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Anke K. Bergmann,15,16 Reiner Siebert,15,17 Edo Vellenga,18 Sadia Saeed,19,20 FilomenaMatarese,20 Joost H.A.Martens,20

Hendrik G. Stunnenberg,20 Andrew E. Teschendorff,1 Javier Herrero,1 Ewan Birney,5 Ian Dunham,5 and Stephan Beck1,*
1UCL Cancer Institute, University College London, London WC1E 6BT, UK
2Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081BT Amsterdam, the Netherlands
3Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, UK
5European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton,

Cambridge CB10 1SD, UK
6Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1HH, UK
7Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
8National Health Service (NHS) Blood and Transplant, University of Cambridge, Cambridge Biomedical Campus, Long Road,

Cambridge CB2 0PT, UK
9British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0QQ, UK
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SUMMARY

Epigenome-wide association studies (EWAS) pro-
vide an alternative approach for studying human
disease through consideration of non-genetic vari-
ants such as altered DNA methylation. To advance
the complex interpretation of EWAS, we developed
eFORGE (http://eforge.cs.ucl.ac.uk/), a new stand-
alone and web-based tool for the analysis and inter-
pretation of EWAS data. eFORGE determines the
cell type-specific regulatory component of a set
of EWAS-identified differentially methylated posi-
tions. This is achieved by detecting enrichment of
overlap with DNase I hypersensitive sites across
454 samples (tissues, primary cell types, and cell
lines) from the ENCODE, Roadmap Epigenomics,
and BLUEPRINT projects. Application of eFORGE
to 20 publicly available EWAS datasets identified
disease-relevant cell types for several common
Cell Repor
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diseases, a stem cell-like signature in cancer, and
demonstrated the ability to detect cell-composition
effects for EWAS performed on heterogeneous tis-
sues. Our approach bridges the gap between large-
scale epigenomics data and EWAS-derived target
selection to yield insight into disease etiology.
INTRODUCTION

Common complex diseases, such as autoimmune, metabolic,

and neurodegenerative diseases as well as cancer, typically

involve multiple genetic and non-genetic factors. The search

for genetic factors through genome-wide association studies

(GWAS) has identified thousands of replicated SNPs associated

with many diseases and other complex phenotypes (Welter

et al., 2014). Notably, most of the identified variants were found

to map at non-protein coding regions where their molecular con-

sequences are difficult to evaluate (Paul et al., 2014). The search

for non-genetic factors is more complicated due to the many
ts 17, 2137–2150, November 15, 2016 ª 2016 The Author(s). 2137
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confounding factors, in particular, genetic heterogeneity be-

tween individuals and cell-type heterogeneity in accessible sam-

ple material (e.g., whole blood). Nonetheless, significant prog-

ress has been made following the introduction of systematic

epigenome-wide association studies (EWAS) in 2011 (Rakyan

et al., 2011), including correction of cell-composition effects

(Houseman et al., 2012; Zou et al., 2014; McGregor et al.,

2016; Houseman et al., 2016). Since then, over 250 EWAS

have been conducted (Michels et al., 2013). A large proportion

of these EWAS have correlated DNA methylation (DNAm)

profiles with disease status and environmental exposure in

cross-sectional case-control cohorts. A subset of these studies

reported differentially methylated positions (DMPs) that repli-

cated in independent sample cohorts, e.g., for smoking behavior

(Philibert et al., 2015). Fine mapping of the disease-associated

genetic variants and integrative analysis with cell type-specific

epigenomic datasets suggest a possible causal involvement

of affected regulatory sequences, especially enhancers (Farh

et al., 2015; Kundaje et al., 2015).

Several large-scale initiatives such as the ENCODE (ENCODE

Project Consortium, 2012), Epigenomics Roadmap (Kundaje

et al., 2015), and BLUEPRINT (Adams et al., 2012) projects

have mapped gene regulatory elements across a wide range of

tissues and cell types using a variety of assays. Active regulatory

elements have been shown to concentrate at DNase I hypersen-

sitive sites (DHSs) (Dorschner et al., 2004). The intersection of

these DHSs with common disease-associated variants has

proved to be a powerful approach to identify potential regulatory

variants implicated in the disease (Maurano et al., 2012). This

approach has been implemented as a publicly available web

tool, termed FORGE, and systematically applied to analyze SNP

sets for 260 phenotypes from the GWAS catalog (Dunham

et al., 2015). The functional interpretation of the resulting SNP-

DHS overlaps is that highly associated GWAS SNPs are enriched

for DHSs of specific cell types that are relevant to the etiology of

the disease under investigation. This is because such SNPs are

thought to exert functional changes in affected regulatory ele-

ments (marked by DHSs), which, in turn, can then affect gene

expression and may ultimately result in phenotypic changes.

