JSES International 8 (2024) 176-184

ELSEVIER

Contents lists available at ScienceDirect

# JSES International

journal homepage: www.jsesinternational.org

# A comprehensive analysis of age and 30-day complications following total shoulder arthroplasty: nonagenarians, octogenarians, and septuagenarians



Kenny Ling, MD<sup>a</sup>, Richelle P. Fassler, BA<sup>b</sup>, Andrew J. Nicholson <sup>a</sup>, David E. Komatsu, PhD<sup>a</sup>, Edward D. Wang, MD<sup>a,\*</sup>

<sup>a</sup>Department of Orthopaedics, Stony Brook University, Stony Brook, NY, USA <sup>b</sup>Department of Orthopaedics, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA

## ARTICLE INFO

Keywords: Total shoulder arthroplasty Age Nonagenarian Octogenarian Septuagenarian Readmission Mortality

*Level of evidence:* Level III; Retrospective Cohort Comparison Using Large Database; Prognosis Study **Background:** Increased age is a well-known risk factor for development of osteoarthritis. Total shoulder arthroplasty (TSA) is a common treatment option for patients with severe glenohumeral osteoarthritis. The purpose of this study was to investigate the association between the septuagenarian, octogenarian, and nonagenarian populations and postoperative outcomes following TSA.

**Methods:** The American College of Surgeons National Surgical Quality Improvement Program database was queried for all patients who underwent TSA between 2015 and 2020. Patients were divided into cohorts based on age: sexagenarians (60-69), septuagenarians (70-79), octogenarians (80-89), and nonagenarians (90+). Multivariate logistic regression was used to identify associations between age and postoperative complications.

**Results:** On bivariate analysis, compared to sexagenarians, septuagenarians were significantly associated with higher rates of myocardial infarction (P = .038), blood transfusion (P < .001), organ/space surgical site infection (P = .048), readmission (P = .005), and nonhome discharge (P < .001. Compared to septuagenarians, octogenarians were significantly associated with higher rates of urinary tract infection (P < .001), blood transfusion (P < .001), readmission (P = .002), non-home discharge (P < .001), and mortality (P = .027). Compared to octogenarians, nonagenarians were significantly associated with higher rates of sepsis (P = .013), pneumonia (P = .003), reintubation (P = .009), myocardial infarction (P < .001), blood transfusion (P < .001), readmission (P = .026), nonhome discharge (P < .001), and mortality (P < .001), blood transfusion (P < .001), readmission (P = .026), nonhome discharge (P < .001), and mortality (P < .001), blood transfusion (P < .001), readmission (P = .026), nonhome discharge (P < .001), and mortality (P < .001).

**Conclusion:** From age 60, each decade of age was identified to be an increasingly significant predictor for blood transfusion, readmission, and nonhome discharge following TSA. From age 70, each decade of age was additionally identified to be an increasingly significant predictor for mortality.

© 2023 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

Glenohumeral osteoarthritis affects up to 17% of patients with shoulder pain, greatly hindering quality of life and impairing activities of daily living.<sup>15,25</sup> Its prevalence increases with age, with radiographic evidence noted in 32.8% of individuals aged older than 60.<sup>16</sup> The aging population is on the rise, with the proportion of Americans over age 65 expected to increase from 16% to 23% by 2060.<sup>26</sup> As the US population ages and osteoarthritis becomes more prevalent, it is important to optimize the management of individuals who choose to undergo surgical treatment.

\*Corresponding author: Edward D. Wang, MD, Department of Orthopaedics, Stony Brook University Hospital, HSC T-18, Room 080, Stony Brook, NY 11794-8181, USA. *E-mail address:* Edward.Wang@stonybrookmedicine.edu (E.D. Wang). Total shoulder arthroplasty (TSA), including both anatomic and reverse TSA, is a common treatment option for patients with severe glenohumeral osteoarthritis.<sup>15</sup> TSA also may be considered to treat patients with massive rotator cuff tears or proximal humerus fractures, although primary osteoarthritis remains the most common indication for TSA.<sup>12,18,39</sup> Specifically, reverse TSA has proven to be particularly beneficial to treat osteoarthritis in the elderly, due to severe bone loss and joint deformation.<sup>2</sup> Overall, joint replacement has shown to significantly decrease pain and improve function of the shoulder joint in patients with a history of osteoarthritis, especially among older individuals.<sup>25</sup>

Increased age is a well-known risk factor for development of osteoarthritis, along with female sex, genetics, past trauma, and obesity.<sup>31</sup> Since arthritis is common in the aging population, the

Institutional review board approval was not required for this study.

https://doi.org/10.1016/j.jseint.2023.08.025

<sup>2666-6383/© 2023</sup> The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

safety and efficacy of TSA as a treatment option is valuable to investigate. Prior studies on joint replacement surgery among older patients compared to younger patients have reported increased risk of multiple medical complications, longer hospital stays, readmission, and mortality.<sup>4,9-11,19,21</sup> However, understanding how each increased decade of life affects adverse outcomes has not been explored. Further investigation to stratify postoperative outcomes within older age groups may help to better understand as to which adverse outcomes certain patient groups are at higher risk.

The purpose of this study was to investigate the association between the septuagenarian, octogenarian, and nonagenarian populations and postoperative outcomes following TSA. We hypothesized that increased age will be associated with increased rate of postoperative adverse outcomes.

# Methods

The American College of Surgeons National Surgical Quality Improvement Program database was queried for all patients who underwent TSA between 2015 and 2020. The NSQIP database is fully deidentified, therefore rendering this study exempt from approval by our University's institutional review board. Data in the NSQIP database are obtained from over 600 hospitals in the United States and are collected by trained surgical clinical reviewers. The data are periodically audited to maintain high fidelity.

*Current Procedural Terminology* code 23472 was used to identify patients who underwent TSA, both anatomic and reverse, from 2015 to 2020. Cases for patients younger than 18 years of age or TSA performed for trauma were automatically excluded from the database. Cases were excluded if any of the following variables had missing information: age, height, weight, functional status, discharge destination, American Society of Anesthesiologists (ASA) classification. Cases were also excluded for age <60.

Variables collected in this study included patient demographics, comorbidities, surgical characteristics, preoperative laboratory values, and 30-day postoperative complication data. Patient demographics included age, body mass index (BMI), gender, functional status, ASA classification, and smoking status. Preoperative comorbidities included insulin-dependent and noninsulin dependent diabetes, severe chronic obstructive pulmonary disease (COPD), hypertension requiring medication, bleeding disorders, open wound/wound infection, disseminated cancer, and congestive heart failure (CHF). Surgical characteristics included operative duration in minutes. Preoperative laboratory values included hematocrit to assess for preoperative anemia. Postoperative complications within 30 days included sepsis, septic shock, pneumonia, reintubation, urinary tract infection (UTI), stroke, cardiac arrest, myocardial infarction, blood transfusion, deep vein thrombosis, pulmonary embolism, failure to wean off ventilator, deep incisional surgical-site infection (SSI), superficial incisional SSI, organ/space SSI, wound dehiscence, readmission, reoperation, nonhome discharge, and mortality.

The initial pool of patients was divided into cohorts based on age: sexagenarians (60-69), septuagenarians (70-79), octogenarians (80-89), nonagenarians (90+). Of note, the NSQIP database codes for all patients over the age of 90 as "90+." Therefore, it was possible that the nonagenarian cohort included patients who were older than the nonagenarian range of 90-99. Three sets of analyses were performed, such that sexagenarians, septuagenarians, and octogenarians each served as the reference cohort for patients older than the reference cohort.

A total of 27,050 patients who underwent primary TSA were identified in NSQIP from 2015 to 2020. Cases were excluded as follows: 152 for missing height/weight, 11 for missing discharge destination, 29 for missing ASA classification, 2 for missing readmission status, 227 for missing functional health status prior to surgery, 3736

for age <60. Of the 26,629 patients remaining after exclusion criteria, 9085 (39.7%) patients were included in the sexagenarian cohort, 10,307 (45.0%) in the septuagenarian cohort, 3335 (14.6%) in the octogenarian cohort, and 166 (0.7%) in the nonagenarian cohort.

All statistical analyses were conducted using SPSS Software version 29.0 (IBM Corp., Armonk, NY, USA). Patient demographics and comorbidities were compared between cohorts using bivariate logistic regression. Postoperative complications were also compared between cohorts using bivariate logistic regression.

