Microbiological and Molecular Characterization of *Staphylococcus hominis* Isolates from Blood

Soraya Mendoza-Olazarán¹, Rayo Morfin-Otero², Eduardo Rodríguez-Noriega², Jorge Llaca-Díaz³, Samantha Flores-Treviño¹, Gloria Ma González-González¹, Licet Villarreal-Treviño⁴, Elvira Garza-González^{3,5}*

 Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey Nuevo León, México, 2 Hospital Civil de Guadalajara, Fray Antonio Alcalde, and Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco México, 3 Departamento de Patología Clínica, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León. Monterrey Nuevo León, México, 4 Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Monterrey Nuevo León, México, 6 Gastroenterología Universidad Autónoma de Nuevo León. Monterrey Nuevo León, México

Abstract

Background: Among Coagulase-Negative Staphylococci (CoNS), *Staphylococcus hominis* represents the third most common organism recoverable from the blood of immunocompromised patients. The aim of this study was to characterize biofilm formation, antibiotic resistance, define the SCCmec (Staphylococcal Chromosomal Cassette mec) type, and genetic relatedness of clinical *S. hominis* isolates.

Methodology: S. hominis blood isolates (n = 21) were screened for biofilm formation using crystal violet staining. Methicillin resistance was evaluated using the cefoxitin disk test and the *mecA* gene was detected by PCR. Antibiotic resistance was determined by the broth microdilution method. Genetic relatedness was determined by pulsed-field gel electrophoresis (PFGE) and SCC*mec* typed by multiplex PCR using two different methodologies described for *Staphylococcus aureus*.

Results: Of the *S. hominis* isolates screened, 47.6% (10/21) were categorized as strong biofilm producers and 23.8% (5/21) as weak producers. Furthermore, 81% (17/21) of the isolates were methicillin resistant and *mec*A gene carriers. Resistance to ampicillin, erythromycin, and trimethoprim was observed in >70% of isolates screened. Each isolate showed a different PFGE macrorestriction pattern with similarity ranging between 0–95%. Among *mec*A-positive isolates, 14 (82%) harbored a non-typeable SCC*mec* type: eight isolates were not positive for any *ccr* complex; four contained the *mec* complex A *ccrAB1* and *ccrC*, one isolate contained *mec* complex A, *ccrAB4* and *ccrC*, and one isolate contained the *mec* complex A, *ccrAB1*, *ccrAB4*, and *ccrC*. Two isolates harbored the association: *mec* complex A and *ccrAB1*. Only one strain was typeable as SCC*mec* III.

Conclusions: The S. hominis isolates analyzed were variable biofilm producers had a high prevalence of methicillin resistance and resistance to other antibiotics, and high genetic diversity. The results of this study strongly suggested that S. hominis isolates harbor new SCCmec structural elements and might be reservoirs of ccrC1 in addition to ccrAB1 and mec complex A.

Citation: Mendoza-Olazarán S, Morfin-Otero R, Rodríguez-Noriega E, Llaca-Díaz J, Flores-Treviño S, et al. (2013) Microbiological and Molecular Characterization of Staphylococcus hominis Isolates from Blood. PLoS ONE 8(4): e61161. doi:10.1371/journal.pone.0061161

Editor: Herminia de Lencastre, Rockefeller University, United States of America

Received October 12, 2012; Accepted March 6, 2013; Published April 9, 2013

Copyright: © 2013 Mendoza-Olazarán et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: elvira_garza_gzz@yahoo.com

Introduction

Coagulase-negative staphylococci (CoNS) represent a group of opportunistic microorganisms commonly associated with infections of immunocompromised patients [1]. Among CoNS, *Staphylococcus hominis* is one of the three most frequently identified isolates recoverable from the blood of neonates and immunosuppressed patients [2,3] and has been associated as a causal agent of bacteremia, septicemia, and endocarditis [3–7]. Nosocomial infections caused by CoNS are associated with the use of indwelling medical devices in combination with biofilm-forming potential of respective isolates [8–10]. However, among the CoNS, S. hominis strains are not typically categorized as a major biofilm producers [9,11]. It has been reported that some S. hominis isolates are resistant to methicillin that is conferred by protein PBP2a encoded by the mecA gene that resides within a mobile genetic element called the Staphylococcal Cassette Chromosome mec (SCCmec) [12]. At present, eleven SCCmec types (I–XI) of have been assigned for S. aureus based on the classes of the mec gene complex (A–E) and the ccr gene complex (1–8) (http://www.sccmec.org/Pages/SCC_TypesEN.html). Some studies have reported that SCCmec elements are more diverse in methicillin-resistant CoNS, with new variants of ccr genes continually being identified [13–20].