While genotypes are generally invariable, epigenotypes are

ontogenetically, spatially, and temporally variable. This can

impede the meaningful interpretation of DMPs identified through

EWAS (Michels et al., 2013; Birney et al., 2016; Paul and Beck,

2014). For example, EWAS are often performed on heteroge-

neous tissues (e.g., whole blood) where cell-composition effects,

or only a specific cell type within that tissue, may be driving the

observed epigenetic signal. While significant progress has been

made to reducemajor sources of confounding (reviewed in Liang

and Cookson, 2014; Wilhelm-Benartzi et al., 2013; Rakyan et al.,

2011; Michels et al., 2013; Birney et al., 2016), additional tools

are required to improve EWAS analysis and elucidate disease

mechanisms. To this end, we have developed eFORGE (ex-

perimentally derived Functional element Overlap analysis of

ReGions from EWAS), a bioinformatics tool that informs which

EWAS DMPs are likely to be functional and in which tissue or

cell type. This is achieved by overlap analysis between a DMP

set of choice and reference DHS maps, improving on previous

overlap analyses (Stadler et al., 2011; Slieker et al., 2013).
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eFORGE has been implemented both as standalone software

and an interactive web tool, and rigorously tested for per-

formance criteria, including reproducibility, false-positive rates,

and code execution speed. To demonstrate its utility, we

systematically analyzed publicly available EWAS datasets to

explore the suitability of eFORGE for analyzing surrogate tissues

and detecting cell-composition effects, with the ultimate aim of

providing insights into disease mechanisms.

RESULTS

eFORGE Method and Workflow
The main objective of eFORGE is the prediction of disease-rele-

vant cell type(s) from EWAS data generated in heterogeneous

tissues, as illustrated in Figure 1A. eFORGE analyses such

EWAS data generated using Illumina Infinium BeadChips (i.e.,

27k, 450k, and EPIC arrays). For a given set of high-scoring

probes on the array platform (indicated by large black dots in up-

per left panel), eFORGE generates a background of 1,000

random probe sets with matching properties regarding their

location within genes and CpG islands (Tables S1 and S2). It

then overlaps these sets with DHSs for up to 454 selectable

reference samples (tissues, primary cell types, and cell lines)

from the ENCODE, Epigenomics Roadmap, and BLUEPRINT

projects (Data S1). Finally, eFORGE compares the number of

DMPs overlapping DHSs with those obtained by random probes

to calculate enrichment scores for each of the selected cell

types. For a given eFORGE plot, as illustrated in the bottom right

panel of Figure 1A, cell types are shown on the horizontal axis

and the significance (e.g., –log10 binomial p value) is shown on

the vertical axis. Each dot represents an enrichment p value for

a given cell type. Enrichments with multiple testing-corrected q

values <0.05 and <0.01 are shown as pink and red dots, res-

pectively. Samples that do not reach statistical significance (q

value >0.05) are shown in blue.

Assessment of eFORGE Performance
First, we assessed the reproducibility of eFORGE. Each time

eFORGE is run on a dataset, it selects matched background

probes at random. Because of this, the background is different

for each eFORGE analysis. To assess the level of reproducibility

between individual analyses, we compared 1,000 independent

eFORGE runs using the same dataset, which also represents

the default test set made available as part of the stand-alone

andweb-based versions of eFORGE (see also Experimental Pro-

cedures). Using this test set, we obtained a highly consistent

pattern of enrichment for the same target cell types between in-

dividual runs (Figure 1B), demonstrating that eFORGE results are

highly reproducible.

Second, we assessed two methods for the correction of mul-

tiple testing: Benjamini-Hochberg (BH), a false discovery rate

(FDR)-based correction method for independent tests (Benja-

mini and Hochberg, 1995), and Benjamini-Yekutieli (BY), an

FDR-based correction for multiple tests that are not independent

(Benjamini and Yekutieli, 2001). We reasoned that the latter

would be more appropriate in our case as DHSs across different

cell types have been found to be cell lineage dependent (Sterga-

chis et al., 2013). Benjamini-Hochberg correction resulted in one



Figure 1. eFORGE Overview and Performance

(A) Concept, components, and flowchart of eFORGE: upper-left panel depicts typical EWAS results with top hitsmarked as large black dots that serve as input for

eFORGE. Themain components of eFORGE are controlled by Perl software that uses data from the Roadmap Epigenomics, ENCODE, and BLUEPRINT projects

to compute enrichment and significance profiles (illustrated by middle and bottom left panels). R code is used to generate output graphs (illustrated by bottom

right panel) with predicted target cell types marked in red.

(B) Reproducibility: using the CD14+ tDMP dataset (Jaffe and Irizarry, 2014), 1,000 different runs were performed showing that the variability due to random

background sampling is well below the two eFORGE thresholds (green and red lines) that affect target prediction (shown in log scale). These data indicate high

reproducibility between eFORGE runs.

(C) Runtime: comparison of Perl BigFloat and BigInt (original code, in black) versus logarithm-based code (in blue) for the management of decimal p value

numbers shows up to a 15-fold increase in speed for logarithm-based code. Original code was unable to process 1,000 probes, so data are only shown for probe

sets under 1,000 probes.

(D) GeEC correlation data matrix for DHS/Histone mark data from the Roadmap, ENCODE, and BLUEPRINT projects. Red regions show high positive correlation

(as measured by Pearson correlation coefficient), white regions show no correlation and blue regions show high negative correlation. Grouping of data by

hierarchical clustering agrees with original DHS/Histone mark label (y axis), suggesting a similarity in measurements between different consortia. See also Tables

S1–S5, S6 and Data S1.
false-positive (q value <0.01), after running >2.3 million tests

(8,000 runs of 299 samples each), compared to no false-posi-

tives with BY correction (q value <0.01). Based on this result,

we implemented BY correction for eFORGE analyses (see also

Tables S3 and S4).

