer of flexibility.

Furthermore, our model provides a highly flexible and explanatory framework. Each of the

parameters for describing the profile of the release histogram (P, τ, k, μ, σ; see Eq (1), (3), and

(4)) has an almost direct link to the underlying physiology, whether to the Ca2+-binding and

vesicle fusion kinetics of the SNARE complex (P and τ) or to the stochastic delay in response

to the spike caused by buffered diffusion of Ca2+ (k, μ, and σ). Furthermore, the facilitation

function has sufficient complexity to account for the changes seen in neurotransmitter release

fidelity of a wide variety of spike train patterns. Importantly, all spikes are treated equally: Eq

(13) and (16) apply as consistently to the first spike as to the n-th. While it falls short in terms

of computational efficiency relative to the Kandaswamy et al. model, it makes up for it in

terms of biophysical plausibility and its utility for testing hypotheses regarding synaptic

function.

Importance of facilitation function parameterization

Different synapse types in different regions of the brain employ different short-term plasticity

functions, including various forms of facilitation and depression, transforming spike timing

codes into neurotransmitter release timing codes [68]. We do not know what the precise

computational roles of facilitation and depression play in neural circuits, but it seems likely to

involve more than just high-pass or low-pass filtering of spike trains [13,17,18,75–77]. The

model of facilitation presented in this paper enables the exploration of this question both

because of its grounding in explainable molecular physiology via MCell and because of its

amenability to efficient simulation of complex neural circuits.

One possible shortcoming of the facilitation function presented in this paper is that we did

not explore the steady-state behavior in our simulations. Although the steady-state facilitation

factors can be calculated from the fitted parameters, we will need to run MCell simulations

with longer spike ramps to confirm their values for long spike trains of different frequencies or
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to make other improvements to the facilitation model. For random spike trains of similar

length to those we investigated, we expect facilitation in the detailed MCell model to follow the

predictions of our phenomenological model. This is because we designed the ramp-probe

spike protocol (see Methods) to extract as much information about facilitation as possible

from short spike trains, such that short random spike trains should fall well within the space

spanned by the protocol. However, behavior may start to diverge for longer trains, which fall

outside of the space we tested. Therefore, running longer MCell simulations both to character-

ize steady-state behavior of facilitation and to test on long, random spike trains is a priority in

the next stage of this project.

Furthermore, since the release rates explored in this paper deal with single-vesicle release

probabilities, release-dependent depression (i.e. depletion-dependent depression) should

occur naturally when applying the model to simulations of synapses with finite readily releas-

able vesicle pools. However, other forms of release-independent depression may be more rele-

vant to natural spike frequencies [64,78] and could be incorporated into an extra facilitation

factor within the current model by using a negative ξ as the exponent in Eq (13). Thus, the

facilitation function can be naturally extended to include release-independent depression

mechanisms, although further research is necessary to confirm the kinetics of the other active

zone molecules of non-hippocampal synapses that underlie such mechanisms.

Future refinements

Because so much about release probability and timing depends on the precise magnitude and

time course of the Ca2+ transient, accurate modelling of Ca2+ dynamics using MCell is essen-

tial to future refinements of our model. For instance, intracellular calcium stores, including ER

and its associated receptors and channels [61,62,79] and mitochondria and its associated cal-

cium uniporter [80], can impact the Ca2+ signaling over the long term. The diffusion of Ca2+

through the presynaptic space can be affected in ways not captured by our current model by

buffering molecules other than calbindin and signaling molecules such as CaM and CaBP1

[46,63,65,66] and by the geometry of cytoskeletal microstructures [36,37]. We may also explore

the effect of varying the binding kinetics and expression levels of the various calcium buffers,

which can vary by both neuronal type and developmental stage [81–84], although based on

our experiments with removing CB, we can predict that this would only affect the number,

magnitudes, and time constants of the exponential components in the release rate profiles (see

Figs D and E in S1 Text), which could be easily determined, but would not alter the qualitative

shape of the profiles. Additional mechanisms that can influence the Ca2+ transient include the

shape of the presynaptic action potential, which can vary in cases such as Fragile X syndrome

[85], spatially localized Ca2+ spikes mediated by presynaptic NMDA receptors [86], and retro-

grade signaling via endocannabinoid receptors [87].