Multivariate logistic regression, adjusted for all significantly associated patient demographics and comorbidities, was used to identify associations between age and postoperative complications. Odds ratios (OR) were reported with 95% confidence intervals (CI). The level of statistical significance was set at P < .05.

# Results

## Sexagenarians as reference cohort

Compared to sexagenarians, the patient demographics and comorbidities significantly associated with septuagenarians were BMI 18.5-29.9 (P < .001), female gender (P < .001), dependent functional status (P < .001), ASA  $\ge 3$  (P < .001), nonsmoker status (P < .001), hypertension (P < .001), COPD (P = .010), bleeding disorder (P < .001), preoperative anemia (P < .001), and operative duration 0-79 minutes (P < .001) (Table I). The patient demographics and comorbidities significantly associated with octogenarians were BMI 18.5-29.9 (P < .001), female gender (P < .001), dependent functional status (P < .001), ASA >3 (P < .001), nonsmoker status (P < .001), hypertension (P < .001), COPD (P = .039), bleeding disorder (P < .001), no chronic steroid use (P = .039), CHF (P = .007), preoperative anemia (P < .001), and operative duration 0-79 minutes (P < .001). The patient demographics and comorbidities significantly associated with nonagenarians were BMI 18.5-29.9 (P < .001), female gender (P < .001), dependent functional status (P < .001), ASA  $\geq 3$ (P < .001), non-smoker status (P < .001), hypertension (P < .001), CHF (P < .001), preoperative anemia (P < .001), and operative duration 0-79 minutes (P = .008).

Bivariate analysis identified postoperative complications significantly associated with each age cohort, with reference to the sexagenarian cohort (Table II). Septuagenarians had significantly higher rates of myocardial infarction (P = .038), blood transfusion (P < .001), organ/space SSI (P = .048), readmission (P = .005), and nonhome discharge (P < .001). Octogenarians had significantly higher rates of septic shock (P = .033), pneumonia (P = .023), UTI (P < .001), stroke (P = .050), blood transfusion (P < .001), deep vein thrombosis (P = .038), failure to wean off ventilator (P = .013), readmission (P < .001), nonhome discharge (P < .001), and mortality (P = .016). Nonagenarians had significantly higher rates of sepsis (P = .008), pneumonia (P < .001), reintubation (P < .001), UTI (P < .001), myocardial infarction (P < .001), blood transfusion (P < .001), pulmonary embolism (P = .044), failure to wean off ventilator (P = .019), readmission (P < .001), nonhome discharge (*P* < .001), and mortality (*P* < .001).

After adjusting for the patient variables significantly associated with each age cohort, multivariate logistic regression identified the complications independently associated with each cohort, with reference to the sexagenarian cohort (Table III). Septuagenarians were independently associated with higher rates of blood transfusion (OR 1.67, 95% CI 1.27-2.19; P < .001), readmission (OR 1.24, 95% CI 1.02-1.50; P = .028), and non-home discharge (OR 1.82, 95% CI 1.59-2.08; P < .001). Octogenarians were independently associated with higher rates of UTI (OR 1.73, 95% CI 1.09-2.76; P = .021), blood transfusion (OR 2.13, 95% 1.53-2.97; P < .001),

## Table I

Patient demographics/comorbidities based on age for patients who underwent total shoulder arthroplasty between 2015 and 2020, with age 60-69 as the reference group.

| Characteristic                       | Age 60-69 |             | Age 70-79 | )       |         | Age 80-89 | )           |         | Age 90+ |         |              |
|--------------------------------------|-----------|-------------|-----------|---------|---------|-----------|-------------|---------|---------|---------|--------------|
|                                      | Number    | Percent     | Number    | Percent | P value | Number    | Percent     | P-value | Number  | Percent | P value      |
| Total                                | 9085      | 100.0       | 10,307    | 100.0   |         | 3335      | 100.0       |         | 166     | 100.0   |              |
| Body mass index (kg/m <sup>2</sup> ) |           |             |           |         | <.001   |           |             | <.001   |         |         | <.001        |
| <18.5                                | 66        | 0.7         | 69        | 0.7     |         | 33        | 1.0         |         | 6       | 3.6     |              |
| 18.5-29.9                            | 3863      | 42.5        | 5122      | 49.7    |         | 2100      | 63.0        |         | 126     | 75.9    |              |
| 30-34.9                              | 2420      | 26.6        | 2781      | 27.0    |         | 810       | 24.3        |         | 24      | 14.5    |              |
| 35-39.9                              | 1525      | 16.8        | 1397      | 13.6    |         | 256       | 7.7         |         | 6       | 3.6     |              |
| ≥40                                  | 1201      | 13.2        | 921       | 8.9     |         | 130       | 3.9         |         | 4       | 2.4     |              |
| Gender                               |           |             |           |         | <.001   |           |             | <.001   |         |         | <.001        |
| Female                               | 4810      | 52.9        | 6061      | 58.8    |         | 2245      | 67.3        |         | 132     | 79.5    |              |
| Male                                 | 4275      | 47.1        | 4246      | 41.2    |         | 1090      | 32.7        |         | 34      | 20.5    |              |
| Functional status                    |           |             |           |         | <.001   |           |             | <.001   |         |         | <.001        |
| Independent                          | 8953      | 98.5        | 10,093    | 97.9    |         | 3185      | 95.5        |         | 144     | 86.7    |              |
| Dependent                            | 132       | 1.5         | 214       | 2.1     |         | 150       | 4.5         |         | 22      | 13.3    |              |
| ASA classification                   |           |             |           |         | <.001   |           |             | <.001   |         |         | <.001        |
| 1-2                                  | 4251      | 46.8        | 3954      | 38.4%   |         | 1007      | 30.2        |         | 38      | 22.9    |              |
| >3                                   | 4834      | 53.2        | 6353      | 61.6    |         | 2328      | 69.8        |         | 128     | 77.1    |              |
| Smoker                               |           |             |           |         | <.001   |           |             | <.001   |         |         | <.001        |
| No                                   | 7903      | 87.0        | 9778      | 94.9    |         | 3248      | 97.4        |         | 164     | 98.8    |              |
| Yes                                  | 1182      | 13.0        | 529       | 5.1     |         | 87        | 2.6         |         | 2       | 1.2     |              |
| Diabetes mellitus                    | 1102      | 15.0        | 525       | 5.1     | .090    | 07        | 2.0         | .056    | 2       | 1.2     | .120         |
| No diabetes                          | 7396      | 81.4        | 8266      | 80.2    | .050    | 2806      | 84.1        | .050    | 143     | 86.1    | .120         |
| Non-insulin dependent                | 1187      | 13.1        | 1459      | 14.2    |         | 400       | 12.0        |         | 15      | 9.0     |              |
| Insulin dependent                    | 502       | 5.5         | 582       | 5.6     |         | 129       | 3.9         |         | 8       | 4.8     |              |
| Hypertension                         | 502       | 5.5         | 502       | 5.0     | <.001   | 125       | 5.5         | <.001   | 0       | 4.0     | <.001        |
| No                                   | 3365      | 37.0        | 2841      | 27.6    | <.001   | 768       | 23.0        | <.001   | 39      | 23.5    | <b>\.001</b> |
| Yes                                  | 5720      | 63.0        | 7466      | 72.4    |         | 2567      | 77.0        |         | 127     | 76.5    |              |
| COPD                                 | 5720      | 05.0        | 7400      | 72.4    | .010    | 2307      | 77.0        | .039    | 127     | 70.5    | .146         |
| No                                   | 8517      | 93.7        | 9567      | 92.8    | .010    | 3092      | 92.7        | .035    | 151     | 91.0    | .140         |
| Yes                                  | 568       | 6.3         | 740       | 7.2     |         | 243       | 7.3         |         | 15      | 9.0     |              |
| Bleeding disorders                   | 500       | 0.5         | 740       | 1.2     | <.001   | 245       | 7.5         | <.001   | 15      | 5.0     | .056         |
| No                                   | 8900      | 98.0        | 10,013    | 97.1    | <.001   | 3197      | 95.9        | <.001   | 159     | 95.8    | .050         |
| Yes                                  | 185       | 2.0         | 294       | 2.9     |         | 138       | 4.1         |         | 7       | 4.2     |              |
| Chronic steroid use                  | 165       | 2.0         | 294       | 2.9     | .808    | 156       | 4.1         | .015    | 1       | 4.2     | .425         |
| No                                   | 8633      | 95.0        | 9802      | 95.1    | .808    | 3204      | 06.1        | .015    | 160     | 96.4    | .425         |
| Yes                                  | 452       | 95.0<br>5.0 | 505       | 4.9     |         | 131       | 96.1<br>3.9 |         | 6       | 3.6     |              |
|                                      | 452       | 5.0         | 505       | 4.9     | 525     | 131       | 3.9         | 107     | 0       | 3.0     | 050          |
| Open wound/wound infection           | 0050      | 00.7        | 10.271    | 00.7    | .525    | 2220      | 00.0        | .197    | 104     | 00.0    | .056         |
| No                                   | 9058      | 99.7        | 10,271    | 99.7    |         | 3320      | 99.6        |         | 164     | 98.8    |              |
| Yes                                  | 27        | 0.3         | 36        | 0.3     | 007     | 15        | 0.4         | 607     | 2       | 1.2     | 000          |
| Disseminated cancer                  | 00004     | 00.0        | 10 20 4   | 00.0    | .907    | 2226      | 00.7        | .697    | 100     | 100.0   | .998         |
| No                                   | 9064      | 99.8        | 10,284    | 99.8    |         | 3326      | 99.7        |         | 166     | 100.0   |              |
| Yes                                  | 21        | 0.2         | 23        | 0.2     |         | 9         | 0.3         |         | 0       | 0.0     |              |
| Congestive heart failure             |           |             |           |         | .087    |           |             | .007    |         |         | <.001        |
| No                                   | 9036      | 99.5        | 10,231    | 99.3    |         | 3302      | 99.0        |         | 158     | 95.2    |              |
| Yes                                  | 49        | 0.5         | 76        | 0.7     |         | 33        | 1.0         |         | 8       | 4.8     |              |
| Preoperative anemia                  |           |             |           |         | <.001   |           |             | <.001   |         |         | <.001        |
| No                                   | 6869      | 75.6        | 7467      | 72.4    |         | 2184      | 65.5        |         | 94      | 56.6    |              |
| Yes                                  | 1147      | 12.6        | 1778      | 17.3    |         | 872       | 26.1        |         | 67      | 40.4    |              |
| Operative duration (minutes)         |           |             |           |         | <.001   |           |             | <.001   |         |         | .008         |
| 0-79                                 | 2164      | 23.8        | 2841      | 27.6    |         | 1037      | 31.1        |         | 54      | 32.5    |              |
| 80-128                               | 4539      | 50.0        | 5204      | 50.5    |         | 1657      | 49.7        |         | 83      | 50.0    |              |
| ≥129                                 | 2382      | 26.2        | 2262      | 21.9    |         | 641       | 19.2        |         | 29      | 17.5    |              |