A recent molecular epidemiologic study of *S. hominis* isolates conducted by Bouchami *et al.*, 2011 demonstrated low clonality between isolates and the identification of isolates harboring the SCC*mec* type VI, VIII, and the new SCC*mec* type composed of *mec* complex A (in combination with *ccrAB1*). In addition, some isolates harbored the non-typeable SCC*mec* in the absence of the *ccr* complex and others expressed two *ccr* types (in the same isolate). Additionally, *ccrB1* and *ccrB4* were identified in *mecA*-negative and *mecA*-positive isolates with high nucleotide sequence homology to genes present in *S. aureus* isolates expressing SCC*mec* I, VI, or VIII, respectively (>95%) [21].

In agreement with a report by Hanssen *et al.*, 2004 staphylococcal strains from the same geographical region possess identical *ccr* genes that differ from sequences of strains from other regions. There is evidence of horizontal SCC*mec* gene transfer between CoNS and *S. aureus* [22,23]; therefore, characterization of SCC*mec* of *S. hominis* can provide useful information regarding the evolution and mobilization of this element from this species. The aim of this study was to characterize biofilm formation potential, antibiotic resistance, SCC*mec* type, and genetic relatedness of 21 *S. hominis* clinical isolates obtained from blood cultures.

Materials and Methods

Ethics Statement

This study was performed with the approval of the Local Ethics Committee of the School of Medicine of the Universidad Autónoma de Nuevo León (Approval MB11-006). Informed consent was not required since bacterial isolates were the subject of this study. Isolates, not human beings were studied. Thus, informed consent was not required by the local Ethics Committee.

Clinical isolates

S. hominis clinical isolates (n = 21) were collected between January 2006 and December 2011 from blood cultures from two hospitals in Mexico: Hospital Civil Fray Antonio Alcalde and Hospital Universitario Dr. José Eleuterio González. All isolates were causative agents of Laboratory-Confirmed Bloodstream Infection (LCBI) according to CDC criteria (http://www.cdc. gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf). Isolates examined met at least one of the following criteria: a) Patient had a recognized pathogen cultured from two or more blood cultures and organisms cultured from blood were not related to an infection at another site, b) Ppatient had at least one of the following signs or symptoms: fever ($>38^{\circ}$ C), chills, or hypotension and positive laboratory results not related to an infection at another site. Isolates were kept frozen in Brucella broth containing 15% glycerol at -70° C. Only one isolate per patient was included in this study.

Identification of isolates. Isolates were identified at the species level using API Staph galleries (bioMérieux, Inc., Durham, NC) according to the manufacturer's instructions. Species identification was confirmed by partial sequencing of the 16S rRNA and the *tuf* genes as previously described [24]. Sequencing was performed at the Instituto de Biotecnología, Universidad Nacional Autónoma de México. DNA sequences were compared to gene sequences at the National Center for Biotechnology Information (NCBI) GenBank using the BLAST algorithm (http://www.ncbi.nlm.nih.gov/BLAST).

Phenotypic biofilm assay. Semi quantitative determination of biofilm formation was performed by crystal violet staining as previously described [10,25]. All isolates were tested in quadruplicate in two different experiments conducted on different days. These assays were conducted on polystyrene 96-well flat bottom,

untreated plates with a low evaporation lid. Biofilm-forming capacity of all isolates was tested under two different growth conditions: in trypticase soy broth (TSB) supplemented with 1% glucose (TSBglu) or in TSB supplemented with 3% NaCl (TSB NaCl). Briefly, biofilm samples stained with crystal violet were dissolved in an ethanol–acetone mixture (70:30). The optical density of these solutions was subsequently measured at 550 nm. To simplify the data we used the ordinal classification for the level of biofilm production proposed by Christensen *et al.* Isolates with optical densities OD ≥ 0.25 were considered strong biofilm producers and isolates with optical densities between 0.15 and 0.24 were considered weak biofilm producers.