Third, we assessed eFORGE computational speed using

different approaches to manage the large decimal p value

numbers resulting from the many statistical tests performed.

The Perl BigFloat and BigInt functions used by FORGE (Dunham

et al., 2015) were slow and, in some cases, even impeded

eFORGE code execution. Switching to using the logarithms of

the values for the binomial test not only reduced the amount of

digits needed in calculation, but also dramatically increased

code execution speed as shown in Figure 1C. We anticipate
that this advancewill become particularly noticeable in the online

version of eFORGE when encountering high user demand.

Inter-consortium Correlation Analysis

One possible caveat when interpreting eFORGE results

could be consortium-specific differences in the generation of

reference datasets used by eFORGE. These include data-

analysis pipelines, experimental protocols (including read

depth specifications), and materials used (i.e., ENCODE pre-

dominantly analyzed transformed cell lines, whereas Roadmap

and BLUEPRINT used primary tissue samples). In order to

quantify any consortium bias on data generation, we applied

the Genomic Efficient Correlator (GeEC) tool (see Experimental

Procedures). This tool can measure the correlation of data

from different consortia and identify drivers of clustering for
Cell Reports 17, 2137–2150, November 15, 2016 2139



Figure 2. eFORGE Analysis of tDMPs and cDMPs

Results show ability to predict target tissues from known tissue-specific differentially methylated positions (tDMPs) and cell type-specific DMPs (cDMPs): the

heatmap is a composite of results for the top 1,000 tDMPs for blood, kidney, and lung (Lowe et al., 2015), and top cDMPs for CD14+, T cells, and NK cells (Jaffe

and Irizarry, 2014). With tDMPs and cDMPs, we have the advantage of a known prior tissue- or cell type-specific association. We can thus test whether the

eFORGE tool identifies the correct tissue. The color-coded enrichment results show that eFORGE identified the correct tissue or cell type each time, with no false-

positives. This confirms the tool can signal when regions are associated by DNAm with a specific cell type. See also Figure S1 and Data S2, S3, S4, and S5.
these data. This analysis did not detect any consortium bias on

data generation (Figure 1D; Table S5).

Application to tDMPs

As a positive control, we assessed the ability of eFORGE to iden-

tify the correct tissues and cell type(s) when tested with probe

sets of established tissue and cell-type specificity. In this regard,

we analyzed three sets of previously reported tissue-specific

DMPs (tDMPs) (Lowe et al., 2015) and three sets of cell type-spe-

cific DMPs (cDMPs) (Jaffe and Irizarry, 2014) using consolidated

Roadmap DHS data. Figure 2 shows the resulting heatmap,

which demonstrates the ability of eFORGE to unambiguously

identify the relevant tissues and cell types for each tDMP and
2140 Cell Reports 17, 2137–2150, November 15, 2016
cDMP set (i.e., blood, kidney, lung, monocytes, natural killer

cells, and T cells). To quantify the level at which eFORGE can

detect mixed tissue- and cell type-specific enrichment, we

next assessed its performance onmixed tDMP and cDMP probe

lists. Figure S1A shows the result for a mixture of tDMPs from

lung and kidney tissues (Lowe et al., 2015). Although both tissues

were predicted correctly in eFORGE, the tissue-specific signal

was lower, due to a lack of specific enrichment for the mixed

sets in each of the cell types. Figure S1B shows the correspond-

ing results for mixed cDMPs. Here, sets of 148 B cell-specific

and 148 monocyte-specific cDMPs (Jaffe and Irizarry, 2014)

were mixed, and again the corresponding cell types were



correctly predicted. Taken together, we provided evidence that

eFORGE can identify the correct target tissues and cell types

from individual and mixed probe sets.

Application to EWAS Data
Next, we applied eFORGE to analyze published EWAS data.

First, we considered all EWAS compiled in a review article

(Michels et al., 2013) that analyzed at least 100 samples using

Illumina Infinium BeadChips. This qualified 44 datasets for

eFORGE analysis, of which 20 showed eFORGE signal (q value

<0.05). 14 studies showed an enrichment pattern specific to

particular tissues. For instance, we observed blood-specific pat-

terns for six blood-based EWAS, and stem cell-specific patterns

for five cancer and aging EWAS (Figure 3). The genome-wide

distribution of hits from these studies is shown in Figure 4. In

addition, we found a larger average sample size for studies

that present eFORGE signal (average n = 527) compared to

those studies that did not (average n = 191). Taken together,

these results suggest that tissue-specific enrichment patterns

are widespread among EWAS and that eFORGE demonstrates

the capacity to detect these patterns.