ASA, American Society of Anesthesiologists; COPD, chronic obstructive pulmonary disease.

Bold *P* values indicate statistical significance with P < .05.

failure to wean off ventilator (OR 7.67, 95% CI 1.70-34.72; P = .008), readmission (OR 1.39, 95% CI 1.07-1.81; P = .012), and nonhome discharge (OR 5.47, 95% CI 4.67-6.40; P < .001). Nonagenarians were independently associated with higher rates of pneumonia (OR 5.05, 95% CI 1.72-14.81; P = .003), reintubation (OR 4.53, 95% CI 1.02-20.17; P = .048), UTI (OR 3.26, 95% CI 1.12-9.42; P = .030), myocardial infarction (OR 6.30, 95% CI 1.59-25.01; P = .009), blood transfusion (OR 3.07, 95% CI 1.52-6.18; P = .002), nonhome discharge (OR 10.94, 95% CI 7.33-16.32; P < .001), and mortality (OR 5.80, 95% CI 1.31-25.59; P = .020).

### Septuagenarians as reference cohort

Compared to septuagenarians, the patient demographics and comorbidities significantly associated with octogenarians were BMI 18.5-29.9 (P < .001), female gender (P < .001), dependent functional status (P < .001), ASA  $\ge 3$  (P < .001), nonsmoker status (P < .001), no diabetes (P < .001), hypertension (P < .001), bleeding disorder (P < .001), no chronic steroid use (P = .021), preoperative anemia (P < .001), and operative duration 0-79 minutes (P < .001) (Table IV). The patient demographics and comorbidities significantly associated with nonagenarians were BMI 18.5-29.9 (P < .001), female gender (P < .001), dependent functional status (P < .001), ASA  $\ge 3$  (P < .001), nonsmoker status (P = .037), no CHF (P < .001), and preoperative anemia (P < .001).

Bivariate analysis identified postoperative complications significantly associated with each age cohort, with reference to the septuagenarian cohort (Table V). Octogenarians had significantly higher rates of UTI (P < .001), blood transfusion (P < .001), readmission (P = .002), nonhome discharge (P < .001), and mortality

#### Table II

Bivariate analysis of 30-day postoperative complications based on age group, with age 60-69 as the reference group.

| Postoperative complication     | Age 60-69 |         | Age 70-79 |         |         | Age 80-89 |         |         | Age 90+ |         |         |
|--------------------------------|-----------|---------|-----------|---------|---------|-----------|---------|---------|---------|---------|---------|
|                                | Number    | Percent | Number    | Percent | P value | Number    | Percent | P-value | Number  | Percent | P value |
| Sepsis                         | 15        | 0.17    | 10        | 0.10    | .193    | 5         | 0.15    | .852    | 2       | 1.20    | .008    |
| Septic shock                   | 1         | 0.01    | 7         | 0.07    | .089    | 4         | 0.12    | .033    | 0       | 0.00    | 1.000   |
| Pneumonia                      | 36        | 0.40    | 53        | 0.51    | .227    | 24        | 0.72    | .023    | 5       | 3.01    | <.001   |
| Reintubation                   | 13        | 0.14    | 14        | 0.14    | .984    | 10        | 0.30    | .059    | 2       | 1.20    | <.001   |
| Urinary tract infection        | 51        | 0.56    | 71        | 0.69    | .263    | 44        | 1.32    | <.001   | 5       | 3.01    | <.001   |
| Stroke                         | 5         | 0.06    | 9         | 0.09    | .408    | 6         | 0.18    | .050    | 0       | 0.00    | .999    |
| Cardiac arrest                 | 4         | 0.04    | 4         | 0.04    | .858    | 4         | 0.12    | .156    | 0       | 0.00    | .999    |
| Myocardial infarction          | 18        | 0.20    | 37        | 0.36    | .038    | 8         | 0.24    | .652    | 4       | 2.41    | <.001   |
| Blood transfusions             | 88        | 0.97    | 200       | 1.94    | <.001   | 125       | 3.75    | <.001   | 18      | 10.84   | <.001   |
| Deep vein thrombosis           | 24        | 0.26    | 30        | 0.29    | .723    | 17        | 0.51    | .038    | 0       | 0.00    | .998    |
| Pulmonary embolism             | 25        | 0.28    | 28        | 0.27    | .963    | 12        | 0.36    | .444    | 2       | 1.20    | .044    |
| Failure to wean off ventilator | 4         | 0.04    | 12        | 0.12    | .092    | 7         | 0.21    | .013    | 1       | 0.60    | .019    |
| Deep incisional SSI            | 9         | 0.10    | 5         | 0.05    | .200    | 0         | 0.00    | .999    | 0       | 0.00    | .999    |
| Superficial incisional SSI     | 25        | 0.28    | 19        | 0.18    | .188    | 10        | 0.30    | .818    | 1       | 0.60    | .442    |
| Organ/space SSI                | 24        | 0.26    | 14        | 0.14    | .048    | 4         | 0.12    | .143    | 0       | 0.00    | .998    |
| Wound dehiscence               | 6         | 0.07    | 3         | 0.03    | .246    | 2         | 0.06    | .906    | 0       | 0.00    | .999    |
| Readmission                    | 218       | 2.40    | 315       | 3.06    | .005    | 139       | 4.17    | <.001   | 13      | 7.83    | <.001   |
| Reoperation                    | 129       | 1.42    | 123       | 1.19    | .165    | 50        | 1.50    | .742    | 1       | 0.60    | .390    |
| Nonhome discharge              | 416       | 4.58    | 911       | 8.84    | <.001   | 761       | 22.82   | <.001   | 80      | 48.19   | <.001   |
| Mortality                      | 9         | 0.10    | 12        | 0.12    | .714    | 10        | 0.30    | .016    | 4       | 2.41    | <.001   |

SSI, surgical site infection.