Staphylococcus saprophyticus ATCC 15305 (biofilm producer) and *S. hominis* ATCC 27844 (biofilm non-producer) were used as control organisms.

Methicillin resistance and susceptibility testing. Methicillin resistance was evaluated using the cefoxitin disk test and the *mecA* gene was detected by polymerase chain reaction (PCR) [26,27]. During the cefoxitin disk evaluation, isolates were considered resistant if measurements were \geq 24 mm and susceptible if measurements were \leq 25 mm [27]. Susceptibility testing was performed using the broth microdilution method as recommended by the Clinical and Laboratory Standards Institute (CLSI) [27]. The antibiotics tested were penicillin, ampicillin, amoxicillin-clavulanic acid, cefotaxime, vancomycin, daptomycin, gentamicin, erythromycin, tetracycline, ciprofloxacin, nitrofurantoin, trimethoprim, chloramphenicol, rifampin, and linezolid (Sigma Aldrich, Toluca, Mexico).

SCCmec and PFGE typing. SCCmec, ccr, and mec class typing was performed as previously described by Zhang et al. [26] and Kondo et al. [28] with modification to three primers as previously described Ruppe et al [29]. All SCCmec typing experiments were performed in duplicate. As control strains we used for all PCR reactions isolates previously typed by Garza-González et al., 2010: Staphylococcus epidermidis JC-5, JC-6, JC-28, JC-30, JC-488, JC-1439 and Staphylococcus haemolyticus JC-2165 [14,30]. PFGE was performed as described for S. aureus [31] with modifications to the restriction enzymes used and running conditions were as previously described by Bouchami et al. [21]. S. hominis DNA samples were digested with the XhoI endonuclease and bands were separated using a CHEF-DRIII instrument (Bio-Rad Laboratories, Hercules, CA). Band patterns were generated by visual analysis using Labworks 4.5 software with 1% of tolerance. The similarity coefficients were generated from a similarity matrix calculated using the Jaccard coefficient (SPSS 20.0 software).

Results

Biofilm formation

By assay with TBSglu, 47.6% (10/21) of the *S. hominis* isolates were categorized as strong biofilm producers (defined by the cutoff values used in this study). Weak biofilm production was observed in 23.8% (5/21) of the isolates and 28.6% (6/21) were non-producers. Whereas by assay with TBS NaCl, 33.3% (7/21) were strong biofilm producers, 23.8% (5/21) weak producers, and 42.9 (9/21) non-producers (Table 1).

Methicillin resistance and susceptibility testing

Most isolates, 81% (17/21), showed methicillin resistance by the cefoxitin disk test, and all isolates tested positive for the *mecA* gene (Table 1). All *S. hominis* isolates were resistant to at least one of the non- β -lactam antibiotics tested. Resistance rates for penicillin, ampicillin, amoxicillin-clavulanic acid, erythromycin, trimethoprim, ciprofloxacin, tetracycline, chloramphenicol, gentamicin,