Other considerations of synaptic physiology, those which do not affect the shape of the

spike-evoked Ca2+ transient, can be characterized without running full MCell simulations.

These include the structure and dynamics of the SNARE complex. In our model, we assumed

that each vesicle employs two Ca2+ sensors for triggering vesicle fusion, Syt-1/2 for synchro-

nous release and Syt-7 for asynchronous release, as characterized by the Sun et al. [5] model.

Each mechanism acted independently, and together they served as the sole mechanism of

release. However, many more molecules comprise the SNARE complex, each affecting release

fidelity in complex ways [4,8,9,32]. In fact, the inclusion of extra molecules in the SNARE

assembly may play a crucial “superpriming” step in enhancing the release alacrity of already-

primed vesicles [32,52]. Furthermore, although a single SNARE complex is sufficient to induce

spike-evoked release [88], each vesicle may have multiple SNARE complexes associated with
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it, which is necessary for fast vesicle fusion [89]. We predict that multiplying SNARE com-

plexes would simply multiply release rate in proportion. It is less clear what effects that other

molecules, such as complexins and Muncs, would have on release kinetics. A quantitative

understanding of their molecular interaction kinetics is required before they can be applied to

this model. Once obtained, however, we can apply deterministic simulations of state probabili-

ties (see Methods) for this more complex SNARE model, similar to what we did in this paper.

If these simulations are driven by the improved Ca2+ transients obtained from the more mech-

anistically exhaustive MCell simulations described above, we can derive much more biologi-

cally accurate phenomenology.

Although our work focused on characterizing hippocampal Schaffer collateral synapses,

our approach can apply just as well to other synapse types. Additionally, other internal synap-

tic processes such as vesicle recycling may be combined with our model within an event-driven

framework. In this way, future refinements of our model will have the ability to capture physi-

ologically realistic phenomenology, trial-to-trial variability, asynchronicity, and internal syn-

aptic dynamics for a wide variety of synapses at very low computational cost. It can help to

uncover the contributions of single synapses or synaptic features to network computations,

establishing a connection from molecular kinetics through synaptic phenomenology up to

whole-network dynamics. This can be applied to create predictive models of biological net-

works from known physiological parameters or to design neuromorphic chips or spiking neu-

ral networks with dynamical properties relevant to future developments in brain-computer

interfaces and artificial intelligence.

Methods

Ca2+-evoked vesicle release model

The detailed model of molecular reaction-diffusion dynamics was developed in the modeling

environment known as MCell [23,24,26]. The MCell model used as a basis for the design and

validation of the presynaptic model presented in this paper comes from Nadkarni et al. [25]. It

includes mechanisms for voltage-sensitive Ca2+ influx and for Ca2+ buffering in the presynap-

tic space, with pumps and channels in the membranes to maintain a steady-state average free

Ca2+ concentration of 100 nM [55].

When an action potential arrives at the presynaptic membrane, voltage-dependent Ca2+

channels (VDCCs) open stochastically, traversing through four unopened states via voltage-

dependent state transition rates [51] (see Fig A panel A in S1 Text), producing a Ca2+ influx due

to the steep electrochemical gradient [55]. The VDCCs very quickly shut off after the membrane

potential returns to baseline (Fig B in S1 Text), and the newly introduced Ca2+ ions diffuse ran-

domly in the presynaptic space. Vesicle fusion occurs when a sufficient number of Ca2+ ions

have diffused over and bound to the release machinery associated with the SNARE complex of a

docked vesicle [5,9,25]. Cytoplasmic calbindin (CB) with a concentration of 45 μM acts as a

buffer that modulates the magnitude and duration of the free Ca2+ (Fig A panel B in S1 Text)

[58], and plasma membrane Ca2+-ATPase (PMCA) pumps (Fig A panel C in S1 Text) actively

remove Ca2+ ions over a time course of seconds [59] to the baseline [Ca2+]i of 100 nM [25,55].