Bold *P* values indicate statistical significance with P < .05.

#### Table III

Multivariate analysis of 30-day postoperative complications based on age group, adjusted for significantly associated patient demographics/comorbidities, with age 60-69 as the reference group.

| Postoperative complication     | Age 70- | 79        |         | Age 80- | 89         |         | Age 90+ |             |         |
|--------------------------------|---------|-----------|---------|---------|------------|---------|---------|-------------|---------|
|                                | OR      | 95% CI    | P value | OR      | 95% CI     | P-value | OR      | 95% CI      | P value |
| Sepsis                         | -       | -         | -       | _       | -          | -       | 3.95    | 0.74-21.02  | .107    |
| Septic shock                   | -       | -         | -       | 7.84    | 0.83-73.86 | .072    | -       | -           | -       |
| Pneumonia                      | -       | -         | -       | 1.60    | 0.89-2.90  | .118    | 5.05    | 1.72-14.81  | .003    |
| Reintubation                   | -       | -         | -       | -       | -          | -       | 4.53    | 1.02-20.17  | .048    |
| Urinary tract infection        | -       | -         | -       | 1.73    | 1.09-2.76  | .021    | 3.26    | 1.12-9.42   | .030    |
| Stroke                         | -       | -         | -       | 1.2     | 0.33-4.39  | .780    | -       | -           | -       |
| Myocardial infarction          | 1.51    | 0.83-2.77 | .179    | -       | -          | -       | 6.30    | 1.59-25.01  | .009    |
| Blood transfusions             | 1.67    | 1.27-2.19 | <.001   | 2.13    | 1.53-2.97  | <.001   | 3.07    | 1.52-6.18   | .002    |
| Deep vein thrombosis           | -       | -         | -       | 1.82    | 0.86-3.86  | .12     | -       | -           | -       |
| Pulmonary embolism             | -       | -         | -       | -       | -          | -       | 3.96    | 0.73-21.43  | .110    |
| Failure to wean off ventilator | -       | -         | -       | 7.67    | 1.70-34.72 | .008    | 8.56    | 0.43-172.07 | .161    |
| Organ/space SSI                | 0.54    | 0.26-1.13 | .101    | -       | -          | -       | -       | -           | -       |
| Readmission                    | 1.24    | 1.02-1.50 | .028    | 1.39    | 1.07-1.81  | .012    | 1.90    | 0.97-3.74   | .063    |
| Non-home discharge             | 1.82    | 1.59-2.08 | <.001   | 5.47    | 4.67-6.40  | <.001   | 10.94   | 7.33-16.32  | <.001   |
| Mortality                      | -       | -         | -       | 1.61    | 0.58-4.49  | .362    | 5.80    | 1.31-25.59  | .020    |

OR, odds ratio; CI, confidence interval; SSI, surgical site infection.

Bold *P* values indicate statistical significance with P < .05.

(P = .027). Nonagenarians had significantly higher rates of sepsis (P < .001), pneumonia (P < .001), reintubation (P < .001), UTI (P = .001), myocardial infarction (P < .001), blood transfusion (P < .001), pulmonary embolism (P = .042), readmission (P < .001), nonhome discharge (P < .001), and mortality (P < .001).

After adjusting for the patient variables significantly associated with each age cohort, multivariate logistic regression identified the complications independently associated with each cohort, with reference to the septuagenarian cohort (Table VI). Octogenarians were independently associated with higher rates of UTI (OR 1.73, 95% CI 1.15-2.61; P = .009), readmission (OR 1.28, 95% CI 1.03-1.59; P = .029), and nonhome discharge (OR 2.81, 95% CI 2.50-3.17; P < .001). Nonagenarians were independently associated with higher rates of pneumonia (OR 5.02, 95% CI 1.85-13.63; P = .002), reintubation (OR 4.91, 95% CI 1.08-22.28; P = .039), UTI (OR 2.94, 95% CI 1.07-8.08; P = .037), myocardial infarction (OR 3.83, 95% CI 1.17-12.56; P = .027), blood transfusion (OR 1.86, 95% CI 1.03-3.35; P = .038), readmission (OR 2.17, 95% CI 1.17-4.01; P = .014), nonhome discharge (OR 12.80, 95% CI 1.28-128.40; P = .030), and mortality (OR 9.87, 95% CI 2.62-37.16; P < .001).

# Octogenarians as reference cohort

Compared to octogenarians, the patient demographics and comorbidities significantly associated with nonagenarians were BMI 18.5-29.9 (P < .001), female gender (P < .001), dependent functional status (P < .001), ASA  $\geq$ 3 (P = .046), CHF (P < .001), and preoperative anemia (P < .001) (Table VII).

Bivariate analysis identified postoperative complications significantly associated with nonagenarians, with reference to the octagenarian cohort (Table VIII). Nonagenarians had significantly higher rates of sepsis (P = .013), pneumonia (P = .003), reintubation (P = .009), myocardial infarction (P < .001), blood transfusion (P < .001), readmission (P = .026), nonhome discharge (P < .001), and mortality (P < .001).

After adjusting for the patient variables significantly associated with the nonagenarian cohort, multivariate logistic regression identified the complications independently associated with the nonagenarian cohort, with reference to octogenarians (Table IX). Nonagenarians were independently associated with higher rates of sepsis (OR 8.37, 95% CI 1.42-49.29; P = .019), pneumonia (OR

# Table IV

Patient demographics/comorbidities based on age for patients who underwent total shoulder arthroplasty between 2015 and 2020, with age 70-79 as the reference group.