Second, to provide specific examples of eFORGE analysis, we

assessed the ability of eFORGE to predict disease-relevant cell

types from EWAS conducted on immune blood cells for three

autoimmune diseases: rheumatoid arthritis (RA) (Liu et al.,

2013), systemic lupus erythematosus (SLE) (Coit et al., 2013),

and Sjögren’s syndrome (Altorok et al., 2014). For these dis-

eases, it is assumed that blood is the main affected tissue. We

performed eFORGE analyses for each of these diseases using

the reported top 100, 86, and 753 probes and consistently found

tissue-specific enrichment for immune effector cells and thymus

(Figure 5). Specifically, eFORGE results for the EWAS on RA

pointed to CD14+ cells as the most highly enriched cell type (q

value = 5.53e-04), indicating a tendency for cell-composition-

corrected RA-associated DNAm changes to co-locate with

CD14+ DHSs. Indeed, the accelerated maturation of CD14+ cells

is a hallmark in RA (Hirohata et al., 1996). For the EWAS on SLE,

we observed confirmatory enrichment in DHSs specific to T cells

(q value = 2.56e-05). T cells, in particular CD4+ T cells, play an

essential role in the development of SLE (Yin et al., 2015) and

have previously been proposed as targets for the treatment of

Sjögren’s syndrome (Singh and Cohen, 2012). Consistent with

these findings, eFORGE also pointed to an independent T cell

signal for DMPs identified in the Sjögren’s syndrome EWAS (q

value = 1.31e-49).

Third, we assessed whether eFORGE can uncover patterns in

published EWAS data that would inform the functional interpre-

tation of the statistical findings. Using the top 1,000 hypomethy-

lated regions for an EWAS on multiple sclerosis (MS) (Huynh

et al., 2014), we generated eFORGE plots for several DHS refer-

ence sets (Figure 6A). We observed a tissue-specific enrichment

in immune cells, which is unexpected for a study performed on

pathology-free brain tissue. To support this observation, we car-

ried out additional eFORGE analysis using histone marks (Kun-

daje et al., 2015) that showed an enhancer-specific signature

(H3K4me1) underlying this DHS enrichment (Figure 6B). We

then intersected the top 1,235 hypomethylated regions from

the study that gave rise to the observed immune signal with
the locations of active enhancers (n = 1,158) previously identified

in microglial cells (Lavin et al., 2014). These immune cells consti-

tute up to 15% of all cells in the mammalian CNS (Xavier et al.,

2014). A Fisher’s exact test confirmed significant co-localization

of the microglial-specific active enhancers (p value: 2.70e-07,

odds ratio [OR]: 5.88, 95% confidence interval [CI]: 3.19–9.96),

suggesting that microglial enhancers may be potential drivers

of the MS EWAS signal. In conclusion, eFORGE analysis of pub-

lished MS EWAS data uncovered tissue-specific patterns, sug-

gesting potential molecular mechanisms relevant to the etiology

of the disease.

Fourth, we examined whether eFORGE can be used for the

interpretation of EWAS that use surrogate tissues. In these

studies, DNAm changes are measured in easily accessible tis-

sues such as whole blood or buccal cells rather than the target

tissue that is most relevant to the disease. It has been sug-

gested that DNAm changes in surrogate tissues reflect epige-

nomic perturbations found in the target tissue (Lowe and

Rakyan, 2014). An alternative possibility is that the observed

epigenetic signature does not mimic methylation changes in

the target tissue but is specific to the surrogate tissue. We

performed eFORGE analysis on the top 110 regions from an

EWAS on ovarian cancer, which was performed on whole blood

using a pre-treatment discovery cohort. We found enrichment

for CD14+ cells (q value = 1.37e-12, Figure 6C), but not for ovary

(q value = 1) or solid cancer tissues (q value = 1). In addition, the

observed myeloid/lymphoid enrichment patterns suggested

cell-composition effects, as only myeloid regions showed

enrichment, raising the possibility that these DNAm differences

were caused by an increase in myeloid cell numbers in one of

the groups. While a similar immune signature had been identi-

fied before, in addition to cell-composition effects (Teschen-

dorff et al., 2009; Houseman et al., 2012; Li et al., 2014), we

used an alternative approach to support this finding. Specif-

ically, we were able to exclude ovarian signal and provide evi-

dence for which myeloid cell types may drive the EWAS signal.

For example, DHS enrichment was not observed for megakar-

yocytes (Figure 6C). In summary, eFORGE analysis of the top

hits from an EWAS on ovarian cancer pointed to cell-composi-

tion effects driven by a myeloid-specific immune response to

this cancer type, rather than an epigenetic change in peripheral

blood that mimics a change in the methylome of the ovarian

cancer tissue.

Finally, we showed that eFORGE detects tissue-specific pat-

terns in cancer EWAS data. We analyzed five cancer EWAS:

breast cancer (Fang et al., 2011), colorectal cancer (Kibriya

et al., 2011), sporadic colorectal cancer (Laczmanska et al.,

2013), clear cell renal cell carcinoma (Arai et al., 2012), and adre-

nocortical carcinoma (Barreau et al., 2013). Using the top 330,

450, 240, 801, and 362 EWAS hits, respectively, we performed

eFORGE analysis for each DMP set, and identified enrichment

in stem cells but not in breast, intestine, or renal tissues across

the five studies (Figure 7). This suggests that many regulatory

elements affected by cancer epigenetic reprogramming may

be stem cell like. This is consistent with previous findings that

DNAm changes in cancer tissue aid the emergence of a possible

stem cell phenotype (Widschwendter et al., 2007). In conclusion,

application of eFORGE to cancer EWAS data provided evidence
Cell Reports 17, 2137–2150, November 15, 2016 2141



Figure 3. Aggregated Enrichment Statistics for Studies with eFORGE Signal from a Recent Review