Table 1. N	lolecular	and pher	otypic (charactei	izatior	n of S.	hominis b	lood is	olates.													
lsolate	Biofiln	-	FOX ²	mecA ³	Zhan	94	Kondo ⁴		SCC <i>mec</i> type ⁵	Resistar	ice profi	le ⁶										
	Glu	NaCI			mec	ccr	mec	ccr														
397	Strong	Strong	ж	Pos	A	1+5	A	1+5	UT1	PEN,	AMP,	AUG,	GEN,	ERY,	тет,	TMP, I	ЯF					
501	Weak	Neg	S	Neg	Neg	Neg	Neg	Neg	Neg	PEN,	AMP,	AUG,	ERY,	CIP								
1786	Neg	Neg	ж	Pos	в	Neg	В	Neg	UT	PEN,	AMP,	AUG,	CTX,	GEN,	ERY,	TET,	CIP, N	ц, т	MP, CI	Н, RI	DAF	*
8115	Neg	Neg	ъ	Pos	A	1+5	A	1+5	UT1	PEN,	AMP,	AUG,	ERY,	CIP,	TMP,	сн						
8122	Neg	Neg	ж	Pos	A	1+5	A	1+4+5	UT2	PEN,	AMP,	AUG,	ERY,	TET,	CIP,	TMP, (ΗΓ					
8125	Neg	Neg	S	Neg	Neg	Neg	Neg	Neg	Neg	PEN,	AMP,	AUG,	ERY,	TMP								
8127	Weak	Neg	Я	Pos	A	Neg	A	Neg	UT	PEN,	AMP,	AUG,	ERY,	TET,	TMP	DAP*						
8129	Weak	Weak	ж	Pos	A	-	A	-	New	PEN,	AMP,	AUG,	GEN,	ERY,	TET							
8144	Neg	Neg	ж	Pos	A	Neg	A	Neg	UT	PEN,	AMP,	AUG,	ERY,	TET,	CIP,	TMP						
8179	Neg	Neg	æ	Pos	A	æ	A	e	=	PEN,	AMP,	AUG,	TMP,	СНГ	DAP*							
9241	Strong	Weak	S	Neg	Neg	Neg	Neg	Neg	Neg	ERY												
6866	Strong	Strong	æ	Pos	A	-	A	-	New	PEN,	AMP,	AUG,	ERY,	CIP,	TMP,	Я						
9994	Strong	Weak	ж	Pos	A	5	A	4+5	UT3	PEN,	AMP,	AUG,	GEN,	ERY,	TMP,	Я						
10866	Weak	Neg	æ	Pos	A	Neg	A	Neg	UT	PEN,	AMP,	AUG,	ERY,	CIP,	TMP	DAP*						
11200	Strong	Weak	ж	Pos	в	Neg	В	Neg	UT	PEN,	AMP,	AUG,	ERY,	TET,	CIP,	,TIN	IMP, RI	Ц	AP*			
11477	Strong	Strong	S	Neg	Neg	Neg	Neg	Neg	Neg	PEN,	AMP,	AUG,	ERY	DAP*								
11621	Strong	Strong	ж	Pos	A	Neg	А	Neg	UT	PEN,	AMP,	AUG,	ERY,	TMP,	CHL	DAP*						
11628	Strong	Strong	ж	Pos	A	Neg	A	Neg	UT	PEN,	AMP,	AUG,	GEN,	ERY,	CIP,	TMP	AP*					
11630	Strong	Strong	В	Pos	A	1+5	A	1+5	UT1	PEN,	AMP,	AUG,	GEN,	ERY,	TET,	dD,	TMP					
11631	Strong	Strong	ж	Pos	A	1+5	A	1+5	UT1	PEN,	AMP,	AUG,	CTX,	GEN,	ERY,	TET,	CIP, TI	MP, O	HL, RI	Ц Д	۸P*	
11634	Weak	Weak	8	Pos	A	Neg	A	Neg	UT	PEN,	AMP,	AUG,	ERY	DAP*								
¹ Neg: biofilm u ² FOX: cefoxitir ³ POS: <i>mecA</i> gie ⁴ Neg: not amp ⁵ SCCmec type ⁵ SCCmec type ⁶ PEN: penicillir cefotaxime: D/ *Non-susceptil All isolates we	non-produc test; R: re: ne present, lifited. III was assi fified, UT: u ? AMP: am P.P: daptom Ie. e susceptil	er, Glu: med sistant: S: sus igned for S. c ntyped; UT1, picillin; AUG: ycin.	ia with 19 ceeptible. absent. UT2 and amoxicilli mycin and	6 glucose; , ording to 1 UT3 types n-clavulani,	VaCI: me nttp://w are assig c acid; E	edia with ww.sccm gned in 1 :RY: eryth	3% NaCl. ec.org/Pages his study. iromycin; TN	/SCC_Typ	besEN.html. hoprim; CIF	. ciprofle	xacin; TE	T: tetracy	cline; CF	L: chlora	nphenico	l; GEN: ge	intamicin;	RIF: rifan	:TIN ;niqr	nitrofura	ntoin; CTX:	
יעניו זיבו זעו ווטט		100011011000																				