| Characteristic                       | Age 70-79 |         | Age 80-89 |         |         | Age 90+ |         |         |
|--------------------------------------|-----------|---------|-----------|---------|---------|---------|---------|---------|
|                                      | Number    | Percent | Number    | Percent | P value | Number  | Percent | P value |
| Total                                | 10,307    | 100.0   | 3335      | 100.0   |         | 166     | 100.0   |         |
| Body mass index (kg/m <sup>2</sup> ) |           |         |           |         | <.001   |         |         | <.001   |
| <18.5                                | 69        | 0.7     | 33        | 1.0     |         | 6       | 3.6     |         |
| 18.5-29.9                            | 5122      | 49.7    | 2100      | 63.0    |         | 126     | 75.9    |         |
| 30-34.9                              | 2781      | 27.0    | 810       | 24.3    |         | 24      | 14.5    |         |
| 35-39.9                              | 1397      | 13.6    | 256       | 7.7     |         | 6       | 3.6     |         |
| $\geq 40$                            | 921       | 8.9     | 130       | 3.9     |         | 4       | 2.4     |         |
| Gender                               |           |         |           |         | <.001   |         |         | <.001   |
| Female                               | 6061      | 58.8    | 2245      | 67.3    |         | 132     | 79.5    |         |
| Male                                 | 4246      | 41.2    | 1090      | 32.7    |         | 34      | 20.5    |         |
| Functional status                    | 12 10     |         | 1000      | 3217    | <.001   | 51      | 2010    | <.001   |
| Independent                          | 10,093    | 97.9    | 3185      | 95.5    |         | 144     | 86.7    |         |
| Dependent                            | 214       | 2.1     | 150       | 4.5     |         | 22      | 13.3    |         |
| ASA classification                   | 211       | 2.1     | 150       | 1.5     | <.001   |         | 15.5    | <.001   |
| 1-2                                  | 3954      | 38.4    | 1007      | 30.2    | <.001   | 38      | 22.9    | <.001   |
| ≥ <u>3</u>                           | 6353      | 61.6    | 2328      | 69.8    |         | 128     | 77.1    |         |
| Smoker                               | 0333      | 01.0    | 2328      | 09.8    | - 001   | 120     | //.1    | .037    |
|                                      | 0770      | 040     | 22.40     | 07.4    | <.001   | 104     | 00.0    | .057    |
| No                                   | 9778      | 94.9    | 3248      | 97.4    |         | 164     | 98.8    |         |
| Yes                                  | 529       | 5.1     | 87        | 2.6     | 004     | 2       | 1.2     |         |
| Diabetes mellitus                    |           |         |           |         | <.001   |         |         | .144    |
| No diabetes                          | 8266      | 80.2    | 2806      | 84.1    |         | 143     | 86.1    |         |
| Non-insulin dependent                | 1459      | 14.2    | 400       | 12.0    |         | 15      | 9.0     |         |
| Insulin dependent                    | 582       | 5.6     | 129       | 3.9     |         | 8       | 4.8     |         |
| Hypertension                         |           |         |           |         | <.001   |         |         | .245    |
| No                                   | 2841      | 27.6    | 768       | 23.0    |         | 39      | 23.5    |         |
| Yes                                  | 7466      | 72.4    | 2567      | 77.0    |         | 127     | 76.5    |         |
| COPD                                 |           |         |           |         | .836    |         |         | .360    |
| No                                   | 9567      | 92.8    | 3092      | 92.7    |         | 151     | 91.0    |         |
| Yes                                  | 740       | 7.2     | 243       | 7.3     |         | 15      | 9.0     |         |
| Bleeding disorders                   |           |         |           |         | <.001   |         |         | .300    |
| No                                   | 10,013    | 97.1    | 3197      | 95.9    |         | 159     | 95.8    |         |
| Yes                                  | 294       | 2.9     | 138       | 4.1     |         | 7       | 4.2     |         |
| Chronic steroid use                  |           |         |           |         | .021    |         |         | .448    |
| No                                   | 9802      | 95.1    | 3204      | 96.1    |         | 160     | 96.4    |         |
| Yes                                  | 505       | 4.9     | 131       | 3.9     |         | 6       | 3.6     |         |
| Open wound/wound infection           |           |         |           |         | .410    |         |         | .088    |
| No                                   | 10,271    | 99.7    | 3320      | 99.6    |         | 164     | 98.8    |         |
| Yes                                  | 36        | 0.3     | 15        | 0.4     |         | 2       | 1.2     |         |
| Disseminated cancer                  | 50        | 0.5     | 15        | 0.4     | .628    | 2       | 1.2     | .998    |
| No                                   | 10,284    | 99.8    | 3326      | 99.7    | .020    | 166     | 100.0   | .550    |
| Yes                                  | 23        | 0.2     | 9         | 0.3     |         | 0       | 0.0     |         |
| Congestive heart failure             | 23        | 0.2     | 9         | 0.5     | .157    | 0       | 0.0     | <.001   |
| No                                   | 10,231    | 99.3    | 3302      | 99.0    | .157    | 158     | 95.2    | <.001   |
|                                      |           |         |           |         |         | 158     |         |         |
| Yes                                  | 76        | 0.7     | 33        | 1.0     | . 001   | ð       | 4.8     | . 001   |
| Preoperative anemia                  | 7407      | 70.4    | 2104      | 65 F    | <.001   | 0.4     | 50.0    | <.001   |
| No                                   | 7467      | 72.4    | 2184      | 65.5    |         | 94      | 56.6    |         |
| Yes                                  | 1778      | 17.3    | 872       | 26.1    |         | 67      | 40.4    |         |
| Operative duration (minutes)         |           |         |           |         | <.001   |         |         | .230    |
| 0-79                                 | 2841      | 27.6    | 1037      | 31.1    |         | 54      | 32.5    |         |
| 80-128                               | 5204      | 50.5    | 1657      | 49.7    |         | 83      | 50.0    |         |
| ≥129                                 | 2262      | 21.9    | 641       | 19.2    |         | 29      | 17.5    |         |

ASA, American Society of Anesthesiologists; COPD, chronic obstructive pulmonary disease.

Bold *P* values indicate statistical significance with P < .05.

3.92, 95% CI 1.41-10.91; P = .009), reintubation (OR 5.48, 95% CI 1.45-20.77; P = .012), myocardial infarction (OR 10.24, 95% CI 2.76-38.03; P < .001), blood transfusion (OR 1.84, 95% CI 1.04-3.27; P = .037), nonhome discharge (OR 2.36, 95% CI 1.68-3.32; P < .001), and mortality (OR 4.90, 95% CI 1.38-17.36; P = .014).

# Discussion

In this study, we used a large national database to investigate the association between an aging population and 30-day postoperative outcomes in patients undergoing TSA between 2015 and 2020. By comparing each decade of life to an increasingly older age group, we were able to analyze the strength of significance between each age group and adverse postoperative outcomes. We identified age to be an increasingly significant predictor for blood transfusions, readmission, and nonhome discharge from age 60 and older. From the septuagenarian cohort, each increasing decade of age was found to be a significant predictor of mortality.

Arthritis is a major cause of disability in the older population due to a multitude of risk factors along with biological changes in joint structure with age.<sup>14</sup> Due to the functional importance of the upper extremity, glenohumeral osteoarthritis threatens the independence of many elderly patients. The degeneration of cartilage in osteoarthritis leads to unequal load distribution within the joint cavity, leading to inflammation, osteophyte formation, subchondral bone changes, and synovial proliferation.<sup>15,25</sup> These structural changes often lead to pain and limit range of motion.<sup>2</sup> TSA for osteoarthritis has successfully provided favorable outcomes, notable pain relief, and improved range of motion.<sup>1,2,12,30</sup> Surgical treatment can therefore drastically improve both physical

## Table V

Bivariate analysis of 30-day postoperative complications based on age group, with age 70-79 as the reference group.

| Postoperative complication     | Age 70-79 |         | Age 80-89 |         |         | Age 90+ |         |         |
|--------------------------------|-----------|---------|-----------|---------|---------|---------|---------|---------|
|                                | Number    | Percent | Number    | Percent | P value | Number  | Percent | P value |
| Sepsis                         | 10        | 0.10    | 5         | 0.15    | .427    | 2       | 1.20    | .001    |
| Septic shock                   | 7         | 0.07    | 4         | 0.12    | .364    | 0       | 0.00    | .999    |
| Pneumonia                      | 53        | 0.51    | 24        | 0.72    | .171    | 5       | 3.01    | <.001   |
| Reintubation                   | 14        | 0.14    | 10        | 0.30    | .054    | 2       | 1.20    | <.001   |
| Urinary tract infection        | 71        | 0.69    | 44        | 1.32    | <.001   | 5       | 3.01    | .001    |
| Stroke                         | 9         | 0.09    | 6         | 0.18    | .170    | 0       | 0.00    | .999    |
| Cardiac arrest                 | 4         | 0.04    | 4         | 0.12    | .110    | 0       | 0.00    | .999    |
| Myocardial infarction          | 37        | 0.36    | 8         | 0.24    | .300    | 4       | 2.41    | <.001   |
| Blood transfusions             | 200       | 1.94    | 125       | 3.75    | <.001   | 18      | 10.84   | <.001   |
| Deep vein thrombosis           | 30        | 0.29    | 17        | 0.51    | .064    | 0       | 0.00    | .998    |
| Pulmonary embolism             | 28        | 0.27    | 12        | 0.36    | .415    | 2       | 1.20    | .042    |
| Failure to wean off ventilator | 12        | 0.12    | 7         | 0.21    | .215    | 1       | 0.60    | .114    |
| Deep incisional SSI            | 5         | 0.05    | 0         | 0.00    | .999    | 0       | 0.00    | .999    |
| Superficial incisional SSI     | 19        | 0.18    | 10        | 0.30    | .213    | 1       | 0.60    | .248    |
| Organ/space SSI                | 14        | 0.14    | 4         | 0.12    | .826    | 0       | 0.00    | .999    |
| Wound dehiscence               | 3         | 0.03    | 2         | 0.06    | .428    | 0       | 0.00    | .999    |
| Readmission                    | 315       | 3.06    | 139       | 4.17    | .002    | 13      | 7.83    | <.001   |
| Reoperation                    | 123       | 1.19    | 50        | 1.50    | .171    | 1       | 0.60    | .494    |
| Non-home discharge             | 911       | 8.84    | 761       | 22.82   | <.001   | 80      | 48.19   | <.001   |
| Mortality                      | 12        | 0.12    | 10        | 0.30    | .027    | 4       | 2.41    | <.001   |

SSI, surgical site infection.

Bold *P* values indicate statistical significance with P < .05.