Studies were obtained from the review by Michels et al. (2013). This heatmap shows the enrichment statistics (presented as –log10(binomial p value)) for an

unbiased selection of EWAS (n = 20 studies, eachwith at least 100 samples).Many of these studies show an enrichment pattern specific to particular tissues, such

as blood (blue box, seven studies) and stem cells (red box, five studies). In addition, one ccRCC study shows a kidney specific enrichment and one CLL study

presents a lung-specific enrichment (lung tissue and IMR90). Other patterns are more mixed (yellow box, six studies). Of the seven blood-enriched studies, six

were performed in blood and one was performed in breast cancer tissue, which may contain immune cells. All five studies that show a stem cell-specific

enrichment are exclusively cancer or aging EWAS. Of the six studies that show a mixed enrichment, there is evidence of different components underlying

variation. For example, the EWAS on child maltreatment performed on salivary DNA, despite showing enrichment for many tissues, has blood cell types as the

highest categories. Work remains to be done to refine these mixed signals and define the components that are driving enrichment for several different tissue

types. See also Table S7.
for a stem cell-like enrichment across all five studies, which

warrants further investigation.

DISCUSSION

We have developed eFORGE, a tool that highlights DMPs

identified through EWAS that are likely to be functional in a cell
2142 Cell Reports 17, 2137–2150, November 15, 2016
type- and tissue-specific context. Its development represents

an addition to the currently limited toolbox available for compre-

hensive analysis and interpretation of EWAS data. Both the

standalone and web-based versions of eFORGE have been sub-

jected to rigorous performance assessment with regards to

false-positive rates, reproducibility, and speed to ensure ability

to cope with high user demand.



Figure 4. Karyotype View of EWAS Hits and Bar Chart of EWAS Tissues

(A) This karyotype view was obtained taking top ten study hits from each of the 20 EWAS with eFORGE signal (taken from Michels et al., 2013) and performed

using ensembl KaryoView (http://www.ensembl.org/Homo_sapiens/Location/Genome). Many EWAS exclude probes from sex chromosomes as part of study

analysis, and therefore there is an absence of top hits in these chromosomes on the graph. Apart from this, there seems to be no strong bias in the distribution of

EWAS hits along the genome.

(B) Bar chart indicating analyzed tissue for 20 EWAS with eFORGE signal from Michels et al. (2013). As is to be expected for an easily accessible tissue, blood is

the most analyzed category, with ten studies.

See also Table S7.
SNPs identified through GWAS have been systematically

probed for enrichment at regulatory elements marked by DHSs

(Maurano et al., 2012). This analytical approach has recently

been implemented in the FORGE tool, which enables an auto-

mated analysis workflow (Dunham et al., 2015). Complementing

FORGE for epigenetic analysis, we have developed eFORGE to

provide large-scale, tissue-specific DHS enrichment analysis for

DMPs identified through EWAS. While using parts of the FORGE

framework (Dunham et al., 2015), eFORGE uses a different,

EWAS-specific background and contains several features not

included in FORGE, such as a faster scaling of the binomial

test and histone marks as a dataset additional to DHSs.

The main applications of eFORGE are the analysis of EWAS

data to predict disease-relevant cell types and potential cell-

composition effects, as well as quality-control analysis for

studies on tissue-specific DNA methylation. We have provided

evidence that eFORGE analysis of tDMPs correctly predicts

the relevant tissue through tissue-specific DHS enrichment pat-

terns (Figure 2). In this way, sets of tDMPs can be linked to the
corresponding tissue in an independent manner. This link can

also be used in the inverse sense to detect regions with a poten-

tial tissue-specific regulatory function, by using algorithms to

detect probe sets with a high tissue-specific eFORGE score.

eFORGE is also designed to aid downstream functional follow-

up of DMPs by providing tissue-specific DHS overlap results in

the form of tables, with data for specific genomic regions.

DHSs are markers of cis-regulatory elements (Dorschner et al.,

2004), and DNAm changes in these regions may be associated

with functional consequences (Sch€ubeler, 2015). Such func-

tional links could be confirmed through experimental assays,

including chromatin conformation capture techniques and epi-

genome editing using CRISPR/Cas9 (Köeferle et al., 2015).

eFORGE can also be used to assess cell-composition effects

in EWAS, providing a complementary approach to methylation-

based tools. When heterogeneous tissues are analyzed in

EWAS, a proportion of the observed differential DNAm signal

can be due to cell-composition effects (Houseman et al., 2012,

2016; Paul and Beck, 2014). eFORGE can identify these
Cell Reports 17, 2137–2150, November 15, 2016 2143
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Figure 5. eFORGE Analysis of Autoimmune EWAS

Top panel shows a blood (predominantly T cell), intestine, and thymus-specific signal for 86 probes from an EWAS on SLE. Middle panel shows a more general

pattern of enrichment, with a strong blood signal, with CD14+ cells as the highest category, for a set of 100 RA EWAS probes. Bottom panel shows a blood

(predominantly T cell) and thymus-specific enrichment for a set of 753 probes for an EWAS on Sjögren’s syndrome. Probe lists were obtained from the

supplementary files of the studies (Coit et al., 2013; Liu et al., 2013; Altorok et al., 2014).
cell-composition effects by detecting tissue-specific DHS en-

richment based on genomic location, not DNAm values. Unlike

alternative methods for detecting cell-composition effects (Zou

et al., 2014; Houseman et al., 2012, 2016), eFORGE provides

the user-friendly option of web-based analysis.