Figure 1. PFGE dendrogram of *S. hominis* isolates. Similarity coefficients were generated from a similarity matrix calculated with the Jaccard coefficient using SPSS 20.0 software. doi:10.1371/journal.pone.0061161.q001

rifampin, nitrofurantoin, and cefotaxime for all isolates were 95%, 95%, 95%, 95%, 76%, 52%, 43%, 38%, 33%, 19%, 10%, and 10%, respectively. Furthermore, 48% of isolates were daptomycinnon susceptible. None of the 21 isolates tested in this study were found to be resistant to vancomycin or linezolid. The 4 *mecA*-negative isolates showed resistance to at least one of the β -lactam antibiotics tested. No correlation was found between the level of biofilm production and the resistance phenotype.

SCCmec and PFGE typing

A high frequency of *mec* complex class A (88.2%), *ccrAB1* (41.1%), and *ccrC* (35.3%) was observed among *mecA*-positive *S. hominis* isolates (Table 1).

Among the 17 *mecA*-positive isolates a high proportion were non-typeable (82%), eight were negative for *ccr* complex tested by both methods (UT); four isolates had a *mec* complex A*ccrAB1* and *ccrC* (UT1), one isolate had the *mec* complex A, *ccrAB4* and *ccrC* (UT2), and; one isolate had the *mec* complex A, *ccrAB1*, *ccrAB4* and *ccrC* (UT3). Two isolates carried association *mec* complex A and *ccrAB1*. One strain had SCC*mec* type III described for *S. aureus* (Table 1) (*mec* complex A, *ccr*3, and isolate 8179).

PFGE analysis of *S. hominis* isolates identified 21 different restriction patterns with at least 3 band differences between each isolate (Figure 1). Although a 100% similarity was not observed between isolates, two isolates had 95% similarity (11630 and 11631) and were categorized as strong biofilm producers, *mec*A-

positive, *mec* class A, *ccrAB1+ccrC*, and only differed in their susceptibility pattern.

Discussion

Most studies examining the presence of SCCmee among CoNS isolates have included in their respective analyses few *S. hominis* clinical isolates recovered from catheters, the catheter insertion site, pus, wound secretions, cerebral spinal fluid, or blood [11,13,14,21,30,32–34]. *S. hominis* comprises part of the normal flora colonizing the skin and mucous membranes of humans and may be found as a culture contaminant. However, detection of *S. hominis* is indicative of an infection and a probable causative agent of bacteremia. In this study, we analyzed 21 *S. hominis* clinical isolates recovered from blood and were causative agents of Laboratory-Confirmed Bloodstream Infection (LCBI) according to CDC criteria. To our knowledge, this is the first report characterizing *S. hominis* isolates identified as causative agents of bacteremia recovered from the blood at the microbiological and molecular level.

A significant observation associated with the *S. hominis* isolates studied was the ability of almost half of these strains (47.6%) to produce biofilm (since *S. hominis* is not known as a major biofilm producer) [9,11]. This characteristic represents a significant virulence factor since biofilms facilitate bacterial adherence to biomedical surfaces (such as catheters), thereby facilitating their entrance into the bloodstream [8]. However, the polysaccharide or protein composition of *S. hominis* biofilms (or genes involved on its production) remains unknown to date.

Among the *mecA*-positive isolates (81%), nearly half were carriers of a putative new SCC*mec*. In addition, most expressed the *mec* gene class A, *ccr* type 1, and others *ccr* type 5. This combination of *mec-ccr* complexes has been reported in this bacterial species before [11,14,21,32].

The *mec-ccr* complexes identified in this study were similar to those reported by Bouchami *et al.* that demonstrated that *S. hominis* could serve as a *mec-ccr* reservoir and also serve as a likely donor of *ccr*AB1 and *mec* complex A to other bacterial species. Unlike that study, we found a higher proportion of non-typeable isolates (82%) and isolates harboring *ccrC* (29%).

The data regarding SCC*mec* diversity in CoNS presented in this study may be biased due to the typing methodology used that was developed for *S. aureus*, therefore caution should be taken in the interpretation of these data. Therefore, a variety of non-typeable elements in CoNS may be simply an indication that *S. hominis* elements are different enough from those of *S. aureus* that the present typing methods can not be applied to this CoNS.