Parameter values for these molecular mechanisms are given in Table A in S1 Text.

Calcium concentration as a function of time is measured at various spatial locations within

the presynaptic space (see Fig 2 for synaptic structure and “Estimating [Ca2+]i from Collision

Events” in the Supplemental Information for a description of how local [Ca2+] is measured).

For each spike train, local [Ca2+]i in the vicinity of the SNARE complex was averaged over

2000 trials at a resolution of 0.1 msec. These calcium transient profiles were then used to drive

deterministic simulations of SNARE state probabilities, as described below.
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Deterministic simulations of state probabilities

With the Ca2+ profiles obtained for each spike-evoked simulation in MCell and with the state

transitions for the release mechanisms defined in Fig 3A and 3B and Table 1, the correspond-

ing vesicle release-rate profiles become computable. While the MCell simulations we ran do

generate their own sets of release times, it would be impossible to fit precise phenomenological

functions to the release histograms without running an infeasibly large number of trials. Fur-

thermore, vesicle depletion following release events confounds the representation of release

rate, its functional form, and its facilitation dynamics (see Fig 4). Therefore, instead of running

millions of trials of MCell (or more) to produce temporally precise single-vesicle release rate

histograms, we used the averaged calcium profiles from 2000 trials (at a resolution of 0.1 msec)

to drive a deterministic simulation of the SNARE complex, tracking the probabilities of being

in each state as functions of time. This approach, in effect, produced the average release histo-

grams equivalent to an infinite number of trials acting on the averaged calcium traces.

This method tracked the probabilities of a particular release mechanism being in each pos-

sible state at every time step. That is, each state represents the number of Ca2+ ions bound to

the release molecule (0 through 5 for Syt-1 (synchronous; S) and 0 through 2 for Syt-7 (asyn-

chronous; A)). Each mechanism X2{S, A} has a state probability vector sX(t) associated with it

that tracks the probability of being in each possible state, that is, the probability of having n
Ca2+ ions currently bound for n2{0. . .NX}, where NS = 5 and NA = 2. State probabilities add to

unity, and they update on each time step according to a [Ca2+]-dependent state transition rate

matrix TX, whose superdiagonal terms are the unbinding rates, moving from a higher to a

lower-bound state, and whose subdiagonal terms are the binding rates, moving from a lower

to a higher-bound state. Specifically, for mechanism X2{S, A} with NX2{5,2} calcium ions

needed for release to occur, the binding rate is

TX
nþ1;n ¼ ðNX � nÞ � kXþ � ½Ca

2þ�; ð17Þ

and the unbinding rate is

TX
n� 1;n ¼ n � bn� 1 � kX� ð18Þ

for n2{0. . .NX} ions currently bound, where b = 0.25 acts as a binding cooperativity factor (see

Fig 3 and Fig H in S1 Text for state transition diagrams and Table 1 for parameter values).

Notice that we index the rows and columns of TX (as well as the dimensions of sX) starting

from 0 rather than 1 for convenience in representing the number of calcium ions bound in the

current state (column) and in the next state (row). To enforce conservation of mass, the diago-

nal terms must equal the combined rate of leaving the current state through both binding and

unbinding:

TX
n;n ¼ � ðT

X
nþ1;n þ TX

n� 1;nÞ

¼ � ððNX � nÞ � kXþ � ½Ca
2þ� þ n � bn� 1 � kX� Þ: ð19Þ

The above formulation does not yet take into account vesicle fusion. Recall that each mech-

anism X induces vesicle release at a certain rate γX from its releasable state (all Ca2+ ions

bound). Therefore, in addition to the unbinding rate, the diagonal term for the fully bound

state of each mechanism also includes the rate of transition to the release state:

TX
NX ;NX

¼ � ðgX þ NX � b
NX � 1 � kX� Þ; ð20Þ

where γX is the mechanism-specific release rate defined in Table 1. By including the release
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rate, the sum of state probabilities would slowly decay towards zero as probability mass leaks

into the (untracked) release state, since when release occurs, the vesicle can no longer partici-

pate in further activity. This depletion of vesicle probability would obscure the true shape of

the single-vesicle release rate. To account for this, the state vector is renormalized at each time

step by the probability of no release event having yet occurred, such that the occupancies of

each state again add to one:

sX tð Þ  
sXðtÞ

PNX
n¼0

sXn ðtÞ
: ð21Þ

If one considers the deterministic simulation to represent a state histogram averaged over

an infinite number of trials, this normalization step effectively “zooms in” on the fraction of

trials at each time step for which no release occurred. Thus, the model tracks the instantaneous

rate of release, given that no release has yet occurred since the start of the simulation. This per-

mits the calculation, for example, of the equilibrium state probability distribution (see Fig H in

S1 Text, left pie charts), driven by the steady-state Ca2+ concentration (100 nM in MCell: [25]).

These equilibrium state vectors are essential for initializing all other simulations. From these,

it is possible to determine the steady-state spontaneous release rates for each mechanism that

result (S0 = 5.70×10−9ms−1; A0 = 1.84×10−5ms−1; see Fig C in S1 Text).

Because the matrix TX represents transition rates rather than transition probabilities, it acts

as the infinitesimal generator for a continuous-time finite state Markov process [90] rather

than as a discrete transition matrix. Converting this exactly to a discrete transition probability

matrix PX using a time step of Δt requires an infinite sum of matrix products, according to the

Taylor series

PX ½Ca2þ�;Dt
� �

¼ expðDt � TXð½Ca2þ�ÞÞ ¼
P1

m¼0

ðDt � TXð½Ca2þ�ÞÞ
m

m!
: ð22Þ

This is akin to the probability of a Poisson process with transition rate λ remaining in the

same state for a time duration Δt, which follows the exponential form p(t>Δt) = exp(−Δt�λ),

acting just like the diagonal terms of the transition rate matrix and sharing the same Taylor

series expansion. The time step Δt needs to be small enough such that the level of [Ca2+] can

be regarded as constant (on the order of 0.1 msec for the calcium transients investigated for

this paper). However, in order to avoid too many matrix multiplications and sums, we chose a

time step of 0.005 msec, which is small enough to use the linear approximation to Eq (22)

while still maintaining numerical stability, even at very high levels of [Ca2+]:

PXð½Ca2þ�;DtÞ � Iþ Dt � TXð½Ca2þ�Þ: ð23Þ

Thus, the state vector at time t+Δt is the product of the state transition probability matrix

with the state vector at time t, according to

sXðt þ DtÞ ¼ PXð½Ca2þ�ðtÞ;DtÞsXðtÞ

¼ ðIþ Dt � TXð½Ca2þ�ðtÞÞÞsXðtÞ; ð24Þ

followed by the renormalization described above in Eq (21).

Similarly, the transitions in state probabilities for VDCCs, calbindin, and PMCA pumps in

the well-mixed model were calculated according to

sMðt þ DtÞ ¼ ðIþ Dt � TMÞsMðtÞ; ð25Þ
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where M2{VDCC, Cb, PMCA} refers to the molecular species. Furthermore, the transition rate

matrix TVDCC is a function of membrane potential, while the matrices TCb and TPMCA are

functions of [Ca2+]i (see Fig A and Table A in S1 Text for state transition diagrams and transi-

tion rate parameters). Within the well-mixed model simulations, diffusion occurs instan-

taneously, effectively eliminating space from consideration and allowing [Ca2+]i to be the same

for all molecular mechanisms within the synapse.

Stimulus protocols for exploring facilitation

Whereas simulations with single action potentials can elucidate the functional form of syn-

chronous and asynchronous release, stimulus trains of multiple spikes can reveal the dynamics

of facilitation in release probability, which is well documented experimentally [14,44,52–54].