eFORGE analysis is, however, not without limitations. Despite

the fact that eFORGE can detect cell-composition effects, the

user must interpret whether a given enrichment is driven by con-

founding cell-composition effects or by true cell type-specific

effects. Based on the data presented here, strong bias toward

one cell type for an EWAS performed on heterogeneous tissue

is more likely an indication of cell-composition than cell type-

specific effects. The need for a more accurate interpretation re-

quires complementary methods for cell-composition detection

and correction to be used and also highlights the requirement

of experimental validation. In addition, eFORGE can only analyze

cell types for which DHS data are available. Although the current

eFORGE database contains 454 samples, many cell types are
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still not represented. To consider these, we have to recur to alter-

native analyses, as shown in our analysis of microglial enhancer

enrichment outside of eFORGE.

In conclusion, we anticipate eFORGE to contribute to the chal-

lenging task ahead of translating the increasing number of DMPs

identified through EWAS into relevant molecular mechanisms.
EXPERIMENTAL PROCEDURES

DNase I Data

DNase I data from the ENCODE, Roadmap Epigenomics, and BLUEPRINT

projects were downloaded and, if necessary, processed using the Hotspot

method (see Supplemental Experimental Procedures). Fastq and BAM files

for BLUEPRINT samples (listed in Table S6) are available at the European

Genome-phenome Archive under accession number EGAD00001002713.

EWAS DMP Data

A list of 44 450k- and 27k-based EWASwas analyzed with eFORGE. The list of

20 studies with eFORGE signal is contained in Table S7. Studies were selected



(legend on next page)
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from Table S1 of a review on EWAS (Michels et al., 2013), taking only studies

with a number of samples equal to or above 100. eFORGE analysis of DMP

sets was performed for DNase I hotspots from ENCODE, BLUEPRINT, and

Roadmap Epigenome projects, with background DMP sets from the Illumina

450k or 27k array where appropriate. For the 27k array background, only

probes shared with the 450k array were used. Notably, 13 of the EWAS

selected from the aforementioned review did not report top probes. This

lack of reporting top probe IDs is an important and not previously reported

finding, constituting a major limitation for EWAS reproducibility, in addition

to hindering eFORGE analysis of published studies. We urge the community

to embrace the open and clear reporting of EWAS results, including top

study hits.

Preparation of eFORGE Overlaps

An SQLite database (http://www.sqlite.org) containing the overlaps for

the Infinium Illumina 450k array (Bibikova et al., 2011) cg probes with the

BLUEPRINT, ENCODE, and Roadmap Epigenome DNase I hotspots was

incorporated into the eFORGE tool. The HumanMethylation450 v.1.2

Manifest File with data from all the cg probes on the 450k array was

used to prepare this database (https://support.illumina.com/array/array_kits/

infinium_humanmethylation450_beadchip_kit/downloads.html).

We compared the 450k array cg probe data to the indexed DNase I hotspots

using the bedtools tool (Quinlan and Hall, 2010). The overlaps for each cg

probe were stored in an SQLite DB, organized by datasets. For each cg probe,

a binary string was generated, representing the presence or absence of an

overlap with a hotspot in each dataset (either Roadmap, BLUEPRINT, or

ENCODE).

Background Probe Parameters

eFORGE evaluated the input DMP set by comparing it to 1,000 background

DMP sets. The probes in the background sets were matched to the probes

in the input set using annotation (i.e., if one probe from the input set was in a

promoter, then its matching probe in each of the 1,000 background sets

was also in a promoter). The annotation categories used for this matching pro-

cess were ‘‘Gene annotation’’ (i.e., 1stExon, 30 UTR, 50 UTR, Body, IGR,

TSS1500, TSS200) and CpG Island annotation (i.e., Island, Shore_Shelf, and

NA or ‘‘open sea’’). All possible combinations of these two levels resulted in

21 different background bin categories. The CpG island annotation categories

‘‘Shelf’’ and ‘‘Shore’’ were merged to produce enough probes in each back-

ground bin category; i.e., more than 1,000. The 450k array Illumina annotation

(Bibikova et al., 2011) was used to create these data categories (Tables S1

and S2).

eFORGE Analysis

Input of DMPs into eFORGE can be in any of two forms: as Illumina 450k/27k

probe IDs or as BED format (BED format should be zero based and the chro-

mosome should be given as chrN, as genomic location on human genome as-

sembly GRCh37). Genome coordinates are sufficient to identify probe IDs if
Figure 6. eFORGE Analysis of Surrogate Tissue and Multiple Sclerosis

(A) DHS analysis of multiple sclerosis EWAS. Upper panel shows eFORGE blood

hypomethylated DMPs (ranked in the study by likelihood ratio test and Fisher’s

monocytes in an analysis of the same regions with BLUEPRINT data.