#### Table VI

Multivariate analysis of 30-day postoperative complications based on age group, adjusted for significantly associated patient demographics/comorbidities, with age 70-79 as the reference group.

| Postoperative complication Sepsis Pneumonia | Age 80-89 |           |         | Age 90+ | Age 90+     |         |  |  |  |
|---------------------------------------------|-----------|-----------|---------|---------|-------------|---------|--|--|--|
|                                             | OR        | 95 CI     | P value | OR      | 95% CI      | P value |  |  |  |
| Sepsis                                      | _         | _         | -       | 6.82    | 0.94-49.29  | .057    |  |  |  |
| Pneumonia                                   | -         | -         | -       | 5.02    | 1.85-13.63  | .002    |  |  |  |
| Reintubation                                | -         | -         | -       | 4.91    | 1.08-22.28  | .039    |  |  |  |
| Urinary tract infection                     | 1.73      | 1.15-2.61 | .009    | 2.94    | 1.07-8.08   | .037    |  |  |  |
| Myocardial infarction                       | -         | -         | -       | 3.83    | 1.17-12.56  | .027    |  |  |  |
| Blood transfusions                          | 1.22      | 0.95-1.57 | .115    | 1.86    | 1.03-3.35   | .038    |  |  |  |
| Pulmonary embolism                          | -         | -         | -       | 4.16    | 0.89-19.39  | .069    |  |  |  |
| Readmission                                 | 1.28      | 1.03-1.59 | .029    | 2.17    | 1.17-4.01   | .014    |  |  |  |
| Reoperation                                 | -         | -         | -       | -       | -           | -       |  |  |  |
| Non-home discharge                          | 2.81      | 2.50-3.17 | <.001   | 12.80   | 1.28-128.40 | .030    |  |  |  |
| Mortality                                   | 2.40      | 0.97-5.89 | .057    | 9.87    | 2.62-37.16  | <.001   |  |  |  |

OR, odds ratio; CI, confidence interval.

Bold *P*-values indicate statistical significance with P < .05.

and emotional well-being.<sup>15,23</sup> A study by Cho et al reported improved psychological status in patients following TSA for the treatment of osteoarthritis.<sup>7</sup>

As the US population ages, a larger number of older individuals are seeking orthopedic surgery. However, the literature has consistently shown that older individuals are at higher risk of post-operative medical complications, including deep vein thrombosis, UTI, acute renal failure, and pneumonia.<sup>35</sup> Therefore, as a greater number of older individuals undergo TSA, it is important to understand potential adverse outcomes of these different age groups.

Our results align with those of previous studies in orthopedic literature, including studies on total hip and total knee arthroplasty (THA and TKA, respectively). For example, prolonged length of stay, non-home discharge, and postoperative mortality have been more commonly reported among elderly patient cohorts following total joint arthroplasty.<sup>9,28,29</sup> Furthermore, both octogenarian and nonagenarian patients have been found to be at increased postoperative risk of transfusions following TKA and THA compared to younger patients.<sup>10,28</sup> Multiple orthopedic studies have also reported associations between increased unplanned age and readmission.<sup>4,6,13,28,32,40</sup> Additionally, a study by Bovonratwet et al

found that both older age and bleeding disorders increased risk of readmission following THA.<sup>4,6</sup> On the other hand, when compared to younger cohorts, older patients have been reported to be at decreased risk for dislocation, perioperative fracture, implant related complications, and surgical site infections.<sup>35,38</sup>

In our study, we identified the older-aged cohorts to be increasingly significant predictors of blood transfusions following TSA. Prior studies on shoulder arthroplasty have found female sex, low preoperative hemoglobin, and traumatic surgical indication to be significant predictors for postoperative transfusion.<sup>33</sup> These findings are consistent with clinical practice, as women are more likely to be anemic and their lower baseline hemoglobin may increase the need for transfusion. Similar to our results, a study on revision TSA cases also found older age to be a risk factor for postoperative transfusion.<sup>1</sup>

As one ages, the likelihood of developing anemia increases due to a number of different etiologies including anemia of chronic disease, chronic kidney disease, and iron deficiency anemia.<sup>3,22,34</sup> Anemia has been reported in 10% of individuals over age 65 and in over 50% of those over age 80.<sup>3</sup> The increasing incidence of anemia in older populations may increase the likelihood of low

#### Table VII

Patient demographics/comorbidities based on age for patients who underwent total shoulder arthroplasty between 2015 and 2020, with age 80-89 as the reference group.

| Characteristic                       | Age 80-8 | 9       | Age 90+ |         |         |
|--------------------------------------|----------|---------|---------|---------|---------|
|                                      | Number   | Percent | Number  | Percent | P value |
| Total                                | 3335     | 100.0   | 166     | 100.0   |         |
| Body mass index (kg/m <sup>2</sup> ) |          |         |         |         | <.001   |
| <18.5                                | 33       | 1.0     | 6       | 3.6     |         |
| 18.5-29.9                            | 2100     | 63.0    | 126     | 75.9    |         |
| 30-34.9                              | 810      | 24.3    | 24      | 14.5    |         |
| 35-39.9                              | 256      | 7.7     | 6       | 3.6     |         |
| >40                                  | 130      | 3.9     | 4       | 2.4     |         |
| Gender                               |          |         |         |         | <.001   |
| Female                               | 2245     | 67.3    | 132     | 79.5    |         |
| Male                                 | 1090     | 32.7    | 34      | 20.5    |         |
| Functional status                    |          |         |         |         | <.001   |
| Independent                          | 3185     | 95.5    | 144     | 86.7    |         |
| Dependent                            | 150      | 4.5     | 22      | 13.3    |         |
| ASA classification                   |          |         |         |         | .046    |
| 1-2                                  | 1007     | 30.2    | 38      | 22.9    |         |
| >3                                   | 2328     | 69.8    | 128     | 77.1    |         |
| Smoker                               |          |         |         |         | .274    |
| No                                   | 3248     | 97.4    | 164     | 98.8    |         |
| Yes                                  | 87       | 2.6     | 2       | 1.2     |         |
| Diabetes mellitus                    |          |         |         |         | .785    |
| No diabetes                          | 2806     | 84.1    | 143     | 86.1    |         |
| Non-insulin dependent                | 400      | 12.0    | 15      | 9.0     |         |
| Insulin dependent                    | 129      | 3.9     | 8       | 4.8     |         |
| Hypertension                         |          |         |         |         | .889    |
| No                                   | 768      | 23.0    | 39      | 23.5    |         |
| Yes                                  | 2567     | 77.0    | 127     | 76.5    |         |
| COPD                                 |          |         |         |         | .401    |
| No                                   | 3092     | 92.7    | 151     | 91.0    |         |
| Yes                                  | 243      | 7.3     | 15      | 9.0     |         |
| Bleeding disorders                   |          |         |         |         | .960    |
| No                                   | 3197     | 95.9    | 159     | 95.8    |         |
| Yes                                  | 138      | 4.1     | 7       | 4.2     |         |
| Chronic steroid use                  |          |         |         |         | .839    |
| No                                   | 3204     | 96.1    | 160     | 96.4    |         |
| Yes                                  | 131      | 3.9     | 6       | 3.6     |         |
| Open wound/wound infection           |          |         |         |         | .190    |
| No                                   | 3320     | 99.6    | 164     | 98.8    |         |
| Yes                                  | 15       | 0.4     | 2       | 1.2     |         |
| Disseminated cancer                  |          |         |         |         | .999    |
| No                                   | 3326     | 99.7    | 166     | 100.0   |         |
| Yes                                  | 9        | 0.3     | 0       | 0.0     |         |
| Congestive heart failure             |          |         |         |         | <.001   |
| No                                   | 3302     | 99.0    | 158     | 95.2    |         |
| Yes                                  | 33       | 1.0     | 8       | 4.8     |         |
| Preoperative anemia                  |          |         |         |         | <.001   |
| No                                   | 2184     | 65.5    | 94      | 56.6    |         |
| Yes                                  | 872      | 26.1    | 67      | 40.4    |         |
| Operative duration (min)             | -        |         | -       |         | .835    |
| 0-79                                 | 1037     | 31.1    | 54      | 32.5    |         |
| 80-128                               | 1657     | 49.7    | 83      | 50.0    |         |
| >129                                 | 641      | 19.2    | 29      | 17.5    |         |
|                                      |          |         | -       |         |         |

ASA, American Society of Anesthesiologists; COPD, chronic obstructive pulmonary disease.

Bold *P* values indicate statistical significance with P < .05.

preoperative hemoglobin and thus increase the probability of needing a postoperative transfusion. Additionally, preoperative anemia has been reported to be a risk factor for postoperative complications and mortality following TJA.<sup>36</sup> Therefore, preoperative evaluation and management of anemia in older populations may help to mitigate adverse outcomes.