Short-term facilitation in release probability is more pronounced for spikes closer together in

time than for those separated by long intervals. To investigate how delay affects probability of

release, we studied paired-pulse facilitation (PPF) for interspike intervals (ISIs) of exponen-

tially increasing delay. Specifically, we stimulated the MCell model with paired pulses of

action-potential-like waveforms separated by 2, 5, 10, 20, 50, 100, and 200 ms and measured

the local [Ca2+]i at a point within the axon (see Fig 2 for synaptic structure and “Estimating

[Ca2+]i from collision events” in the Supplemental information for a description of how local

[Ca2+] is measured). These Ca2+ traces then drove deterministic simulations of synchronous

and asynchronous release rate, as described in the previous section. This permitted us to deter-

mine a functional form to describe PPF (see Results).

Realistic spike trains, however, involve patterns much more complex than paired pulses,

and the recent history of presynaptic activity can have a strong effect on future changes in

release probability. To see how facilitation evolves in more complex trains of action potentials,

we designed a protocol to explore a larger space of possible facilitated states, assuming that the

level of facilitation experienced on one spike depends exclusively on the delay since the previ-

ous spike (the interspike interval, or ISI) and on the state of some internal facilitation parame-

ter from the previous spike. The spike trains generally consist of two phases: a spiking ramp

and a probe spike. The ramp phase explores how facilitation develops with multiple spikes at

fixed ISIs and having anywhere from one to five spikes with an ISI of 2, 5, 10, or 20 ms (time

prevented the exploration of ramps with more spikes). The probe phase explores how facilita-

tion wears off with increasing delay between spikes and consists of a single spike at 2, 5, 10, 20,

50, 100, or 200 ms after the end of the ramp, as in the PPF protocol above. All these combina-

tions of ramps and probes add up to 5×4×(7+1) = 160 cases (including those cases without a

probe spike) or 136 unique spike trains (discounting the repeats with one spike in the ramp at

different ISIs). Future work can explore the steady-state behavior of the facilitation factors by

testing longer spike ramps of each ISI.

Algorithms for fitting parameters and metaparameters

Fitting parameter values to the shapes of the release-rate histograms involved two steps: first,

obtaining an initial guess, and second, optimizing the parameter values to a best-fit set. For the

first step, the time constants for rate decay (see Eq (1) and (3) and Table 2) were found from

the slopes of the logarithms of the profiles (see Eq (2) and Figs 5 and 6) in response to both

Ca2+ impulse and the Ca2+ traces derived from MCell. Other parameters were initialized

through trial and error. For the second step, we applied the Nelder-Mead simplex method of

function optimization using the fminsearch() function in MATLAB 2016 [91] to minimize the

cost function over the parameters. This method does not require a measure of the gradient of

the cost function, which was not computable analytically. The cost function uses the fraction
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of the variance unexplained (FVU) by the model, as in

FVU yðtÞ; f ðtÞð Þ ¼

PNt
n¼1
ðyðtnÞ � f ðtnÞÞ

2

PNt
n¼1
ðyðtnÞ � �yÞ2

; ð26Þ

where �y is the mean release rate, y(t) is the true shape of the release rate profile, and f(t) is the

model profile at the same Nt time points. More precisely, the cost function � is a linear combi-

nation of the FVU for the function and for the logarithm of the function:

�ðyðtÞ; f ðtÞÞ ¼ a � FVUðyðtÞ; f ðtÞÞ þ b � FVUðlogðyðtÞÞ; logðf ðtÞÞÞ; ð27Þ

where α and β are constants (α = β = 1 in the fits run for this paper). The FVU for the functions

in linear space is more sensitive to the high-amplitude peaks that occur for the fast release

components, while the FVU for the functions in logarithmic space is more sensitive to the

slopes (and therefore the time constants) of the exponential components.

The metaparameters of the facilitation functions (see Eq (13) and (16) and Table 3) were fit-

ted after the parameters were fitted to the release profiles in response to each spike of the trains

described in the previous section of Methods. As described in Results, we took facilitation to

apply only to the Pc parameters, allowing them to vary within bounds for each spike in the

train, while the profile time constants and the temporal filter parameters were held constant.