Data presented in this report also demonstrated that most isolates with new or untypeable SCCmec were resistant to at least three antibiotic classes, and some isolates presented with two or three recombinase complexes types, suggesting the presence of multiple SCCmec elements in tandem. However, to verify this, the *S. hominis* SCCmec cassette should be sequenced completely and compared to the *S. aureus* cassette. This analysis is currently underway in our laboratory.

We found that the 82% of *mecA*-positive isolates were untypeable and neither of the two methods used amplified any of the know recombinases suggesting that these strains are therefore

References

- Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, et al. (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcareassociated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29: 996–1011.
- Al Wohoush I, Rivera J, Cairo J, Hachem R, Raad I (2011) Comparing clinical and microbiological methods for the diagnosis of true bacteraemia among patients with multiple blood cultures positive for coagulase-negative staphylococci. Clin Microbiol Infect 17: 569–571.
- Chaves F, Garcia-Alvarez M, Sanz F, Alba C, Otero JR (2005) Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J Clin Microbiol 43: 4877–4879.
- Palazzo IC, d'Azevedo PA, Secchi C, Pignatari AC, Darini AL (2008) Staphylococcus hominis subsp. novobiosepticus strains causing nosocomial bloodstream infection in Brazil. J Antimicrob Chemother 62: 1222–1226.
- Sunbul M, Demirag MK, Yilmaz O, Yilmaz H, Ozturk R, et al. (2006) Pacemaker lead endocarditis caused by Staphylococcus hominis. Pacing Clin Electrophysiol 29: 543–545.
- Cunha BA, Esrick MD, Larusso M (2007) Staphylococcus hominis native mitral valve bacterial endocarditis (SBE) in a patient with hypertrophic obstructive cardiomyopathy. Heart Lung 36: 380–382.
- d'Azevedo PA, Trancesi R, Sales T, Monteiro J, Gales AC, et al. (2008) Outbreak of Staphylococcus hominis subsp. novobiosepticus bloodstream infections in Sao Paulo city, Brazil. J Med Microbiol 57: 256–257.
- Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, et al. (2009) Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 47: 1172–1180.
- de Allori MC, Jure MA, Romero C, de Castillo ME (2006) Antimicrobial resistance and production of biofilms in clinical isolates of coagulase-negative Staphylococcus strains. Biol Pharm Bull 29: 1592–1596.
- Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, et al. (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22: 996–1006.
- Garza-Gonz Lez E, Morfin-Otero R, Mart Nez VZMA, Gonzalez-Diaz E, Gonz Lez-Santiago O, et al. (2011) Microbiological and molecular characterization of human clinical isolates of Staphylococcus cohnii, Staphylococcus hominis, and Staphylococcus sciuri. Scand J Infect Dis 43: 930–936.

likely candidates for carrying novel SCC*mec* types. This observation was previously described for *S. hominis* [11,13,21,30,33,34] and may be explained by: a) that this cassette is a carrier of a new recombinase not related to *ccr*AB or *ccr*C genes, b) they represent new *ccr* complex isotypes that cannot be amplified by currently utilized *ccr* primers, or c) *ccr* genes were not present [23].

In this study, we identified a high rate of methicillin resistance (81%) in addition to resistance to other antibiotics among the clinical isolates studied; an observation previously reported for *S. hominis* and other CoNS species [17,21]. All methicillin resistant isolates were also positive for SCC*mec* in addition to displaying resistance to most β -lactams antibiotics tested.

Among the *S. hominis* isolates collected in the present study none were clonal, therefore we concluded that infections caused by these isolates were not caused by dissemination of the same isolate throughout the hospital. Taking into account the fact that *S. hominis* is a component of the normal skin and mucous membrane flora, it is likely that these infections were endogenous.

In conclusion, our results showed that *S. hominis* is a biofilm producer and in combination with its high resistance rate to antibiotics, renders this species a serious threat for infections in immunocompromised patients. Finally, *S. hominis* isolates may possess different SCC*mec* types compared to those present in *S. aureus*.

Author Contributions

Revised the final version of the manuscript: SMO RMO ERN JLD SFT GMGG LVT EGG. Conceived and designed the experiments: EGG RMO. Performed the experiments: SMO SFT. Contributed reagents/ materials/analysis tools: ERN JLD GMGG LVT. Wrote the paper: SMO.

- Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44: 1549–1555.
- Mombach Pinheiro Machado AB, Reiter KC, Paiva RM, Barth AL (2007) Distribution of staphylococcal cassette chromosome mec (SCCmec) types I, II, III and IV in coagulase-negative staphylococci from patients attending a tertiary hospital in southern Brazil. J Med Microbiol 56: 1328–1333.
- Garza-Gonzalez E, Lopez D, Pezina C, Muruet W, Bocanegra-Garcia V, et al. (2010) Diversity of staphylococcal cassette chromosome mec structures in coagulase-negative staphylococci and relationship to drug resistance. J Med Microbiol 59: 323–329.
- Pi B, Yu M, Chen Y, Yu Y, Li L (2009) Distribution of the ACME-arcA gene among meticillin-resistant Staphylococcus haemolyticus and identification of a novel ccr allotype in ACME-arcA-positive isolates. J Med Microbiol 58: 731– 736.
- Zong Z, Lu X (2010) Characterization of a new SCCmec element in Staphylococcus cohnii. PLoS One 5: e14016.
- Zong Z, Peng C, Lu X (2011) Diversity of SCCmec elements in methicillinresistant coagulase-negative staphylococci clinical isolates. PLoS One 6: e20191.
- Soderquist B, Berglund C (2009) Methicillin-resistant Staphylococcus saprophyticus in Sweden carries various types of staphylococcal cassette chromosome mec (SCCmec). Clin Microbiol Infect 15: 1176–1178.
- Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M (2011) High prevalence of mec complex C and ccrC is independent of SCCmec type V in Staphylococcus haemolyticus. Eur J Clin Microbiol Infect Dis.
- Urushibara N, Paul SK, Hossain MA, Kawaguchiya M, Kobayashi N (2011) Analysis of Staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: identification of a novel ccr gene complex with a newly identified ccrA allotype (ccrA7). Microb Drug Resist 17: 291–297.
- Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M (2011) Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmec structural elements. PLoS One 6: e21940.
- Hanssen AM, Kjeldsen G, Sollid JU (2004) Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother 48: 285–296.
- Hanssen AM, Ericson Sollid JU (2006) SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46: 8–20.

- Heikens E, Fleer A, Paauw A, Florijn A, Fluit AC (2005) Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 43: 2286–2290.
- Klingenberg C, Aarag E, Ronnestad A, Sollid JE, Abrahamsen TG, et al. (2005) Coagulase-negative staphylococcal sepsis in neonates. Association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr Infect Dis J 24: 817–822.
- Zhang K, McClure JA, Elsayed S, Louie T, Conly JM (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43: 5026–5033.
- CLSI (2012) M100-S22. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Wayne, PA: Clinical and Laboratory Standars Institute.
- Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, et al. (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51: 264–274.
- Ruppe E, Barbier F, Mesli Y, Maiga A, Cojocaru R, et al. (2009) Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob Agents Chemother 53: 442–449.

- Garza-Gonzalez E, Morfin-Otero R, Llaca-Diaz JM, Rodriguez-Noriega E (2010) Staphylococcal cassette chromosome mec (SCC mec) in methicillinresistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect 138: 645–654.
- 31. Murchan S, Kaufmann ME, Deplano A, de Ryck R, Struelens M, et al. (2003) Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol 41: 1574–1585.
- Bouchami O, Achour W, Mekni MA, Rolo J, Ben Hassen A (2011) Antibiotic resistance and molecular characterization of clinical isolates of methicillinresistant coagulase-negative staphylococci isolated from bacteremic patients in oncohematology. Folia Microbiol (Praha) 56: 122–130.
- Hanssen AM, Sollid JU (2007) Multiple staphylococcal cassette chromosomes and allelic variants of cassette chromosome recombinases in Staphylococcus aureus and coagulase-negative staphylococci from Norway. Antimicrob Agents Chemother 51: 1671–1677.
- Ibrahem S, Salmenlinna S, Virolainen A, Kerttula AM, Lyytikainen O, et al. (2009) Carriage of methicillin-resistant Staphylococci and their SCCmec types in a long-term-care facility. J Clin Microbiol 47: 32–37.