(B) Histone mark analysis of multiple sclerosis EWAS. Panel shows enrichment fo

by FDR q value. Cell types with q values below 0.01 for histonemodifications repre

shown in purple, and polycomb-repressed regions (H3K27me3) are shown in gre

representative of promoters (H3K4me3) are shown in light purple. Cell types wi

H3K36me3 (transcribed regions) and H3K9me3 (a marker for heterochromatin) d

regions show enrichment for H3K4me1 (and, at a lower level, H3K4me3) in blood

(C) Analysis of surrogate tissue EWAS: the three panels (ENCODE, BLUEPRINT, an

macrophage, and AML for an ovarian cancer prediction EWAS measured on who

ovarian tissue, and, interestingly, megakaryocytes). This supports a myeloid-line

enrichment in megakaryocyte regions, and showing enrichment for acute promye

this tissue-specific signal points to a divergence that occurs after differentiation

myeloblastic differentiation. This DHS enrichment pattern extends to the myelobl

myeloblast, which would be the cell of origin of this tissue-specific signal. This e

imbalance causing the methylation signal observed (Teschendorff et al., 2009; H
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these are not provided in BED format. We suggest a minimum of 20 and a

maximum of 1,000 probes. If a DMP is not present on the 450k array (or the

27k array probes shared with the 450k array), it is excluded from the analysis.

We added a 1-kb proximity filter in order to avoid the biases of testing groups

of proximal probes in eFORGE: methylation correlation among closely located

CpGs could mean we would be testing the same change more than once.

Probes from input are selected at random by the filter, and any probe within

1 kb of any already selected probe is excluded. The choice of selecting 1 kb

as a limit for filtering was based on previous data showing strong correlation

of DNA methylation levels between CpGs fewer than 1 kb apart (Eckhardt

et al., 2006).

Overlaps are retrieved from the eFORGE database for each analyzable

probe in the input set. The tool records a count of total hotspot overlaps for

each DNase I sample (cell) for the test probe set. eFORGE selects 1,000

matching background probe sets that contain an equal number of probes to

the test probe set, matching for gene annotation and CpG island annotation

as described above. Retrieval of overlaps from the database for each of the

probes in each of the background probe sets then occurs. The tool records

an overlap count for each background set in each DNase I sample. For each

test probe set, eFORGE obtains the binomial p value for the test set overlap

count. This binomial p value is calculated for the test set overlap count relative

to the total number of tested probe sets. The binomial test was chosen over the

hypergeometric test due to the important computational speed advantages it

offers, which are further highlighted considering the high number of tests per-

formed by eFORGE.

eFORGE Outputs

Tabular and graphic descriptions of the enrichment of overlap for the test

DMPs are generated by eFORGE for each DNase I hotspot sample. The tool

outputs a tab-separated values (TSVs) file, which includes columns for Z

score, binomial p value, cell, tissue, datatype, filename of the sample hotspots,

DMPs that contribute to the enrichment, the GEO accession for each sample,

and the BY adjusted q value. An interactive table containing these data is

generated using the Datatables (https://datatables.net/) plug-in for the jQuery

JavaScript library accessed through the rCharts package (http://ramnathv.

github.io/rCharts/).

In terms of graphical visualization of eFORGE output, FORGE scripts (Dun-

ham et al., 2015) were adapted with minor modifications. Briefly, the –log 10

(binomial p value) is presented by cell sample in each of the graphic outputs.

Base R graphics (http://www.r-project.org) are used to generate a pdf graphic.

eFORGE generates the interactive JavaScript graphic using the rCharts

package (http://ramnathv.github.io/rCharts/) to interface with the dimple d3

libraries (http://dimplejs.org). In the pdf and the interactive graphic cells are

grouped alphabetically within each tissue (tissues, in turn, also follow alpha-

betical order). The coloring of results by BY-corrected q value in each of the

graphics is consistent, blue (q value >0.05), pink (q value <0.05), and red (q

value <0.01).
EWAS

, spleen, and thymus enrichment in Roadmap Epigenomics data for top 1,000

method FDR q value). Lower panel shows enrichment for macrophages and

r top 1,000 study hypomethylated DMRs. Cell type-specific scores are colored

sentative of enhancers (H3K4me1) are shown in red, promoters (H3K4me3) are

en. Cell types with q values between 0.01 and 0.05 for the histone modification

th q values above 0.01 for all other histone modifications are shown in blue.

id not present any significant cell type-specific enrichment patterns. Analyzed

cells.

d consolidated Roadmap, from top to bottom) show enrichment for monocyte,

le blood. There is no enrichment for any other tissue (including lymphoid cells,

age-specific DHS enrichment for top regions from this EWAS. By discarding

locytic leukemia cell lines (NB4 and HL-60), the lineage-specific component of

from the common myeloid progenitor and is suggestive of an event during

ast branch of the myeloid lineage, pointing to these regions being active in the

nrichment pattern shows cell types that drive the proposed myeloid/lymphoid

ouseman et al., 2012; Li et al., 2014).
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Figure 7. Analysis of Cancer EWAS

This heatmap shows a stem cell-like signature for regions from five cancer EWAS, through color-coded enrichment –log10(q value). The left column

depicts results for 330 top probes from a breast cancer metastatic behavior EWAS (Fang et al., 2011), the second column from the left shows results for 450

probes from a colorectal carcinoma EWAS (Kibriya et al., 2011), and the central column shows results for 240 probes from a sporadic colorectal cancer EWAS