The best-fit set of values for Pc were found for the final spike-response profile of each spike

train. The fitted parameters were taken as true, and the space of the logarithms of the meta-

parameters τ, N, and L = Nξ was explored, using the same error function and optimization as

above.

Supporting information

S1 Text. Supporting information in seven sections. (A) Estimating [Ca2+]i from collision

events. (B) Chemical kinetics of calcium channels, buffers, and pumps. (C) Effects of buffer

and spatial modeling on release dynamics. (D) Applying release start time filter to release rate

profiles. (E) Facilitation nonlinearities. (F) Intuitive exploration of facilitation function behav-

ior. (G) Goodness of fit of facilitation models. Fig A. State Diagrams for VDCC, Calbindin,

and PMCA. All diagrams reproduced with permission from Nadkarni et al. [25]. (A) VDCC

state transition model adapted from Bischofberger et al. [51]. Transition rates αij and βji

depend on membrane potential v. (B) State transitions for calbindin (CB) at high-affinity (H)

and medium-affinity (M) Ca2+-binding sites. On rates (kh+ and km+) are proportional to

[Ca2+]i. (C) PMCA pump state diagram with Ca2+ interactions depicted on the relative side of

the membrane. Ca2+ leakage occurs only in state PMCA0. Association rate kpm1 is proportio-

nal to [Ca2+]i. Table A. Parameter Values for VDCC, Calbindin, and PMCA. Table adapted

from [25]. VDCC rates follow αi(v) = αi0exp(v/vi) and βi(v) = βi0exp(-v/vi). VDCC parameters

values adapted from [51]. Calbindin parameter values adapted from [58]. PMCA parameter

values adapted from [59]. Fig B. Action-Potential-Evoked Ca2+ Current. (A) Action-poten-

tial-like waveform applied to axon. (B) Probability of a single VDCC being in the open state in

response to the action potential in panel (A) increases from about 10−5 to around 96% during

the spike before quickly shutting off; computed from deterministic simulation of state proba-

bilities. (C) Rate of Ca2+ influx through a single, pathologically open channel (red) and

through a typical channel (blue), whose probability of being open follows (B). Fig C. Sponta-

neous Rates of Vesicle Fusion Increase with [Ca2+]i0. For small [Ca2+]i0, S0 = kS�([Ca2+]i0)5

and A0 = kA�([Ca2+]i0)2, where kS�6×10−4 ms–1�μM–5 and kA�2×10−3 ms–1�μM–2. As

[Ca2+]i0� !1, S0� !γS and A0� !γA. Values for S0 and A0 at [Ca2+]i0 = 100 nM, which is

used throughout most of this paper, are pointed out for reference. Fig D. Spatial Modeling
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Important for Capturing Fine-Grain Features of Ca2+ Transients. Color scheme identical to

that used in Fig 2: yellow to blue represent proximal to distal Ca2+ sensors. (A) [Ca2+]i mea-

sured at increasing distance from VDCC source (yellow to blue), with well-mixed approxima-

tion overlaid for comparison (maroon). Inset focuses on shorter time scale. (B) Profiles with

calbindin removed from MCell (yellow to blue) and well-mixed model (maroon). Note that

peak [Ca2+]i for the most proximal case extends up to 81 μM, but is cut off for clarity. Fig E.

Effect of Calbindin Buffer on Spike-Evoked Ca2+ Profile and Release Rates. Action-poten-

tial-like stimulus delivered to model axon starting at 0 ms. Diffusion is assumed to be instanta-

neous, and molecular state probabilities are tracked deterministically over time. (A) Free

[Ca2+]i with no calbindin buffer decays linearly with time due to saturation of PMCA pumps.