We also identified increasingly significant rates of readmission as our patient cohorts aged. Although readmission rates following TSA are overall low, they have been reported to be as high as 5.5% among the elderly patient population.<sup>17</sup> Interestingly, prior research on THA and TKA have reported a majority of readmissions due to falls, which may be less likely following upper extremity

#### Table VIII

| Bivariate analysis of 30-day postoperative complications based on age group, with |
|-----------------------------------------------------------------------------------|
| age 80-89 as the reference group.                                                 |

| Postoperative complication     | Age 80-8 | 9       | Age 90+ |         |         |
|--------------------------------|----------|---------|---------|---------|---------|
|                                | Number   | Percent | Number  | Percent | P value |
| Sepsis                         | 5        | 0.15    | 2       | 1.20    | .013    |
| Septic shock                   | 4        | 0.12    | 0       | 0.00    | .999    |
| Pneumonia                      | 24       | 0.72    | 5       | 3.01    | .003    |
| Reintubation                   | 10       | 0.30    | 2       | 1.20    | .009    |
| Urinary tract infection        | 44       | 1.32    | 5       | 3.01    | .078    |
| Stroke                         | 6        | 0.18    | 0       | 0.00    | .999    |
| Cardiac arrest                 | 4        | 0.12    | 0       | 0.00    | .999    |
| Myocardial infarction          | 8        | 0.24    | 4       | 2.41    | <.001   |
| Blood transfusions             | 125      | 3.75    | 18      | 10.84   | <.001   |
| Deep vein thrombosis           | 17       | 0.51    | 0       | 0.00    | .999    |
| Pulmonary embolism             | 12       | 0.36    | 2       | 1.20    | .113    |
| Failure to wean off ventilator | 7        | 0.21    | 1       | 0.60    | .324    |
| Deep incisional SSI            | 0        | 0.00    | 0       | 0.00    | -       |
| Superficial incisional SSI     | 10       | 0.30    | 1       | 0.60    | .505    |
| Organ/space SSI                | 4        | 0.12    | 0       | 0.00    | .999    |
| Wound dehiscence               | 2        | 0.06    | 0       | 0.00    | .999    |
| Readmission                    | 139      | 4.17    | 13      | 7.83    | .026    |
| Reoperation                    | 50       | 1.50    | 1       | 0.60    | .363    |
| Non-home discharge             | 761      | 22.82   | 80      | 48.19   | <.001   |
| Mortality                      | 10       | 0.30    | 4       | 2.41    | <.001   |

SSI, surgical site infection.

Bold *P* values indicate statistical significance with P < .05.

#### Table IX

Multivariate analysis of 30-day postoperative complications based on age group, adjusted for significantly associated patient demographics/comorbidities, with age 80-89 as the reference group.

| Postoperative complication | Age 90+ |            |         |
|----------------------------|---------|------------|---------|
|                            | OR      | 95% CI     | P value |
| Sepsis                     | 8.37    | 1.42-49.29 | .019    |
| Pneumonia                  | 3.92    | 1.41-10.91 | .009    |
| Reintubation               | 5.48    | 1.45-20.77 | .012    |
| Myocardial infarction      | 10.24   | 2.76-38.03 | <.001   |
| Blood transfusions         | 1.84    | 1.04-3.27  | .037    |
| Readmission                | 1.64    | 0.89-3.05  | .115    |
| Nonhome discharge          | 2.36    | 1.68-3.32  | <.001   |
| Mortality                  | 4.90    | 1.38-17.36 | .014    |

OR, odds ratio; CI, confidence interval.

Bold *P* values indicate statistical significance with P < .05.

surgery. Consistent with our results, other studies have reported increased age as an independent risk factor for readmission following TSA, with medical causes accounting for up to 50% of readmissions.<sup>24,37,38</sup> A study on primary TSA found that old age leads to higher rates of readmission, most commonly due to pneumonia, dislocation, pulmonary embolism, and surgical site infections.<sup>8</sup> Similarly, a study by White et al found older age was more likely to be associated with readmission, as well as multiple medical complications such as pulmonary embolism, infection, and respiratory complications.<sup>38</sup>

Across all age groups, we found increasing age to be a significant predictor of nonhome discharge. This is in line with prior research, as a study on octogenarian outcomes following TSA found increased risk of non-home discharge compared to nonoctogenarian patients.<sup>5</sup> Nonhome discharge following TSA may negatively impact post-operative outcomes and increase the likelihood of readmission, which raises important considerations for postoperative management of medically complex patients.<sup>20</sup> From age 70, our study also identified age to be a significant predictor of mortality. Although overall mortality and complication rates are low, patients older than age 80 have been reported to have higher rates of early mortality following TSA.<sup>35</sup> This again could be related to the medical complexity that often goes along with aging patients. However, a

study by McCormick et al suggests that the mortality rate following TSA is still lower than that of THA and TKA.  $^{\rm 27}$ 

Our study is limited to the data that can be analyzed through the American College of Surgeons National Surgical Quality Improvement Program database. This database is limited to a 30-day postoperative outcomes period, and therefore is unable to identify complications that occur outside of this 30-day window. Potential long-term postoperative complications, such as implant failure or revision surgery, are unable to be accounted for. Additionally, operative factors such as hospital location and surgeon skill level were unable to be identified. Despite these limitations, we used a large national database to better understand the impact of our aging population on postoperative outcomes following TSA. Furthermore, this study allowed us to identify transfusion, nonhome discharge, readmission, and mortality to be increasingly statistically significant outcomes as a patient ages. Future research needs to be done to further understand which comorbidities are associated with adverse outcomes in the older population to better preoperatively manage these patients.

# Conclusion

From age 60, each decade of age was identified to be an increasingly significant predictor for blood transfusion, readmission, and nonhome discharge following TSA. From age 70, each decade of age was additionally identified to be an increasingly significant predictor for mortality. Increasing age was consistently an independent predictor for non-home discharge. As the patient population continues to age, understanding the complications associated with increasing age may help to improve outcomes.

# **Disclaimers:**

Funding: No funding was disclosed by the authors.

Conflicts of interest: The authors, their immediate families, and any research foundation with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

#### References

- Almasri M, Kohrs B, Fleckenstein CM, Nolan J, Wendt A, Hasan SS. Reverse shoulder arthroplasty in patients 85 years and older is safe, effective, and durable. J Shoulder Elbow Surg 2022;31:2287-97. https://doi.org/10.1016/ j.jse.2022.03.024.
- Ansok CB, Muh SJ. Optimal management of glenohumeral osteoarthritis. Orthop Res Rev 2018;10:9-18. https://doi.org/10.2147/orr.S134732.
- 3. Berliner N. Anemia in the elderly. Trans Am Clin Climatol Assoc 2013;124:230-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715932/.
- Bovonratwet P, Chen AZ, Shen TS, Ondeck NT, Islam W, Ast MP, et al. What are the reasons and risk factors for 30-day readmission after outpatient total hip arthroplasty? J Arthroplasty 2021;36:S258-263.e1. https://doi.org/10.1016/j.art h.2020.10.011.
- Carney J, Gerlach E, Plantz MA, Cantrell C, Swiatek PR, Marx JS, et al. Short-term outcomes after total shoulder arthroplasty in octogenarians: a matched analysis. Cureus 2021;13:e16441. https://doi.org/10.7759/cureus.16441.
- Chen FM, Fryer GE Jr, Phillips RL Jr, Wilson E, Pathman DE. Patients' beliefs about racism, preferences for physician race, and satisfaction with care. Ann Fam Med 2005;3:138-43. https://doi.org/10.1370/afm.282.
- Cho CH, Song KS, Hwang I, Coats-Thomas MS, Warner JJP. Changes in psychological status and health-related quality of life following total shoulder arthroplasty. J Bone Joint Surg Am 2017;99:1030-5. https://doi.org/10.2106/ jbjs.16.00954.
- Cvetanovich GL, Bohl DD, Frank RM, Verma NN, Cole BJ, Nicholson GP, et al. Reasons for readmission following primary total shoulder arthroplasty. Am J Orthop (Belle Mead NJ) 2018;47. https://doi.org/10.12788/ajo.2018.0053.
- D'Apuzzo MR, Pao AW, Novicoff WM, Browne JA. Age as an independent risk factor for postoperative morbidity and mortality after total joint arthroplasty in patients 90 years of age or older. J Arthroplasty 2014;29:477-80. https:// doi.org/10.1016/j.arth.2013.07.045.
- 10. Dugdale EM, Tybor D, Kain M, Smith EL. Comparing inpatient complication rates between octogenarians and nonagenarians following primary and

revision total hip arthroplasty in a nationally representative sample 2010-2014. Geriatrics (Basel) 2019;4:55. https://doi.org/10.3390/geriatrics4040055.