(Laczmanska et al., 2013). The next column on the right shows results for 801 probes from an adrenocortical carcinoma EWAS (Barreau et al., 2013), and the last

column on the right shows results for 362 probes from a clear cell renal cell carcinoma EWAS (Arai et al., 2012). All five studies showed intermediate enrichment (q

value <0.05) of at least one eFORGE ‘‘ES cell’’ or ‘‘iPSC’’ category. Aside from this stem cell-like signature, no other shared tissue category is enriched across the

five probe lists.
eFORGE Reproducibility

A default probe set of 11 monocyte-specific DMPs was run 1,000 times on

eFORGE, and we plotted a resulting longitudinal set of CD14+ category q

values for these runs (Figure 1B).
False-Positive Testing

We tested eFORGEBY correction with sets of 5, 10, 15, 20, 30, 40, 50, and 100

randomly selected probes, performing 5,000 analyses for both Roadmap Epi-

genomics and ENCODE data. We did not obtain any false-positives (at a q
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value <0.01) for any of these analyses. We did, however, obtain false-positives

at a q value <0.05 (0.36%), but this is only indicated to be an intermediate level

of significance in eFORGE. The false-positive rates at a q value <0.05 do not

show a clear tendency with the size of the probe sets (see Tables S3 and

S4). Most of the q values below 0.05 come from a few probe sets, signaling

that most FP come from random sets that are borderline for many tissues/

cell lines. This supports the notion that it is highly improbable to obtain

eFORGE tissue-specific enrichment with random probe lists.

Comparison of BH and BY

8,000 sets ranging between five and 100 DMPs were run on eFORGE using

both BH and BY multiple testing correction methods. As 299 samples were

analyzed for each of the 8,000 DMP sets, there is a total number of

2,392,000 sample tests. Out of these random tests, one false-positive was re-

corded for BH, and zero were recorded for BY, at a significance level of 0.01.

Addition of New Data to eFORGE Database

All the code for generating the eFORGE database from scratch is openly avail-

able on GitHub (see https://github.com/charlesbreeze/eFORGE/blob/master/

database/README.txt and examples in the same directory). Data from a new

project can be added as a table to the modular SQLite database. In addition,

indications are provided for the production of bitstring tables from raw data.

GeEC Analysis

Datasets used for GeEC correlation analysis were taken from the IHEC Data

Portal (http://epigenomesportal.ca/ihec/) as of March 2016. They correspond

to 508 DNase sequencing (DNase-seq) datasets generated by ENCODE,

Roadmap, and BLUEPRINT, as well as 1,277 chromatin immunoprecipitation

sequencing (ChIP-seq) datasets for five core histone marks (H3K4me1,

H3K4me3, H3K36me3, H3K27me3, and H3K9me3) generated by ENCODE

and Roadmap. These 1,785 datasets were processed with the Genomic Effi-

cient Correlator (GeEC) tool to first average the signal of each dataset in

non-overlapping bins of 10 kb (excluding the ENCODE blacklisted regions)

and then to calculate a matrix of the pairwise Pearson product-moment corre-

lation coefficients (r). Hierarchical clustering (using the 1-r distance metric and

the average linkage method) was then conducted, and the principal clusters

were annotated.

Adjusted Rand Index (ARI) results were also used to validate the accuracy of

the clustering by using the IHEC-provided metadata describing every dataset

for three categories of labels (assayType, cellType, consortium). The tree

generated through hierarchical clustering is cut at the appropriate height to

obtain a number of clusters equal to the number of distinct labels in each

category and then used to calculate the ARI scores. ARI values were calcu-

lated using the ‘‘average’’ linkage method.

tDMP Analysis

We extracted normalized samples from Marmal-aid (Lowe and Rakyan, 2013)

for tissues that contained a minimum of 50 samples. We used the dmpFinder

function in minfi (Aryee et al., 2014) to make an initial call of tissue-specific

methylation differences. Two categories were defined to perform this for

each tissue: group 1 contained the tissue of interest, and other tissues were

included in group 2.We used the top two probes for each of the tissue-specific

calls to visually inspect the data. Any samples that were found to be closer to

the mean of group 2 than group 1 were removed. The final calls were then pro-

duced using the remaining samples. We randomly selected 50 samples for

each tissue, and we then followed a similar procedure to the above, calling dif-

ferences using dmpFinder. Data S2 contains the IDs of the samples used in the

analysis. Data S3, S4, and S5 contain the calls for three of the tissues for all

probes.

cDMP Analysis

We obtained data from Table S2 of a cell type-specific methylation paper by

Jaffe and Irizarry (2014). cDMP selection was based on a given probe having

the lowest methylation value for a given cell type when compared to the other

cell types, and this low methylation value being lower than the next closest

methylation value by 0.4.

Source Code

The source code for eFORGE is available on GitHub at https://github.com/

charlesbreeze/eForge. It includes the code for the standalone tool, the web-
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server, and the scripts to build or extend the database, although a pre-

compiled eForge.db sqlite database and background selection hash tables

are readily available at http://eforge.cs.ucl.ac.uk/?download. Code variants

(e.g., probe weighting) are discussed in the Supplemental Experimental Pro-

cedures. eFORGE has been successfully installed and run on Red Hat Linux

and OS X 10.9.5.

ACCESSION NUMBERS

The accession number for the BLUEPRINT data reported in this paper is EGA:

EGAD00001002713.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, seven tables, and five data files and can be found with this

article online at http://dx.doi.org/10.1016/j.celrep.2016.10.059.
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