(B) Syt-1/7-mediated release rates are large but short-lived in response to unbuffered Ca2+. (C)

Free [Ca2+]i with calbindin added to the axon has much smaller magnitude and much nar-

rower peak but has much longer tail. (D) Vesicle release in response to buffered Ca2+ is much

less pronounced. The calbindin buffer reduces the rate of synchronous transmission but

extends the window for pronounced asynchronous transmission. Fig F. Synchronous and

Asynchronous Release Rates Decrease with Distance from the Ca2+ Source. Color scheme

identical to that used in Fig 2 and Fig D in S1 Text: yellow to blue represent proximal to distal

Ca2+ sensors. (A) Synchronous release rate. (B) Integrated probability of synchronous release

falls off nearly exponentially with distance to a baseline level. (C) Asynchronous release rates.

(D) Integrated probability of asynchronous release also decays with distance to some baseline,

but not exponentially. Fig G. Parametric Fits to Release Histogram Profiles at Increasing

Distance from the Ca2+ Source. (A,B) Fitted release profiles (black) imposed over the true his-

tograms for synchronous (A, blue) and asynchronous (B, red). (C) Parameter values as a func-

tion of distance for synchronous release. (D) The same for asynchronous release. Fig H.

Change in the Balance of Binding Kinetics and Internal State Distribution of Ca2+ Sensor

with Spike History. State diagrams the same as shown in Fig 3. (A) Synchronous state dia-

grams. At baseline [Ca2+]i (first red dot), unbinding kinetics (left arrows) overpower binding

(right arrows), biasing Syt-1 toward unbound state (S0; top diagram), with almost no probabil-

ity of having any Ca2+ ions bound before an action potential (left pie chart). During peak Ca2+

influx (second red dot), binding rates (thicker right arrows) overpower unbinding, biasing

Syt-1 toward its fully-bound releasable state (S5; lower diagram), with much greater probability

of having at least some Ca2+ bound (right pie chart). (B) The same for asynchronous release

with Syt-7, whose releasable state requires two Ca2+ ions bound (A2). Slower kinetics lead to

only slight bias in favor of binding during an action potential (slightly thicker right arrows in

lower diagram), leading to miniscule increase in probability of being in the releasable state on

later spikes (right pie chart). Release becomes more probable on subsequent spikes because

previous activity has pushed synaptotagmin into higher-bound states, making reaching the

releasable state easier. Fig I. Empirical Facilitation in Release Probability is a Nonlinear

Function of Spike History and Ca2+ Buildup. (A) [Ca2+]i and (B) release rate in response to a

5-spike ramp stimulus with a 10-ms ISI (black and dark green), followed by a single probe

spike at increasing delay from the end of the ramp (gray and light green; multiple cases over-

laid on the same plot). Release rate grows much faster than Ca2+ buildup can account for. Fig

J. Empirical Facilitation in Release Probability is a Nonlinear Function of Spike History.

Integrated release fidelity (P(n)) relative to baseline (P(0)) for the various stimulus cases

explored. Ramp # indicates the number of spikes in the ramp preceding the probe spike, and

Δt represents the ISI between the last ramp spike and the probe spike. Spike history noticeably

affects the growth of facilitation, as seen for ramps with 2-ms ISIs (A), 5-ms ISIs (B), 10-ms

ISIs (C), and 20-ms ISIs (D). Different colors distinguish facilitation functions with different

spike histories. Dark lines follow relative release fidelity for spikes along spike ramps, and
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dotted lines follow relative release fidelity for probe spikes. Fig K. Saturation of Facilitation

Parameters. (A) Facilitation parameter f(�) increases almost linearly from one spike (f(n-1)) to

the next (f(n)), until it approaches some limit N�1. (B) Curves represent the unseen change in

f(�) between spikes. Dots represent actual values observed at spike times, values determined by

the Ca2+-triggered increment in release fidelity at each spike. Steady-state value for facilitation

parameter limited by stimulus frequency and by value of N. No facilitation above baseline

occurs for N = 1. Fig L. Release Rate Parameters and Facilitation Metaparameters Fitted to

Empirical Histogram Profiles. Errors across all cases in linear and logarithmic space for the

predictive model.
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9. Südhof T.C., A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med,

2013. 19(10): p. 1227–31. https://doi.org/10.1038/nm.3338 PMID: 24100992
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