- Fleisher I, Ong CB, Chiu YF, Krell E, Cushner FD, Gausden E, et al. Nonagenarians and octogenarians undergoing THA and TKA: a 10-year age difference increases rates of in-hospital complications but does not affect 90-day outcomes. HSS J 2022;18:478-84. https://doi.org/10.1177/15563316221090508.
- Foruria AM, Sperling JW, Ankem HK, Oh LS, Cofield RH. Total shoulder replacement for osteoarthritis in patients 80 years of age and older. J Bone Joint Surg Br 2010;92:970-4. https://doi.org/10.1302/0301-620x.92b7.23671.
- Fu MC, Boddapati V, Dines DM, Warren RF, Dines JS, Gulotta LV. The impact of insulin dependence on short-term postoperative complications in diabetic patients undergoing total shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:2091-6. https://doi.org/10.1016/j.jse.2017.05.027.
- Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet 2019;393:1745-59. https:// doi.org/10.1016/s0140-6736(19)30417-9.
- Ibounig T, Simons T, Launonen A, Paavola M. Glenohumeral osteoarthritis: an overview of etiology and diagnostics. Scand J Surg 2021;110:441-51. https:// doi.org/10.1177/1457496920935018.
- Kerr R, Resnick D, Pineda C, Haghighi P. Osteoarthritis of the glenohumeral joint: a radiologic-pathologic study. AJR Am J Roentgenol 1985;144:967-72.
- Koh J, Galvin JW, Sing DC, Curry EJ, Li X. Thirty-day complications and readmission rates in elderly patients after shoulder arthroplasty. J Am Acad Orthop Surg Glob Res Rev 2018;2:e068. https://doi.org/10.5435/JAAOSGlobal-D-18-00068.
- Kozak T, Bauer S, Walch G, Al-Karawi S, Blakeney W. An update on reverse total shoulder arthroplasty: current indications, new designs, same old problems. EFORT Open Rev 2021;6:189-201. https://doi.org/10.1302/2058-5241.6.200 085.
- Kurapatti M, Patel V, Arraut J, Oakley C, Rozell JC, Schwarzkopf R. Primary total hip arthroplasty in patients older than 90 years of age - a retrospective matched cohort study. Hip Int 2023;33:628-32. https://doi.org/10.1177/112 07000221082251.
- Lavoie-Gagne O, Lu Y, MacLean I, Forlenza E, Forsythe B. Discharge destination after shoulder arthroplasty: an analysis of discharge outcomes, placement risk factors, and recent trends. J Am Acad Orthop Surg 2021;29:e969-78. https:// doi.org/10.5435/jaaos-d-20-00294.
- Lee D, Lee R, Fassihi SC, Stadecker M, Heyer JH, Stake S, et al. Risk factors for blood transfusions in primary anatomic and reverse total shoulder arthroplasty for osteoarthritis. Iowa Orthop J 2022;42:217-25.
- Levitt EB, Patch DA, Johnson JP, Love B, Waldrop RP, McGwin G, et al. Risk factors for prolonged hospital stay after femoral neck fracture. Orthopedics 2023;46:211-7. https://doi.org/10.3928/01477447-20230207-02.
- Lo IK, Litchfield RB, Griffin S, Faber K, Patterson SD, Kirkley A. Quality-of-life outcome following hemiarthroplasty or total shoulder arthroplasty in patients with osteoarthritis. A prospective, randomized trial. J Bone Joint Surg Am 2005;87:2178-85. https://doi.org/10.2106/jbjs.D.02198.
- Lovy AJ, Keswani A, Beck C, Dowdell JE, Parsons BO. Risk factors for and timing of adverse events after total shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:1003-10. https://doi.org/10.1016/j.jse.2016.10.019.
- Macías-Hernández SI, Morones-Alba JD, Miranda-Duarte A, Coronado-Zarco R, Soria-Bastida MLA, Nava-Bringas T, et al. Glenohumeral osteoarthritis: overview, therapy, and rehabilitation. Disabil Rehabil 2017;39:1674-82. https:// doi.org/10.1080/09638288.2016.1207206.
- Mark Mather PS, Kilduff L. Fact sheet: aging in the United States. Available at: https://www.prb.org/resources/fact-sheet-aging-in-the-united-states/. Accessed December 22, 2022.
- McCormick F, Nwachukwu BU, Kiriakopoulos EB, Schairer WW, Provencher MT, Levy J. In-hospital mortality risk for total shoulder arthroplasty: a comprehensive review of the medicare database from 2005 to 2011. Int J Shoulder Surg 2015;9:110-3. https://doi.org/10.4103/0973-6042.167938.
- Moore HG, Schneble CA, Kahan JB, Grauer JN, Rubin LE. Unicompartmental knee arthroplasty in octogenarians: a national database analysis including over 700 octogenarians. Arthroplast Today 2022;15:55-60. https://doi.org/10.1016/ j.artd.2022.02.009.
- Sherman AE, Plantz MA, Hardt KD. Outcomes of elective total hip arthroplasty in nonagenarians and centenarians. J Arthroplasty 2020;35:2149-54. https:// doi.org/10.1016/j.arth.2020.03.026.
- Simovitch RW, Friedman RJ, Cheung EV, Flurin PH, Wright T, Zuckerman JD, et al. Rate of improvement in clinical outcomes with anatomic and reverse total shoulder arthroplasty. J Bone Joint Surg Am 2017;99:1801-11. https://doi.org/ 10.2106/jbjs.16.01387.
- Sinusas K. Osteoarthritis: diagnosis and treatment. Am Fam Physician 2012;85: 49-56.
- Sizer SC, Bugbee WD, Copp SN, Ezzet KA, Walker RH, McCauley JC, et al. Hip and knee arthroplasty outcomes for nonagenarian patients. J Am Acad Orthop Surg 2022;30:1090-7. https://doi.org/10.5435/jaaos-d-22-00406.
- Sperling JW, Duncan SF, Cofield RH, Schleck CD, Harmsen WS. Incidence and risk factors for blood transfusion in shoulder arthroplasty. J Shoulder Elbow Surg 2005;14:599-601. https://doi.org/10.1016/j.jse.2005.03.006.
- Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and management. Blood 2018;131:505-14. https://doi.org/10.1182/ blood-2017-07-746446.
- 35. Testa EJ, Yang D, Steflik MJ, Owens BD, Parada SA, Daniels AH, et al. Reverse total shoulder arthroplasty in patients 80 years and older: a national database analysis of complications and mortality. J Shoulder Elbow Surg 2022;31:S71-7. https://doi.org/10.1016/j.jse.2022.01.146.

- Viola J, Gomez MM, Restrepo C, Maltenfort MG, Parvizi J. Preoperative anemia increases postoperative complications and mortality following total joint arthroplasty. J Arthroplasty 2015;30:846-8. https://doi.org/10.1016/j.arth .2014.12.026.
- Westermann RW, Anthony CA, Duchman KR, Pugely AJ, Gao Y, Hettrich CM. Incidence, causes and predictors of 30-day readmission after shoulder arthroplasty. Iowa Orthop J 2016;36:70-4.
- White CA, Duey A, Zaidat B, Li T, Quinones A, Cho SK, et al. Does age at surgery influence short-term outcomes and readmissions following anatomic total

shoulder arthroplasty? J Orthop 2023;37:69-74. https://doi.org/10.1016/j.jor .2023.02.007.

- Wolff AL, Rosenzweig L. Anatomical and biomechanical framework for shoulder arthroplasty rehabilitation. J Hand Ther 2017;30:167-74. https://doi.org/ 10.1016/j.jht.2017.05.009.
- Vao DH, Keswani A, Shah CK, Sher A, Koenig KM, Moucha CS. Home discharge after primary elective total joint arthroplasty: postdischarge complication timing and risk factor analysis. J Arthroplasty 2017;32:375-80. https://doi.org/ 10.1016/j.arth.2016.08.004.